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This dissertation explores techniques for reducing the costs of inter-processor

communication in shared memory multiprocessors (MP). We seek to improve MP

performance by enhancing three aspects of multiprocessor cache designs: miss reduc-

tion, low communication latency, and high coherence bandwidth. In this disserta-

tion, we propose three techniques to enhance the three factors: shared non-uniform

cache architecture, coherence decoupling, and subspace snooping.

As a miss reduction technique, we investigate shared cache designs for future

Chip-Multiprocessors (CMPs). Cache sharing can reduce cache misses by eliminat-

ing unnecessary data duplication and by reallocating the cache capacity dynamically.

We propose a reconfigurable shared non-uniform cache architecture and evaluate

the trade-offs of cache sharing with varied sharing degrees. Although shared caches

can improve caching efficiency, the most significant disadvantage of shared caches
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is the increase of cache hit latencies. To mitigate the effect of the long latencies,

we evaluate two latency management techniques, dynamic block migration and L1

prefetching.

However, improving the caching efficiency does not reduce the cache misses

induced by MP communication. For such communication misses, the latencies of

cache coherence should be either reduced or hidden and the coherence bandwidth

should scale with the number of processors. To mitigate long communication la-

tencies, coherence decoupling uses speculation for communication data. Coherence

decoupling allows processors to run speculatively at communication misses with pre-

dicted values. Our prediction mechanism, called Speculative Cache Lookup (SCL)

protocol, uses stale values in the local caches. We show that the SCL read compo-

nent can hide false sharing and silent store misses effectively. We also investigate

the SCL update component to hide the latencies of truly shared misses by updating

invalid blocks speculatively.

To improve the coherence bandwidth, we propose subspace snooping, which

improves the snooping bandwidth with future large-scale shared-memory machines.

Even with huge optical bus bandwidth, traditional snooping protocols may not scale

to hundreds of processors, since all processors should respond to every bus access.

Subspace snooping allows only a subset of processors to be snooped for a bus access,

thus increasing the effective snoop tag bandwidth. We evaluate subspace snooping

with a large broadcasting bandwidth provided by optical interconnects.
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Chapter 1

Introduction

In the past decade, multiprocessors have emerged from the parallel scientific com-

puting to commercial server applications. With the introduction of recent chip

multiprocessors, multiprocessors have moved into the personal computing domain

and are starting to move into embedded systems, making multiprocessors ubiquitous

in every area of computation. In multiprocessors, communication among processors

has a significant effect on the system performance, and there have been numer-

ous studies to improve multiprocessors for low communication overheads. However,

there are several technology trends, making optimizing communication in multipro-

cessors more complicated:

• Increasing transistor density has made possible single chip-multiprocessors

(CMPs). The on-chip integration of multiprocessors allows more flexible or-

ganization of caches and communication networks than chip-to-chip multipro-

cessors by eliminating the limit of off-chip bandwidth. As on-chip transistor

counts are growing close to billions of transistors, tens of processing cores will
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be placed on chips in the near future. Efficient organizations of on-chip com-

munication mechanisms will be essential in the designs of high-performance

CMPs.

• Performance losses due to communication among processors have been increas-

ing. Although clock speed increase has recently slowed down due to power con-

sumption limitation, inter-processor communication latencies are still larger

than local cache hit latencies by one or two orders of magnitude. Particularly,

in commercial workloads, the inter-processor communication latencies affect

system performance significantly, due to fine-grained data sharing in the com-

mercial servers. Barroso et al. have showed that about 50% of cache misses

in server workloads are misses induced by inter-processor communication [7].

The increased performance losses from communication latencies have forced

hardware designers to spend more time on optimizing interconnection network

designs and coherence protocols.

• Interconnection network bandwidth has been increasing with better electri-

cal signaling technologies. Furthermore, the advances in optical interconnec-

tion technologies can potentially provide enormous interconnection bandwidth,

mitigating the communication bottlenecks of large scale multiprocessors. How-

ever, in shared memory multiprocessors, cache coherence mechanisms limit

the communication bandwidth. It is necessary to improve other components

of coherence systems, such as snoop tags in snooping protocols, with intercon-

nection bandwidth.
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1.1 Communication Costs in Shared Memory Multipro-

cessor

The memory hierarchies of shared-memory multiprocessors consist of multiple lev-

els of local caches and the external main memory. The cache coherence mecha-

nisms maintain the consistency of data among the local caches and memory. In the

shared memory model, processors communicate with each other implicitly through

the cache hierarchy and the coherence mechanism. Accesses to remote caches (the

caches of other processors) and main memory through the coherence mechanism

are expensive, since the latencies are much longer than local cache accesses and the

bandwidth is limited by off-chip interconnections.

To improve the performance of MP systems, local caches should absorb as

many accesses as possible to avoid the expensive accesses to the remote caches

and memory. However, some remote accesses are unavoidable, and lead to signifi-

cant performance losses in multiprocessors. For such remote accesses, both latency

and bandwidth should be improved for better performance of MP systems. There-

fore, techniques for reducing the communication overheads can be classified to three

categories: miss reduction, low latency communication, and high communication

bandwidth.

• Reducing cache misses (improving cache efficiency): The most efficient way

of reducing the communication overheads is to reduce unnecessary remote ac-

cesses. Traditionally, increasing capacity and associativity has improved the

caching efficiency. However, in CMPs with multiple processors on a chip,

caching efficiency can be further improved by sharing cache capacity among

3



processors [80, 81]. Cache sharing can also improve communication among

processors on a chip by providing a fast and high bandwidth coherence mech-

anism within a chip.

• Hiding communication latencies: True communication among processors can

not be reduced by increasing caching efficiency. For such communication-

induced misses, the latencies of acquiring updated values should be minimized.

Traditional techniques to reduce the latencies are to shorten interconnection

network latencies, and to optimize cache coherence mechanisms [18, 101, 21].

Alternatively, prefetching communication data and initiating coherence trans-

actions speculatively hide the effect of long latencies [58, 79, 49, 56].

• Improving communication bandwidth: In shared-memory multiprocessors, the

bandwidth of cache coherence mechanism determines communication band-

width. Even with the advances in network bandwidth, increasing the coher-

ence bandwidth grows complicated due to the protocol complexity and the

energy consumption.

The next section introduces three techniques to enhance the three aspects of

multiprocessor performance.

1.2 Three Techniques to Improve Multiprocessor Mem-

ory Systems

Figure 1.1 presents three techniques improving each aspect of multiprocessor mem-

ory systems: miss reduction, low communication latency, and high bandwidth. First,
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P1 P2 P3 P4 P5 P6

Proc. L1 L2 Cache

(2) Return
      Speculative data

(1) L2 miss

(3) Verify
      Speculative data

(2) Request data 

Connected
to other processors

Processor

L2 cache bank

On−chip directory

Reconfigurable sharing degree

Shared dynamic NUCA 

Optical bus with multiple channels

1. Miss Reduction (C−NUCA): Shared caches for CMPs

2. Latency (Coherence Decoupling): Speculation to hide communication latency

3. Bandwidth (Subspace Snooping): Increasing snooping coherence bandwidth 

Figure 1.1: Improving MP memory systems: miss reduction, low latency and high
bandwidth
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to reduce off-chip accesses in CMPs, we propose a configurable shared cache design.

However, the shared caches can have long hit latencies, reducing their benefits.

To mitigate the hit latencies, our shared caches use the dynamic block migration

technique.

Second, we use speculation to hide communication latencies. Current out-of-

order processors can execute instructions speculatively and recover when the spec-

ulation is incorrect. Coherence decoupling predicts communication data for a co-

herence miss and allows the processor to run speculatively while the safe cache

coherence protocol obtains the correct data. The speculation on communication

data can hide long communication latencies without changing underlying coherence

protocols.

Third, we propose a new class of coherence protocols, called subspace snoop-

ing to improve coherence bandwidth. The advances of interconnection technolo-

gies such as optical buses, have been increasing the bus bandwidth tremendously.

However, traditional snooping protocols, despite of their advantages over directory

protocols, can not scale due to the limited snoop tag bandwidth. The new protocol

will improve the effective snoop tag bandwidth on optical buses.

1.2.1 Reducing Cache Misses: Shared Cache Organization for CMPs

Traditionally, cache misses can be reduced by increasing cache sizes (capacity misses)

and associativity (conflict misses). However, the increases of capacity and associa-

tivity may increase the hit latencies of caches, reducing misses at the expense of the

increased delays for hits. The optimal cache configuration balances the benefit of

reduced misses and the performance loss due to the increased latencies.

6



Recent advances in CMP technologies have provided a new way to reduce

off-chip misses by sharing caches. Unlike a single processor with a dedicated local

cache, CMPs allow the tight integration of multiple processors and caches on a single

chip. Since the connectivity among processors (on the same chip) is not limited by

off-chip pin bandwidth, processors can share a large pool of on-chip cache capacity.

Cache sharing can reduce cache misses in several different ways. First, shared

data do not need to be cached in multiple places, wasting cache capacity. In tradi-

tional private caches, shared blocks can be copied to multiple private caches. When

a cache is shared by on-chip processors, the shared working set of the processors has

only one copy of data in the shared cache. Such single-copy property can improve

the caching efficiency, and thus reduce capacity misses. Second, cache capacity can

be dynamically reallocated among processors. In private caches, only a dedicated

processor can use the local cache capacity. However, when there is a large work-

ing set disparity, some private caches may have unused cache spaces, but others

may suffer from capacity misses. Cache sharing allows processors to share capacity

dynamically, improving caching efficiency by capacity rearrangement.

This dissertation evaluates the trade-offs of cache sharing in CMPs to reduce

off-chip misses. Cache sharing can increase hit latencies, since cache sizes should

be larger and provide higher bandwidth than private caches. Therefore, with many

processors in future CMPs, the optimal number of processors sharing a cache is

a first order design issue. We propose a CMP substrate which can reconfigure the

number of sharing processors (or sharing degree). With the reconfigurable substrate,

this dissertation evaluates CMP performance with varying sharing degrees.

The most significant disadvantage of shared caches is the increased hit la-

7



tencies. This dissertation investigates two techniques to reduce the effect of hit

latencies in shared caches.

First, the reconfigurable CMP substrate supports dynamic block migration.

Dynamic Non-Uniform Cache Architecture (D-NUCA) consists of multiple inde-

pendent banks with network fabrics [53]. A cache block can be mapped in multiple

banks, and access latencies from processors to banks vary by the distances. Blocks

are moved from farther-located banks to closer-located banks, migrating frequently

accessed blocks closer to a given processor. D-NUCA can reduce average hit laten-

cies, since the majority of blocks are found in the banks close to the processors.

Second, L1 prefetching mechanisms can hide long L2 hit latencies. L1 prefetch-

ing does not reduce the L2 access latencies, but hides the latencies by moving data

to the L1 caches before processors access them [6, 47]. This dissertation evaluates

stride-based hardware prefetching engines for CMPs. The prefetching engines rec-

ognize regular strides between successively missed addresses, and send the request

to the L2 shared cache as early as possible.

1.2.2 Hiding Communication Latency: Speculation for Cache Co-

herence

In shared memory multiprocessors, processors communicate with each other through

cache coherence protocols. In traditional invalidation-based coherence protocols,

any write to shared data forces shared copies to be invalidated, and subsequent

reads to the invalid local copies will cause cache misses. Such misses are defined as

communication misses or coherence misses [20]. Communication misses can not be

reduced by increasing local cache sizes or associativity, since such misses are induced
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by producer-consumer communication.

A straightforward way of improving multiprocessors for communication misses

is to reduce the latency for obtaining data from the main memory or the other caches.

Interconnection networks can be improved to shorten the latency and cache coher-

ence protocols can also be optimized. In this dissertation, we propose a novel way of

reducing the effect of long communication latencies, using speculation. Speculation

is a technique to hide the effect of long latency events. The outcome of an event

is predicted and validated later. Modern microprocessors have the capability to

execute instructions speculatively.

We propose a technique called coherence decoupling to use speculation for

coherence misses. For a coherence (communication) miss, the missed data are pre-

dicted, and the processor continues to execute dependent instructions. While the

processor runs without stalls, a backing coherence protocol obtains non-speculative

(correct) data by communicating with the other processors and the main memory.

When the correct data return, the predicted value is validated against the correct

value. If the prediction was incorrect, the processor state is rolled back to the last

correct state before the speculation.

Coherence decoupling breaks a traditional cache coherence protocol into two

parts, a Speculative Cache Lookup (SCL) protocol and a safe coherence protocol.

The SCL protocol provides speculative load values for early use in communication

misses. The backing verification protocol, which is much slower than the aggressive

SCL protocol, guarantees the correctness of coherence. Using the SCL protocol,

processing cores continue to execute instructions speculatively, while the safety net

verifies the execution correctness. This speculative execution can hide the long
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latency of coherence misses.

Coherence decoupling decouples the performance of cache coherence from the

correctness. Improving the SCL protocols for better performance does not add com-

plexity to the underlying cache coherence protocol. Even if the backing coherence

protocol is slow, the fast value prediction for communication data can hide much

of the latency. Coherence decoupling also reduces the application programmer’s

burden to fine-tune the programs, as application programmers spend more time to

remove unnecessary communication in MP systems.

1.2.3 Increasing Communication Bandwidth: A New Snooping Method

for High-Bandwidth SMPs

In the shared memory model with hardware cache coherence, the available commu-

nication bandwidth is dependent on the bandwidth of the coherence mechanism.

The cache coherence mechanism transfers the requested data to the local caches as

well as maintains the integrity of data.

Traditionally, there have been two mechanisms of hardware cache coherence,

snooping protocols and directory protocols. Snooping protocols (or bus-based co-

herence) broadcast every memory request to all the lowest-level (inclusive) caches

in the system. Since every cache can observe memory transactions, the data con-

sistency is maintained by each cache in a distributed way. On the other hand, di-

rectory protocols use an external directory to keep track of current sharers of data.

Memory requests are sent only to the sharing processors, reducing the bandwidth

consumption of each request. The directory protocols may scale better than snoop-

ing protocols, at the expense of the increased complexity and 3-way communication
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through directories.

Of the two types of coherence mechanisms, the snooping protocols have been

more widely adopted for commercial multiprocessors. The bandwidth of snooping

protocols has been improved by orders of magnitude, and the available bandwidth

has been large enough to support commercial multiprocessors with tens of proces-

sors [38, 15]. The snooping protocols are less prone to protocol errors than the com-

plex directory protocols. Fast cache-to-cache data transfers are possible in snooping

protocols, since no directory lookup is necessary.

In current snooping protocols for commercial servers, the address bus and

data bus are separated to increase the bandwidth. Sun’s Wildfire system used

multiple address-interleaved snoop buses supported by a point-to-point data transfer

network [38]. Since the data bus does not require broadcasting, the bandwidth of

the data bus can be improved easily with point-to-point networks. Therefore, the

address bus bandwidth and snoop tag bandwidth limits coherence bandwidth.

In this dissertation, we propose subspace snooping to increase the effective

snooping bandwidth for future snooping coherence protocols. Subspace snooping in-

creases the snoop tag bandwidth by eliminating the need for snooping all the caches.

For each request, subspace snooping allows only a subset of processors to respond to

the request, improving the one-to-all snooping to one-to-many snooping. However,

subspace snooping still requires scalable bus bandwidth to broadcast requests. For

the correctness of subspace snooping, the processors which have valid copies of a

block must be guaranteed to snoop on bus requests to the block address.

The advances of optical interconnections for multiprocessors will increase

the broadcasting network bandwidth tremendously, providing enough bandwidth
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for hundreds of processors. However, traditional snooping protocols require all pro-

cessors to respond to each request. The snoop tag bandwidth should also scale

with the address bus bandwidth. However, the tag bandwidth may not scale due

to limited bandwidth and excessive energy consumption of tag lookups. Subspace

snooping solves the limited tag bandwidth problem by snooping a subset of proces-

sors for each bus request. Subspace snooping mitigates the snoop tag bottleneck

when abundant bus bandwidth is available either with either heavily interleaved

electrical buses or optical buses.

1.3 Contributions

The previous section presented three solutions to improve distinct aspects of MP

memory system overheads. Through the solutions, this dissertation makes the fol-

lowing contributions:

• This dissertation investigates how the limited off-chip bandwidth affects the

optimal processing core size and cache capacity in future CMPs.

• This dissertation proposes a bank-based shared cache design for CMPs, sup-

porting configurable sharing degrees. The proposed organization provides

shared flexibility as well as improved average hit latency and bandwidth.

• This dissertation evaluates the trade-offs of sharing degrees in CMP caches.

The potential benefits of per-application or per-cacheline sharing degrees are

also explored.

• This dissertation proposes a CMP cache design supporting dynamic block

migration to reduce hit latencies.
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• This dissertation proposes a technique which adopts speculation to hide com-

munication latencies. The technique shows that decoupling performance pro-

tocols from correctness protocols can improve the performance of systems and

simplify the design.

• To use speculation, it is essential to have an accurate prediction mechanism

for communication data. This dissertation proposes the first method, to our

knowledge, to use stale (invalid) values in the local caches.

• This dissertation identifies that the snoop tag bandwidth limits the scalability

of snooping coherence, when the bus bandwidth can be increased with optical

interconnects. To remove the bottleneck, the proposed technique decouples

the snoop tag bandwidth from the bus bandwidth, allowing only a subset of

processors to be snooped for each coherence request.

• This dissertation proposes a dynamic mapping algorithm to adapt the par-

titioning of processors to current sharing patterns. The mapping algorithm

reduces the number processors to be snooped.

To evaluate multiprocessors with commercial applications, we developed a

full-system simulation environment with an execution driven timing model. Full

system simulation is essential to support commercial applications which have become

the most widely-used workloads for multiprocessors.

1.4 Dissertation Organization

In this section, we provide an overview of this dissertation work. Chapter 2 describes

the two simulation infrastructures used for this dissertation. First, the MP-sauce
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simulator is a full-system multiprocessor simulator with out-of-order processor mod-

els. It supports commercial workloads with an operating system running on the sim-

ulator. This chapter presents the requirements of simulation infrastructures for this

dissertation, and describes the architecture and workflows of the MP-sauce simula-

tion environment. The second simulator, Augmint, is a trace-based simulator with

binary instrumentation. The Augmint simulator, without time-consuming detailed

models, allows fast simulation with many processors. This simulator is appropriate

to evaluate large scale multiprocessors.

Chapter 3 explores the design space of future CMP L2 caches, focusing on

the trade-offs of processor cores and limited off-chip bandwidth. This chapter finds

the best configuration of processors and caches under varied area and bandwidth

limitations. We show the importance of miss reduction in future CMP cache designs,

emphasizing the need for cache sharing.

Chapter 4 presents a configurable design for CMP shared caches. Although

cache sharing provides effective miss reduction, it may suffer from long hit latencies

due to wire delay. To reduce the hit latencies, We propose a shared L2 cache

design with dynamic migration. The migration policies and search mechanisms

are discussed. As an alternative solution to dynamic migration, this chapter also

evaluates level-one prefetching mechanisms.

In Chapter 5, we propose coherence decoupling, which allows speculative

execution on communication misses. Speculation can hide long communication la-

tencies in multiprocessors. We show the effect of communication misses with in-

creasing cache sizes. Based upon the observation, we describe the components of

coherence decoupling: value prediction mechanism, correctness protocol, and recov-
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ery mechanism. The result section presents the accuracy of value prediction and the

performance improvement by coherence decoupling.

In Chapter 6, we propose subspace snooping, which increases the effective

communication bandwidth in multiprocessors. This chapter raises the issue of snoop

tag bottlenecks for scaling multiprocessors and current advances in optical intercon-

nects. The snoop tag lookup overheads can limit the scalability of snooping protocols

even when a very large interconnection bandwidth is provided. The result section

evaluates subspace snooping with the Augmint simulator. Chapter 7 presents the

conclusions of this dissertation.

15



Chapter 2

Simulation Methodology

In this chapter, we present two simulation tools for this dissertation. First, the

MP-sauce simulation environment provides a full system simulation with detailed

timing models for out-of-order processors and caches. We developed the MP-sauce

simulator based on SimOS-PowerPC (SimOS-PPC) [95], SimpleScalar [13] and Sim-

pleMP [87]. We use MP-sauce to study coherence decoupling, which requires spec-

ulation at processors, and a shared CMP cache design (Coherent Shared NUCA),

which requires detailed performance models for processors and on-chip caches. A

drawback of this simulation environment is its simulation time and scalability. Due

to the detailed timing models, simulation time is long and thus it can not scale to

simulate several tens of processors. Furthermore, the number of supported proces-

sors is limited to 24 by the AIX 4.3.1 operating system running on the full system

simulator.

The second simulator for fast and large scale parallel simulation is the Aug-

mint toolset [82]. The Augmint simulator was derived from the Mint simulator by
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adding the support for the x86 instruction set. Unlike the MP-sauce simulator,

the Augmint simulator embeds tracing instructions to applications, and generates

memory access traces. Timing memory models use the traces to simulate memory

system performance. Although the timing accuracy of simulation is inferior to that

of MP-sauce since it is not execution-driven, it can provide the fast simulation and

scalability the subspace snooping study requires.

In this chapter, we describe the architecture and characteristics of the MP-

sauce simulator and the Augmint simulator, and present the workflows to set up

and run benchmark applications with the two simulators.

2.1 MP-sauce Simulator

Studying future multiprocessor systems with commercial application poses chal-

lenges. To simulate MP systems with the complicated commercial applications,

the entire system, including the operating system and I/O devices, must be simu-

lated. Although numerous architectural simulators have been developed and used

in the computer architecture research community, only a few recent simulators have

supported such full system simulations.

We have developed a full system simulation environment, called MP-sauce,

based on the SimOS-PowerPC (SimOS-PPC) and SimpleScalar models. SimOS-

PPC provides system level services such as device simulators (disk, network and

console devices) and facilities for fast simulation (creating checkpoints and resum-

ing simulation from checkpoints). MP-sauce uses the system level service routines

for disks, networks, and consoles from SimOS-PPC. Several past approaches for

performance simulation with a full-system simulator, use a decoupled approach: A

17



full system simulator (in our case, SimOS-PPC) generates execution traces as a

front-end simulator, and back-end timing models simulate system performance with

the traces. Such decoupled simulators may not reflect true speculative execution

(wrong-path execution) and non-determistic events in MP systems. MP-sauce uses

a more accurate approach than the decoupled simulations. The MP-sauce processor

timing models truly execute instructions speculatively and cache coherence models

simulate possible transitional states. The integrated approach of MP-sauce is es-

sential to evaluate the effect of speculative execution, which is critical for studying

coherence decoupling and future CMPs with out-of-order processors. The develop-

ment of the simulation infrastructure took two years, including the time spent for

adding the benchmark suite to the simulator environment.

2.1.1 Requirements for Timing Simulation for Multiprocessors

There are several requirements for simulation environments to study multiprocessor

systems for commercial applications:

• Server workloads use operating system services heavily. Kernel activity is

an essential part of studying commercial applications. Furthermore, nearly

all commercial applications can run only when full operating system services,

such as thread support and I/O support, are available.

• Since modeling the non-deterministic nature of multiprocessors is important to

understand inter-processor communication, a true execution-driven simulation

is preferred to trace-driven simulations.

• Speculative execution of processing cores needs to be modeled, as target pro-
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cessors with out-of-order execution cores exploit more instruction-level paral-

lelism. As discussed before, this accurate modeling of speculation is essential

for our studies.

• Realistic coherence protocol simulation with a contention model is necessary.

The MP-sauce coherence protocols simulate possible transitional states.

2.1.2 MP-sauce Simulation Architecture

The MP-sauce simulation environment consists of three components: processor and

cache simulators, device simulators, and disk image files. Figure 2.1 shows the

overall structure of the simulation environment. The AIX 4.3.1 operating system

boots and runs on the simulator. The MP-sauce simulation environment consists of

three components:

• Device simulation (SimOS-PPC): The MP-sauce simulator uses system-level

device simulators from SimOS-PPC. The SimOS-PPC simulator provides sim-

ple models for disks, network devices, and consoles [95]. Such hardware de-

vices communicate with the rest of the system through the direct memory

access (DMA) routines and interrupt mechanisms. The SimOS-PPC simula-

tor maintains interrupt vectors to forward IO interrupts to appropriate han-

dler addresses. The SimOS-PPC simulator also provides address translation

routines, translating virtual addresses to physical addresses.

• Disk image and checkpoints: A disk image is a snapshot of the file systems

taken from real systems. They contain all of the necessary files for running the

AIX 4.3.1 operating system and applications. The complete hard disk from a
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system with the same operating system is copied into the disk image. In the

initialization phase of the simulation, the disk device is mapped to the disk

image, and SimOS-PPC can boot operating systems from this disk image.

SimOS-PPC supports checkpoints to reduce the simulation times. For accurate

timing simulations, the simulator should measure performance after applica-

tions are initialized. Server applications stabilize to optimal operating states

after executing a number of requests from clients. Since it takes a long time

for warming up servers, checkpoints are created after the initialization and

warmup period, and timing simulations are repeated from the checkpointed

states. Checkpoint files contain four system states: processor states (register

values), memory states, device states (device registers and pending interrupts),

and disk updates. Disk updates are changes in disks from the initial disk im-

age. Any disk change does not update the initial disk image. Instead, the

changes are recorded in separate files.

• Processor and cache models: The MP-sauce processing core and cache sim-

ulators are derived from the SimpleScalar simulator [13] and the SimpleMP

simulator [87]. The processor model is a speculative out-of-order execution

processor based on the Register Update Unit (RUU), which is a combined

instruction issue window, physical register file and reorder buffer [97]. Load

and store instructions are tracked in a combined load-store queue.

The processing core simulates all user-level and kernel-level instructions. The

core model implements PowerPC synchronization primitives for multiprocess-

ing. The implementation supports both 32 and 64 bit execution modes for the

AIX operating system.
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The processor models run truly execution-driven simulation. Register values

updated by speculative instructions are buffered in the RUU and update the

architectural registers only when instructions are committed. Although loads

are issued speculatively, stores are sent to the L1 cache only at the commit

stage.

For interrupts, processor pipelines are flushed and start from the new PC

obtained from the interrupt vectors. Exceptions are checked when instructions

are committed.

The memory simulator models snoop-based multiprocessor caches. Each cache

is modeled for non-blocking accesses with MSHR buffers. For accurate model-

ing, all the transitive states in the MOESI coherence protocol are modeled. For

CMP studies, shared caches are modeled with bank-based cache organizations.

2.1.3 MP-sauce Simulation Workflow

Typical simulations with MP-sauce take three steps. Figure 2.2 describes the pro-

cedures to set up applications and run simulations.

• Step 1: Applications are compiled for target systems and tested on a real

system. Commercial applications often include many binaries and complicated

directory structures to store configurations and data. Target applications are

compiled and installed in a real system as if they are installed for real runs.

For server applications, data files are also set up during the installation. For

database applications, databases are initialized and actual data are stored.

After the setup phase, applications are tested on a real system to check the

correctness and estimate the running times.
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• Step 2: The compiled binaries and necessary files for data and configurations

are brought into the simulated system. The SimOS-PPC provides file transfer

facilities to move files between the simulated system and the host system.

After being transferred to the simulated system, applications are run on the

SimOS-PPC simulator for warming-up the applications. For this step, we

use the SimOS-PPC simulator without the MP-sauce timing models for fast

execution. After applications are initialized and warmed up, a checkpoint is

created so that timing simulation can start directly from a desired point.

For server applications, many transactions are executed to warm up server

databases. Timing simulation is conducted only after servers are in stable

states.

• Step 3: Using the checkpoint from Step 2, the MP-sauce simulator runs timing

simulation and generates performance analysis outputs. Only this step needs

to be repeated to simulate systems with different hardware configurations.

However, changing the number of processors in a system requires booting

the system, since the OS needs to know the number of available physical

processors. Therefore, step 1 and step 2 must be repeated to change the

number of processors.

2.1.4 Benchmarks

Our benchmark suite represents medium-sized server workloads and scientific com-

putation workloads. Adding scientific applications to our benchmark suite allows

interesting comparisons between server applications and scientific applications. The

benchmark suite consists of the following three server-based applications, and shared
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memory scientific benchmarks:

• Web server (SPECWeb99): HTTP web servers deliver static and dynamic

content to clients. Data file sets and requests are generated according to the

SPECWeb99 specification. The requests are mixed for static file accesses and

dynamic content requests. The scripts for dynamic content are programmed

with the Perl script language. Apache 1.3 is used for HTTP servers with

mod perl 1.27 to process Perl scripts for serving dynamic content.

• E-commerce server (TPC-W): The E-commerce server is derived from the

TPC-W specification. The server emulates an on-line book store, where clients

can search books by title, author, etc., and can issue orders to buy books. The

server consists of three components: a front-end PHP script processor, a web

server, and a back-end database server. The front-end servers use Apache 1.3

with the PHP 4.2.3 module. MySQL 4.0 is used for the back-end database

system.

• Java business server (SPECjbb2000): The Java business server uses SPECjbb2000.

SPECjbb2000 emulates 3-tier server-side Java applications. The server models

TPC-C-like warehouse databases with clients on a Java virtual machine. Each

client is running as a separate thread, and simultaneously accesses in-memory

warehouse databases.

• Scientific applications (SPLASH-2): Our scientific applications are selected

from the SPLASH-2 benchmark suite [106]. Thread creation and lock primi-

tives are implemented with the pthread libraries.
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2.2 Augmint Simulator for Fast Simulation

The Augmint simulation toolkit runs applications natively on host systems by in-

struction augmentation [82]. Applications are augmented with tracing instructions,

and memory access traces are forwarded to the architectural simulator. The Aug-

mint simulator models simple perfect in-order processors with a cache hierarchy.

The Augmint simulation toolkit sacrifices the accuracy of simulation to re-

duce the simulation times. The differences between Augmint and MP-sauce are as

follows:

• In Augmint, applications are augmented with trace instructions, and linked

with Augmint scheduler objects and architectural simulator objects. The final
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executable runs natively on host systems.

• Only a perfect in-order processor is supported in the Augment simulator. The

processor model can always execute one instruction every cycle if the memory

system is perfect. Any delay due to cache misses can be added to the execution

model.

• Augmint can run only scientific applications. The applications must use a

specific implementation for synchronization (PARMACS macros for thread

management, locks, and barriers).

2.2.1 Augmint Simulator and Workflow

Figure 2.3 describes the simulation workflow with the Augmint toolkit. The Aug-

mint toolkits consist of three components:

• Instrumentation tool: adds tracing instructions to the assembly codes of appli-

cations. The tracing instructions check memory access instructions and trigger

the Augmint scheduler.

• Augmint scheduler: adjusts each processor’s cycle advancement. The sched-

uler forwards memory addresses to the architectural simulator. The architec-

tural simulator calls the Augmint scheduler when the access is finished through

the cache hierarchy. Based on the delay from the cache hierarchy, the Augmint

scheduler controls the processor scheduling.

• Architectural simulator: The architectural simulator should be provided by

simulator users. Using event-based interfaces from the Augmint scheduler, the

architectural simulator models the cache hierarchy and coherence mechanisms.
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As shown in Figure 2.3, the final application executable is linked with three

objects. First, applications are first expanded by macro processing. The applica-

tions use PARMACS macros, which define thread management and synchronization.

Macro processors expand such macros with the Augmint implementation of thread

management routines. Second, the applications are compiled to assembly codes,

and augmented with tracing instructions with the instrumentation tool. The in-

strumented codes are compiled to object files. Third, the Augment scheduler and

architectural simulator are linked with the application objects. The final executable

can run on x86 systems.

We use scientific applications from SPLASH-2 benchmark suites [106], and

AppBT. AppBT is a shared memory version of BT in the NAS parallel benchmark

suite [14].
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Chapter 3

Exploring The Design Space of

Future CMPs

Chip-multiprocessors (CMP) have become a promising approach for increasing job

throughput in servers, and are moving to desktop computing. With increasing

transistor density, it is likely that future CMPs will have considerably larger numbers

of processors than today, for two reasons [1]. First, the superscalar paradigm is

reaching diminishing returns, particularly as clock scaling has slowed precipitously.

Second, global wire delays will limit the area of the chip that is useful for a single

conventional processing core. Since a single processing core will be unable to use

the bulk of the chip real estate, the additional transistors will likely be used for

additional cores.

In this chapter, we present the study of processing cores and cache sizes

in CMPs for given area and off-chip bandwidth limitations. We determine the

CMP organizations that maximize total chip performance, which is equivalent to

29



job throughput in this study. We consider the following factors:

• Processor organization: Whether powerful out-of-order issue processors, or

smaller, more numerous in-order processors provide superior throughput.

• Cache hierarchy: The amount of cache memory per processor that results in

maximal throughput. The ideal capacity is a function of processor organiza-

tion, memory latency, and available off-chip bandwidth.

• Off-chip bandwidth: Finite bandwidth limits the number of cores that can be

placed on a chip, forcing more area to be devoted to on-chip caches to reduce

bandwidth demands.

• Application characteristics: Applications with different access patterns require

different CMP designs to attain the best throughput. Different applications

show varying sensitivities to L2 cache capacity, resulting in widely varying

bandwidth demands.

These constraints have complex interactions. More powerful processors place

a heavier individual load on the off-chip memory channels, but smaller, more nu-

merous processors may result in a heavier aggregate bandwidth load. Larger caches

reduce the number of off-chip accesses, permitting more processors to share a fixed

bandwidth, but the larger caches consume significant area, resulting in room for

fewer processing cores. In this chapter, we study the relative costs in area versus

the associated performance gains, showing the organizations that maximize per-

formance per unit area for future technology generations. Since my focus is on

performance bounds, we do not consider power limitations in this dissertation.
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Figure 3.1: Chip-multiprocessor model for chapter 3: private L1 and L2 caches

3.1 Technology models for evaluating CMP alternatives

In this chapter, we focus on throughput-oriented workloads with no sharing of data

among tasks to evaluate the area efficiency of chip-multiprocessors. As shown in

Figure 3.1, our CMP model has two levels of cache hierarchy, with L1 and L2 caches

coupled to individual processing cores for scalability. Deferring the investigation

of shared L2 cache designs to the next chapter, we assume private L2 caches for

the CMP cache model in this chapter. Each L2 cache is connected to the off-

chip DRAM through a set of distributed memory channels. Since the number of

memory channels is limited by physical and economic constraints, the allocation

of the finite bandwidth must be considered when designing cost-effective CMPs.

Thus our models account for time-multiplexing of the memory channels, and we

investigate effects of channel contention on the ideal balance between cache and

processor area allocations.
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3.1.1 Area models

An analysis of area efficiency requires accurate models of processing cores and caches

of varied capacities. Gupta et al. have derived a set of technology-independent area

models empirically, by measuring die photographs of commercial microprocessors

and normalizing the results for feature size [36]. To enable simple area trade-offs

among processor core areas and cache bank areas, the model expresses all area in

terms of cache byte equivalent area (CBE), which is the unit area for one byte of

cache, similar to the Equivalent Cache Transistor metric of Farrens et al. [28]. We

use a metric expressed in bytes for greater ease in reasoning about processor and

cache area trade-offs. The CBE includes the amortized overheads for tags, decoders,

and wires, in addition to the 8 SRAM cells.

For our processor model, we considered in-order and out-of-order issue pro-

cessors ranging from 2-wide to 8-wide issue widths. In Table 3.1, we show the

harmonic means of IPC (Instructions Per Cycle) of our benchmarks listed in Sec-

tion 3, for each model with varying L2 cache size. The number of ALUs are scaled

with the issue width. For in-order cores, issue width has little effect on performance,

but out-of-order cores have significant performance improvement from 2- to 4-way

issue cores. When the performance per unit area is considered, we found 2-way

in-order and 4-way out-of-order processors are the most area-efficient models, and

chose them as our processing core models. Table 3.2 shows the complete config-

uration of the two processor models used in this chapter. PIN is a simple 2-way

in-order issue processor that is roughly comparable to the Alpha 21064 [72]. The

POUT processor is a more aggressive, 4-way issue out-of-order processor comparable

to the Alpha 21264 [51]. These simulated processors have different microarchitec-
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L2 cache size 2-way 4-way 8-way
In-order 128KB 0.20 0.21 0.21

256KB 0.23 0.24 0.25
512KB 0.24 0.25 0.25
1MB 0.27 0.28 0.29

Out-of-order 128KB 0.26 0.31 0.33
256KB 0.31 0.38 0.40
512KB 0.32 0.39 0.41
1MB 0.38 0.47 0.50

Table 3.1: Harmonic means of IPCs for six processor models

PIN POUT

Instruction issue in-order out-of-order
Issue width dual-issue quad-issue
Instruction window (entries) 16 64
Load/store queue (entries) 16 64
Branch predictor bimodal (2K) 2 level (16K)
Number of integer ALUs 2 4
Number of floating-point ALUs 1 2
Estimated core area (CBE) 50 KB 250 KB

L1 Instruction cache 32 KB 32 KB
L1 Data cache 32 KB 32 KB

Total area (core + I/D caches) 114 KB 314 KB

Table 3.2: Parameters for two processor models

tures than the Alpha 21064 and Alpha 21264, but are intended to model processors

of similar capabilities implemented with similar transistor budgets. The results of

this model show that the core area of POUT is five times larger than that of PIN

and with L1 instruction and data caches, POUT is three times larger PIN .

This chapter assumes a large but fixed sized die of 300mm2. With smaller

feature sizes, the available area for cache banks and processing cores increases. The

primary goal of this chapter is to determine the best balance between per-processor

cache area, area consumed by different processor organizations, and the number of
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Figure 3.2: Transistor counts per IO pin

cores on a single die.

3.1.2 I/O pin bandwidth

While increasing transistor budgets can accommodate large numbers of processing

cores on a single chip, the communication between the chip and the rest of system is

both critical for performance and expensive to scale. The number of signal I/O pins

built on a single chip is limited by physical technology and does not scale with the

number of transistors. Figure 3.2 shows the projected ratio between chip transistor

capacity and signal pin count, according to the ITRS 2005 projections [93]. While

pin count is increasing, the number of transistors is increasing at a much higher

rate. For example, in 2015 there will be 6 times more transistors per pin than in

2005.

Another factor limiting off-chip communication is that, to date, I/O signaling

speeds have not increased at the same rate as processor clock rates. It is common

today to find a 1 GHz processor connected to memory through a 133MHz back-side
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bus. Even though active research aims to improve pin bandwidth by substantially

increasing the pin transfer rates into the Gigabit per second regime [23, 27, 111], the

disparity between the computation capacity and off-chip bandwidth will persist for

the foreseeable future. For our experiments, we scale the chip pin density according

to the ITRS projections for signal pin density at a fixed 300mm2 die size. We scale

the pin speeds linearly with technology at one-half the speed of the processor clock.

3.1.3 Maximizing throughput

In a CMP, the performance on server workloads can be defined as the aggregate

performance of all the cores on the chip. For these workloads, two parameters—

the number of cores (Nc), and the performance of each core (Pi)—are necessary to

estimate peak performance Pcmp of a server CMP:

Pcmp =
∑Nc

i=1
Pi

The performance of an individual core in a CMP (Pi) is dependent on ap-

plication characteristics such as available instruction level parallelism (ILP), cache

behavior, and communication overhead among threads. For applications that spend

significant portions of their execution time in communication and synchronization,

parallel efficiency of the applications drops precipitously, and realized Pcmp will drop

below peak Pcmp. However, in many server applications, threads are initiated by

independent clients, and they rely on relatively coarse-grained data sharing (or no

sharing at all), thus resulting in high parallel efficiency.

To simplify our initial study on CMP designs, we focus on the ILP and

cache behavior of serial applications, deferring a study of application communica-

tion and synchronization effects to the next chapter. Our base assumption in this
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Figure 3.3: IPC versus rate of DRAM accesses.

study is that all processes are independent of one another, which is the case in a

multiprogrammed environment. The metric of performance in this chapter is total

throughput, measured in instructions per clock (IPC). Given a fixed die size, this

metric is equivalent to an area efficiency metric. The optimization goal is to balance

the number of cores with the performance and bandwidth demands of individual

cores.

3.2 Application characteristics

The best allocation of processor area, cache area, and bandwidth depends on the

the characteristics of the applications in the workload. This section characterizes

the applications in this study based on their resource demands. We chose ten ap-

plications from the SPEC2000 benchmark suite and the sphinx speech recognition

application [59] to provide a wide range of memory system behavior. The SPEC2000

applications include mesa, mgrid, equake, gcc, ammp, vpr, parser, perlbmk, art and

mcf. The experimental results show that the applications can be categorized by the

following criteria:
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• Processor-bound: applications whose working sets are captured easily in the

L2 cache, who require few external DRAM accesses, and as a result are largely

insensitive to cache capacity and bandwidth restrictions. Mesa, mgrid, and

equake are in this class.

• Cache-sensitive: applications whose performance is limited by L2 cache ca-

pacity, as larger caches capture increasing fractions of the working sets. Gcc,

ammp, vpr, parser, and perlbmk are in this class.

• Bandwidth-bound: applications whose performance is limited strictly by the

rate that data can be moved between the processor and the DRAM. The

working sets of the applications are much larger than L2 cache size, or there

is little locality in the access patterns. Art, mcf, and sphinx are in this class.

Applications are not bound to one class or another; they move among these

three domains as the processor, cache, and bandwidth capacities are modulated.

To help characterize the memory behavior of the applications, we use the metric

of DRAM references per thousand instructions. A DRAM reference results directly

from an L2 cache miss or writeback. Consequently, this metric follows directly

from the characteristics of the application, the L2 cache capacity, and as shown

in Section 3.2.4, the number of processors in the CMP, due to sharing of memory

channels by multiple processing cores.

3.2.1 Experimental methodology

We measure instruction throughput and memory behavior using the SimpleScalar

tool set [13]. We configured SimpleScalar to model both the in-order and out-
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of-order processors, PIN and POUT , described in Table 3.2. We further modified

SimpleScalar for the chip-multiprocessor experiments to run multiple copies of the

same application with varying numbers of memory channels and sharing of the chan-

nels among the processors. The memory system simulates non-blocking, write-back

caches, and bus contention at all levels. The L1 instruction and data caches are

two-way set associative with 64-byte blocks, and the L2 caches are four-way set

associative with 128-byte blocks. To focus more directly on the larger L2 caches,

L1 instruction and data caches are fixed at 32KB. For our benchmarks, the applica-

tions show little performance improvement with larger L1 caches, due to projected

increase in access delays at smaller technologies. We therefore used the smallest

of these equivalently performing cache organizations, since it was the most area

efficient.

To simulate the effects of cache size on cache access latency, we used the Cacti

tool to determine access latency as a function of cache capacity [92, 105]. Given

the cache capacity, associativity, number of ports, and number of data and address

bits, Cacti finds the best cache configuration (minimal access time) by modeling a

large number of alternative cache organizations. The cache hit latencies of 128KB,

256KB, 512KB, and 1MB are 4, 5, 7, and 9 cycles, respectively.

To account for aggressive, next-generation memory system technology, the

DRAM portion of our simulator models Direct Rambus memory channels in de-

tail [19]. The data bus is clocked at 400 MHz, and data are transferred on both

edges of the clock. A Rambus channel uses 30 pins for control and data signals,

with a data width of 2 bytes. If more bandwidth is needed and pins are available,

multiple Rambus channels may be used in concert to form a single, logically wider
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memory channel. We use two Rambus channels for our memory channel, resulting

in a total of 60 pins per channel with a data width of 4 bytes. As mentioned in

Section 3.1, the Rambus DRAM clock rate is set to effectively one-half (one-quarter

clock with dual-edge transition) that of the processor, and assumes that memory

channel speeds will scale with processor clocks for future technologies.

For each application, the first five billion instructions of execution are skipped

to avoid simulating benchmark initialization, and the subsequent 200 million instruc-

tions are simulated in detail.

3.2.2 Application resource demands

To investigate the uniprocessor memory requirements of the applications, we varied

the processor model and L2 cache capacity to modulate the DRAM reference fre-

quency. The resulting instruction throughput is shown in Figure 3.3, as a function of

reference frequency. For each application, a family of points is plotted corresponding

to the two processor models (PIN and POUT ) and L2 cache capacities ranging from

128KB to 1MB. The general behavior for all of the applications is an increase in

DRAM reference frequency as cache capacity is decreased, resulting in a reduction

in IPC. Unsurprisingly, the IPC for the out-of-order processor uniformly exceeds

that of the in-order processor, although the two organizations converge as the appli-

cations become bandwidth bound, with DRAM reference frequencies greater than

25 per 1000 instructions. We note that the benchmarks exhibiting more than 4

references per 1000 instructions show remarkably similar performance as a function

of DRAM access rate. The applications can be divided into the three categories

based on their position along the x-axis:
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Figure 3.4: Effect of varying L2 cache size.
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• Processor-bound benchmarks: The applications mesa and mgrid have few

DRAM references per instruction. The IPC for these programs is high, par-

ticularly for POUT . The IPC, as well as the DRAM reference frequency, is

largely insensitive to cache capacity. Equake exhibits similar behavior, even

though its DRAM reference frequency is much larger than mesa and mgrid.

Thus processor-bound applications show relatively high IPC and have working

sets small enough to fit into moderately sized L2 caches.

• Cache-sensitive benchmarks: The DRAM reference frequency and performance

of gcc, ammp, parser, perlbmk, and vpr are much more dependent upon the L2

cache capacity. As cache sizes increase, the memory references tend to drop,

making these applications appear to be processor-bound, particularly when

the cache becomes large enough to hold the current working set. With smaller

cache capacities, reference frequency increases and IPC drops substantially.

• Bandwidth-bound benchmarks: sphinx, art and mcf place enormous band-

width demands on the off-chip interconnect. Even though large L2 caches

reduce DRAM reference frequency somewhat, the effective lack of a working

set results in low IPC even with the largest 1MB L2 caches. Because the L2

cache hit rate is so low, performance is directly proportional to the available

bandwidth.

3.2.3 Processor organization and cache size

As shown in Figure 3.3, uniprocessor performance depends both on the proces-

sor organization and cache capacity. However, the effectiveness of increased cache

capacity and out-of-order processors is limited by the bandwidth demands of the ap-
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plications. To display these characteristics more clearly, Figure 3.4 shows the IPC,

DRAM access frequency, and memory channel utilization as a function of cache ca-

pacity. Four applications are shown: mesa (processor bound), gcc (cache sensitive),

and sphinx and art (bandwidth bound).

From this figure, we note the following points. First, the gap between the

PIN and POUT configurations in columns (a) depends on the memory demands of

the benchmark. The gap is the largest for the processor-bound benchmark (mesa),

indicating that out-of-order cores will be more area efficient for that category. For

the other benchmark (gcc), the performance of the out-of-order and in-order cores

converges, as cache size drops and more frequent requests are made to memory.

Second, the data in columns (b) indicate that larger caches cause sharp

reductions in L2 misses for the cache-sensitive benchmarks (and for art when the

cache grows sufficiently large).

Finally, in columns (c) the data show that the out-of-order cores place heavier

demand on the channel utilization. That demand results from the POUT cores

moving the same quantity of data across the wires in a shorter time. We also note

that the Rambus channels saturate at approximately 80% utilization, due to finite

bandwidth on the command buses.

Several working sets are clearly visible in these data. When the L2 cache

is increased from 256KB to 512KB, gcc shifts from the cache-sensitive category to

being processor bound. The miss rate for art drops significantly when the L2 cache

is increased to 1MB. However, even with that drop, art is still bandwidth bound,

with over 50 DRAM accesses per 1000 instructions.

We define processor bound as having fewer than 5 off-chip accesses per 1000
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instructions, and bandwidth bound as greater than 25 references per 1000 instruc-

tions. With that definition, it is clear that only two of the benchmarks shown here

could tolerate any significant channel sharing: gcc for caches greater than 256KB,

and mesa for any of the cache sizes that we measured.

3.2.4 Channel sharing

Channel sharing arises when multiple processes are executing simultaneously on dif-

ferent processors. Figure 3.5 plots the aggregate IPC seen by a number of processors

sharing a single channel. The data show that the processor-bound job mesa exhibits

good scaling of throughput with increased numbers of channel sharers, except for

those experiments with the smallest (128KB) caches. Gcc scales or saturates, de-

pending on whether the cache is large enough to hold its distinct, 400KB working

set. The bandwidth-bound jobs sphinx and art show no improvement as more jobs

are added, since their bandwidth is the critical resource and already saturated at

one job. We note that again, the performance of the in-order and out-of-order cores

converge as applications become bandwidth bound. Once too many processors are

sharing a channel, adding more processors no longer improves throughput; that area

would be better spent increasing the sizes of the caches and reducing the load on

the channel. It is exactly that area/performance trade-off that we evaluate in the

subsequent section. The utilization of the channel matches the throughput scaling;

when the channel starts to reach saturation, throughput levels off.

In Figure 3.6, we plot the utilization of the channel that is shared by one to

eight processing cores in gcc. When the channel in gcc becomes saturated for 128KB

cache, utilization drops as more sharers are added. This counterintuitive result
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Figure 3.5: Performance scalability versus channel sharing.
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occurs because of decreased row buffer locality in the DRDRAM banks. Increased

row misses cause gaps in the Rambus command bus schedule, which manifest as

slightly lower data channel utilization.

3.3 Maximizing CMP throughput

In the previous section, the results showed that our applications put a widely vary-

ing load on the memory subsystem, and that total job throughput levels off when

the off-chip bandwidth becomes saturated. In this section, we combine our area

analysis with performance simulations and our technology projections to determine

which CMP configurations will be the most area-efficient for a future technology

generation.

On the left half of Table 3.3, we show the number of processing cores that will

fit on a 300mm2 chip built in the technology projected in 2010 (a total of 44.0 million

CBE). We assume 40% of chip area is devoted to the on-chip interconnections,
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memory controllers, IO, clocking etc (26.3 million CBE for cores and caches). As

the per-processor caches grow larger, the relative differences between the areas for

the PIN and POUT processors decline. With 128KB L2 caches, 108 PIN cores and 59

POUT cores can fit on a chip, but with 1MB caches, the number of cores drops to 23

and 19, respectively. On the right half of Table 3.3, we show the number of processor

cores that share a channel for each organization. For the 128KB, PIN processors,

there are over 7 processors sharing each channel, but for large-cache designs, the

number of sharers drops to one.

In Figure 3.7, we show how the number of cores, number of channel sharers,

and cache sizes affect area efficiency. The y-axis measures total instructions per cycle

across all of the processing cores on the chip, which is equivalent to performance

per unit area (since the area is held constant in all experiments). We model non-

integer numbers of channel sharers by having some processors share more channels

than others. We do not simulate every processor on the chip, but instead simulate

just enough to compute the IPC for a subset of the processors, and then scale that

result to represent chip-level throughput; our the assumption is that all processors

are running the same job, albeit at skewed intervals.

The four graphs in Figure 3.7 show, from left to right, the total chip through-

No. of cores Cores/channel
L2 cache size PIN POUT PIN POUT

No L2 230 83 16.0 5.9
128KB 108 59 7.7 4.2
256KB 71 46 5.0 3.2
512KB 42 31 3.0 2.7
1MB 23 19 1.6 1.4

Table 3.3: Number of cores and cores/channel with varying cache sizes

46



128KB 256KB 512KB 1MB 
0

20

40

60

80

100

T
ot

al
 T

hr
ou

gh
pu

t

Processor bound 

P_OUT Scaled
P_OUT Limited
P_IN Scaled 
P_IN Limited 

128KB 256KB 512KB 1MB 
0

10

20

30

40

T
ot

al
 T

hr
ou

gh
pu

t

Cache sensitive 

128KB 256KB 512KB 1MB 
0

2

4

6

8

10

T
ot

al
 T

hr
ou

gh
pu

t

Bandwidth bound 

128KB 256KB 512KB 1MB 
0

5

10

15

20

25

T
ot

al
 T

hr
ou

gh
pu

t

All benchmarks 

Figure 3.7: Best configurations processor bound, cache sensitive, and bandwidth
bound workloads

put in IPC for each of the three benchmark classes (processor bound, cache sensitive,

and bandwidth bound) and the total across all benchmarks. The IPCs are com-

puted as the harmonic means of the total chip throughput for the benchmarks in

that class, at each design point. We show the means for each benchmark class, since

the harmonic mean IPC across all benchmarks is heavily skewed by the low IPCs

of bandwidth-bound benchmarks. On each graph, we show separate lines for POUT

and PIN , and also show the effects of two bandwidth capacities. The first, called

limited channels, fixes the number of pins according to the ITRS projections, and
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divides 4-byte wide, 60-pin channels up among the processors on the chip (channel

sharing). The second model, called scaled channels, assumes that the processor pin

counts can be scaled to provide one 60-pin channel per processing core, no matter

how many cores exist on the die.

For the processor-bound benchmarks, the most area-efficient configuration

uses POUT cores with 256KB L2 caches. Since those benchmarks are largely compute-

bound, the additional cache provides insufficient benefit to justify the area it con-

sumes. With scaled channels, however, the organization that achieves peak through-

put is PIN with 128KB caches. That organization, however, would contain 108

processing cores, requiring impossibly many 6480 IO pins.

The cache-sensitive applications show a different result, with the best con-

figuration using POUT cores with 512KB L2 caches. Enough of the working sets

are contained in the L2 caches at that point to make larger caches not worth the

additional area consumed.

For the bandwidth-bound applications, the configuration using POUT pro-

cessors with 1MB caches is best. However, the difference between POUT and PIN

chip throughput is small and constant across all cache sizes, since the applications

are bandwidth-bound at all of the measured cache sizes for both types of cores. We

note that the scaled channel throughputs are significantly higher than the finite pin

results for the smaller cache sizes, because scaled bandwidth removes the bottleneck

from the bandwidth-bound applications. Finally, across all applications, we see that

the POUT , 1MB L2 combination is best for finite bandwidth. However, if each pro-

cessor could have its own memory channel, regardless of the number of processors,

we note that the PIN , 128KB L2 organization would be best.
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As shown in this section, the off-chip bandwidth will grow more important as

feature sizes decrease and more cores can fit in a chip. In CMPs, reducing off-chip

accesses is much more critical for the performance than in uni-processors, since the

limited bandwidth is shared by multiple processors.

3.4 Summary

Ideally, highly parallel CMP designs will offer linear scaling of throughput with in-

creasing transistor count. However, limited off-chip bandwidth will always constrain

the maximum number of cores that can be placed on a chip. A pressing question

for CMP designers concerns the severity of limited bandwidth. In this study of the

CMP design space, we have observed the following:

• Transistor counts are projected to increase considerably faster than pins, and

there will be 6 times fewer pins per transistor at the technology in 2015 than

in 2005. If transistor count increases are used to increase the processor count,

the number of pins per processor will decrease. Left unaddressed, that growing

imbalance will drastically limit the number of cores that can be used in future

technologies, and/or the throughput that can be obtained from those cores.

• Out-of-order issue cores are more area-efficient than in-order issue cores. The

area ratio of POUT to PIN , including 256KB L2 caches, is 1.54. Since POUT

typically provides more than a 54% performance increase over PIN , the out-

of-order cores are more area-efficient, unless the application in question is

bandwidth bound.

• For the workloads we studied, the impact of insufficient bandwidth causes the
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throughput-optimal L2 cache sizes to be 1MB at the technology projected in

2010. The channel contention is sufficiently severe that POUT cores with 1MB

caches are more area-efficient than organizations with significantly smaller

caches.

• Applications show remarkably similar behavior and performance when mea-

sured against the rate of off-chip accesses. This observation may prove useful

for estimating or modeling overall performance of a CMP on heterogeneous

workloads, as a function of bandwidth demand.

The methodology of this study has some weaknesses. We are using SPEC2000

benchmarks instead of “typical” server workloads, such as web request processing

or database accesses. While those workloads may have large data footprints, the

results may not be qualitatively different, in terms of area efficiency, than those of

the SPEC2000 benchmarks. Using SPEC2000 benchmarks has given us the flexi-

bility to measure CMP throughput with numerous processor configurations. Since

server workloads require the fine-tuning of applications for a fixed processor config-

uration, we will measure server workloads in more controlled configurations in the

next chapter.

In the long term, a tremendous number of processors can be designed on

future CMPs to enable scaling of throughput with technology. However, setting the

cache hierarchy, and number of cores a priori will result in poor performance across

many application classes. Future CMPs would benefit from mechanisms to support

adaptation to an application’s available parallelism and resource needs. In the next

chapter, we propose a configurable CMP architecture, which exploits the application

adaptivity.
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In this chapter, we showed how processing core designs, on-chip cache sizes,

and off-chip bandwidth affect the CMP throughput. We also evaluated how the

application characteristics interact with the three factors. We observed the off-chip

bandwidth is one of the most important resources in future CMPs. To reduce the

unnecessary waste of the bandwidth, it is crucial to decrease cache misses in CMPs.

In the next chapter, we explore the shared cache design space as a miss reduction

technique for CMPs.
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Chapter 4

Reconfigurable Shared Cache

Design for CMPs

In Chapter 3, we showed that reducing cache misses (off-chip accesses) is crucial to

improve the throughput of CMPs. Traditional miss reduction techniques such as

increasing capacity and associativity, will decrease the CMP cache misses, but in

this chapter, we will focus on a new design aspect associated with CMPs: Cache

Sharing. Unlike uni-processor L2 caches, CMPs allow on-chip processors to share

cache capacity. Shared L2 caches for CMPs provide several benefits over private

caches:

• Shared working set: Shared data are not duplicated in multiple places. Within

a shared cache, only one copy of data can reside, thus eliminating unnecessary

waste of cache capacity to store duplicate blocks.

• Prefetching effect: One processor may fetch cache data from external memory,

and the cache blocks can be reused by other processors.
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• Dynamic capacity sharing: Cache capacity can be utilized more efficiently

when demands from processors are not uniform. The cache capacity is dynam-

ically reassigned to multiple processors, adapting to the changing demand.

• Fast on-chip communication: On-chip processors communicate with each other

through the shared cache. Since the communications do not need to pass

through private L2 caches connected with coherence protocols, fast communi-

cation is possible with the shared cache.

However, shared caches may suffer from a very long hit latency and high

access traffics issued by multiple processors. The latency problem will get worse, as

wire delay dominates cache performance and more processors can be integrated in

a single chip. Increasing the shared cache sizes to add more processors may result

in large but slow caches. This increased latency problem may grow larger than the

benefits of shared L2 caches.

In this chapter, we investigate the trade-offs of shared cache designs for future

CMPs. Our shared cache design adopts Non-Uniform Cache Architecture (NUCA)

to shared caches for CMPs [53]. The shared NUCA provide flexible reconfigurability

to evaluate adaptive sharing. We show that hit latency increase is the most signif-

icant disadvantage of shared caches. To mitigate the latency increase, we evaluate

dynamic block migration from Dynamic NUCA (D-NUCA) and L1 prefetching as

an alternative solution to D-NUCA.

We explore this range of caching and sharing policies for a CMP targeted

at 45 nanometer technologies, with 16MB of on-chip cache and 16 high-capability

processors. The specific layout we propose, based on a static non-uniform cache

architecture (NUCA) design, mitigates the effects of growing wire resistivity and
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thus intra-cache communication delays, and permits any degree of cache sharing in

this single implementation. The underlying hardware is sufficiently flexible to have

its degree of sharing chosen dynamically, adjusted by the operating system.

4.1 Related Work

Shared Cache Designs: Shared caches have been studied in the context of chip multi-

processors and multithreaded processors. Sohi and Franklin’s early study proposed

the interleaved banks for extra ports in private L1 caches, which resembles multi-

banking in shared caches [96]. Nayfeh et al. investigated shared caches for primary

and secondary caches on a multi-chip module substrate with four CPUs [80]. They

examined how the memory sharing patterns of different applications affect the best

cache hierarchy. Subsequent work from the same authors showed the trade-offs of

shared-cache clustering in multi-chip multiprocessors [81]. With eight CPUs, they

observed for private L2 caches, a coherence bus becomes the performance bottleneck,

suggesting shared caches to reduce the bus traffic.

Recent studies considered wire latency as a primary design factor in CMP

caches. Beckmann and Wood compared three latency reduction techniques includ-

ing D-NUCA for CMPs with an 8-CPU shared cache [9]. Their study fixed the

sharing degree to 8 and observed that combining the three latency reduction tech-

niques can decrease the L2 hit latencies of CMPs. With NuRAPID-based CMP L2

designs, Chishti et al. studied optimizations to reduce unnecessary replication and

communication overheads [17]. Speight et al. studied how CMP L2 caches interact

with off-chip L3 caches and how on-chip L2 caches temporarily absorb modified

replacement blocks from other caches [100].
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Figure 4.1: 16 processor CMP substrate with reconfigurable sharing degrees

Dynamic Partitioning: Several studies investigated dynamically re-allocating

cache capacity for CMPs and multithreaded processors. Suh et al. studied a moni-

toring system for an optimal dynamic partitioning [102], and a hardware partitioning

mechanism for set-associative caches [103]. Liu et al. proposed achieving dynamic

bank allocation by re-mapping the banks [64]. Iyer proposed a priority-based cache

management systems to allocate cache resources by OS-assigned priority [46]. To

prevent thread starvation due to cache capacity sharing, Kim et al. investigated

fairness issues in CMP cache sharing [54].

4.2 CMP L2 Cache Design Space

Current CMPs can hold relatively small numbers of processors (two or four per

CMP), so one shared cache is shared by all on-chip processors. However, future

server-class processors are likely to contain large numbers of processors along with

large caches. As the number of processors increases, the shared cache may become
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too large and slow if all processors share a single shared cache.

For a CMP, the level-two cache may be shared by all processors, or may be

separated into private per-processor partitions, or any point in between. The tension

between a greater versus lesser degree of sharing is driven by the reduced misses of

greater cache sharing versus the reduced hit latencies of lesser cache sharing. More

precisely, we call the sharing degree the number of processors that share a given pool

of cache. In this terminology, a sharing degree of one means that each processor

has its own private L2 partition, whereas a sharing degree of sixteen means that all

processors are sharing a single large cache array.

Greater sharing degrees reduce misses in two ways. First, they reduce the

number of shared copies of a single line existing on-chip, since each line maps to only

one place in shared caches. Second, they provide a larger shared pool to tolerate

imbalances across the sharers’ working sets. However, larger sharing degrees result

in longer cache latencies, as the shared cache is larger than the individual private

partitions, assuming that the total cache area is held constant. An ideal design would

somehow capture the benefits of both reduced misses and reduced hit latencies

In this chapter, we evaluate how sharing degree affects the performance of

CMPs, considering wire delay and limited bandwidth in future CMPs. We also dis-

cuss how different memory access patterns may change the optimal sharing degrees

for different applications.

We propose an on-chip L2 cache architecture for CMPs with reconfigurable

sharing degrees. Our CMP L2 cache consists of multiple independently operating

banks with configurable switched networks. The banks can be reassigned to different

sharing degrees by applications or operating systems. Changing sharing degrees
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takes long cycles to flush the on-chip cache. To support different sharing degrees,

coherence mechanism must be flexible. We propose a two-level on-chip coherence

mechanism based on directory protocols, supporting flexible sharing.

4.2.1 Baseline CMP L2 Cache Organization

As shown in Figure 4.1, the floorplan we evaluate consists of a single large cache

array, broken into numerous banks which are connected by a lightweight, switched

2-D mesh network. Processors span the top and bottom edges of the cache array,

and each has a port into the L2 cache network. By adjusting the bits used to route

memory addresses to a cache bank, the cache array is configurable by the system

to use any degree of sharing. If each processor maps the same address bit string to

a different bank, the sharing degree is one. If all processors map the same address

bits to a single bank, the sharing degree is sixteen.

Figure 4.1 (a) shows a multiprocessor chip projected for 45nm process tech-

nology in 2010. The chip has 16 processors and 16MB of L2 cache capacity on a die

area of approximately 300mm2. The L2 cache resides in the middle of the chip and

contains an array of banks connected by a lightweight routing network. Half of the

16 CPUs are at the top and the other half are at the bottom. Because of the large

number of CPUs and cache banks, there are many possible design options for the

L2 cache. We search for the cache sharing organization that gives the best average

performance across a range of commercial and scientific applications.

We first measured the optimal bank size and sharing degree for a cache in

which the mapping of lines to banks does not change (this uniprocessor organization

was called static NUCA, or S-NUCA, in prior work [53]). We then evaluated per-
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Parameter Value

Processor frequency 10 GHz
Issue width 4
Window size 64-entry RUU
Number of CPUs 16
L1 I/D cache 32KB, 2-way, 64B block, 8 MSHRs
L2 cache 16x16 banks
L2 cache bank 64KB, 16-way, 5 cycle latency
Network 1 cycle latency between two adjacent banks
On-chip directory 10 cycle access latency
Main Memory 260 cycle latency, 360 GB/s bandwidth

Table 4.1: Simulated system configuration

application sharing degrees, as well as different techniques, such as intra-cache line

migration (called dynamic, or D-NUCA caches in prior work) and level-one prefetch-

ing, to reduce average L2 hit latencies and thus support larger sharing degrees.

With multiple banks per L2 cache, we have the choice of either always putting

a block into a designated bank or allowing a block to reside in one of multiple banks

(but not simultaneously).

In static mapping, a fixed hash function uses the lower bits of a block address

to select the correct bank. L2 access latency is proportional to the distance from the

issuing L1 cache to the L2 cache bank. By allowing non-uniform hit latencies, static

mapping can reduce hit latencies of traditional monolithic cache designs, which

fix the latency to the longest path [53]. Because a block can be placed into only

one bank, its L2 access latency is essentially decided by its address. If frequently

accessed blocks happen to map to banks with longer latencies, static mapping will

not provide optimal performance.
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Application Dataset/Parameters

SPECWeb99 Apache web server, file set: 230MB
TPC-W 185MB databases using Apache & MySQL
SPECjbb IBM JVM version 1.1.8, 16 warehouses
Ocean 258 × 258 grid
Barnes 16K particles
LU 512 × 512, 16 × 16 blocks
Radix 1M integers

Table 4.2: Application parameters for workloads

4.2.2 Methodology

We evaluated our CMP cache designs using the MP-sauce full-system simulator.

Table 4.1 shows a summary of the main architectural parameters. We used three

commercial applications: SPECWeb99, TPC-W, and SPECjbb, and four scientific

shared-memory benchmarks from the SPLASH-2 suite [106]: Ocean, Barnes, LU,

and Radix. Table 4.2 shows the dataset size and other notable features of each

application.

As previously discussed, we model an invalidation-based cache coherence

protocol in the CMP. The L2 caches are the points of L1 coherence and maintain

sharing vectors for L1 caches. The L2 cache bank array is embedded with a 2D-

mesh point-to-point interconnection network comprised of links and switches. All

messages for coherence and data migration are modeled to consume network band-

width; however, we assume infinite buffering at each switching node. A centralized

directory is used to track cache lines that are cached in the CMP and is consulted

on a cache miss to enforce coherence and/or detect misses.
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4.3 Performance Effect of Sharing Degree in CMPs

Shared L2 caches have been adopted as an alternative to traditional private L2

caches for CMP L2 cache designs [8, 39, 48, 104]. One of the key factors in CMP

shared caches is the number of CPUs that can share a L2 cache, called the sharing

degree (SD for short). A sharing degree of N means that N CPUs share a L2 cache.

In this section, we discuss the trade-offs of higher and lower sharing degrees, and

present the performance results with varying sharing degrees.

4.3.1 Trade-offs of higher vs. lower sharing degress

The basic trade-offs of varying the sharing degree are hit latency, hit rate, inter-

processor communication, and coherence maintenance overhead. In general, for hit

latency, a lower sharing degree is better as each L2 cache is smaller. For hit rates

and inter-processor communication, higher sharing degrees are better because they

make more efficient use of cache capacity. Since a higher sharing degree has more L1

caches sharing an L2 cache, it is more expensive to maintain L1 coherence. However,

a lower sharing degree means more discrete L2 caches on a chip, making maintaining

L2 coherence more expensive.

The main advantage of higher sharing degrees is higher L2 cache hit rates. If

the working sets across CPUs are not well balanced, private L2 caches can make one

CPU suffer from capacity misses while other CPUs have unused cache space. Shared

caches, on the other hand, allow that otherwise unused cache space to be used by the

space-hungry CPU. Furthermore, shared caches keep at most one copy of a block,

not wasting space by storing multiple copies of the same block, unlike private L2

caches sharing copies of the same line. As a result, shared caches can effectively
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store more data, indirectly increasing hit rates. A shared cache also avoids the L2

coherence misses generated by private L2 caches [44].

Inter-processor communication through a shared L2 cache is normally faster

than that through private L2 caches connected by a coherent bus. With shared L2

caches, processors communicate through L2 cache blocks directly. With private L2

caches, processors have to communicate through private L2 caches and coherence

fabrics.

The main drawback of a higher sharing degree is the potential for higher av-

erage hit latency due to the larger size, longer wire delays, and increased bandwidth

requirements. In future wire-dominated implementations, the effect of increased hit

latency may outweigh the benefit of increased hit rates.

Another overhead of shared caches is that each L2 cache needs to maintain

coherence for the L1 caches sharing the L2 cache. In this study, the system maintains

L1 cache coherence by embedding sharing status vectors in the L2 tag arrays. The

tag of an L2 cache line includes a bit mask to indicate which L1 caches have copies

of the line. When an L2 cache receives an update request from an L1 cache, it sends

invalidation messages to other L1 caches that have a copy of the requested block.

Such directory-based L1 coherence was used in the Piranha CMP [8]. Although

broadcast-based protocols can reduce the area overhead for sharing vectors [48, 104],

we used the directory protocol because it is more scalable for these types of systems,

demanding less L2-to-L1 bandwidth than broadcast protocols.

A lower sharing degree means that each chip has more private L2 caches,

thus it is more difficult to maintain L2 data coherence. As with the L1 caches,

we use a centralized L2 tag directory to maintain on-chip L2 coherence. When an
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L2 miss is detected, the request is sent to the centralized L2 tag directory. The

directory decides, without snooping other L2 caches in the chip, whether to get

data from another L2 cache on the chip or whether to issue an off-chip memory

request. The directory-based coherence protocol has a number of advantages over

broadcast-based protocols. First, it relieves the coherence bus from becoming the

bottleneck. Second, it detects on-chip cache misses faster because it does not need

to snoop other L2 caches in the chip. Third, the directory functions as the single

external coherence snoop point for requests from other chips, avoiding the need to

have multiple L2 caches on the same chip snoop the global bus.

4.3.2 Cache Organization to Support Reconfigurable Sharing De-

grees

Shared caches require more bandwidth than private caches, since the data request

rate is proportional to the number of processors. Two common ways of increasing

bandwidth are i) adding more access ports and ii) splitting a monolithic cache into

multiple independently operated banks. L2 caches typically use the latter because

it is more cost-effective than having multiple ports. For instance, the dual-processor

Power4 CMP [104] uses three banks, and the eight-processor Piranha CMP uses

eight banks for each L2 cache.

As exemplified in Figure 4.1, a CMP chip can consist of many independently

operated L2 cache banks. To enable high-speed clocking and reduce the space for

wires, we use a switched network, instead of traditional dedicated wires, to connect

cache banks and processors. A processor may access only one L2 cache directly and

must use the coherence fabric to access other L2 caches. Figure 4.1 (b) shows five
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Sharing Degree (SD) SD=1 SD=2 SD=4 SD=8 SD=16
L2 hit time (cycles) 16.5 18.0 20.9 30.0 35.9
Norm. Remote L2 hits 1.00 0.75 0.60 0.36 n/a
Norm. Mem. accesses 1.00 0.88 0.78 0.78 0.66

Table 4.3: Average L2 hit times, and normalized remote L2 hits and memory accesses

possible partitioning schemes in a 16 processor CMP that have sharing degrees of

1, 2, 4, 8, and 16, respectively. With a sharing degree of 1, there are sixteen 1 MB

caches, each of which is private to one processor. With a sharing degree of 16, there

is only one 16 MB cache, which is shared by all 16 processors.

To optimize bank organization, we evaluated 5 different bank sizes: 64KB,

128KB, 256KB, 512KB, and 1MB. We estimated bank access latencies using Cacti [94]

and a wire delay model [2]. Network hop delays are derived from the dimension of

banks, with switching overheads. Among the five bank configurations, our exper-

iments show that the 64KB bank size has the best performance across all experi-

mental configurations. For the remainder of this chapter, we assume a 16x16 64KB

bank array.

To change sharing degrees, the bank mapping tables in L1 cache controllers,

bank controllers, and the central on-chip directory are updated by the operating

system. For fully reconfigurable sharing degrees, the sharing status vectors both in

L2 tags and the central directory should have enough bits to represent all processors

in the CMP. In this substrate, the size of bit vectors in L2 tags and the central

directory is the maximum 16.
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4.3.3 Results: Finding the Best Sharing Degree

In the baseline CMP with S-NUCA based shared caches, the sharing degree changes

the effective L2 hit latency, communication frequency among shared caches (e.g.,

cache-to-cache transfers), and external memory accesses. Table 4.3 shows the trends

in average L2 hit latencies, the number of remote L2 hits and memory accesses as the

sharing degree (SD) is changed, with the latter two normalized to the SD=1 case.

As the sharing degree increases, shared cache hit latencies increase monotonically

from 17 cycles to 36 cycles.

Remote L2 accesses can occur in two cases: First, a read-only shared line is

evicted from a local L2 cache, due to a conflict/capacity miss, and upon the next

access that line is provided by another shared cache, which has an intact copy of

that line. Second, a producer-consumer line is invalidated by another processor in a

remote shared cache. In both cases, communication across shared cache boundaries

is more expensive in terms of latency and energy consumption than intra-shared

cache communication. After detecting a miss in the local shared cache, a miss re-

quest is sent to the centralized on-chip directory. The on-chip directory re-transmits

the request to another shared cache to service the miss if the cache line is on-chip.

Such remote L2 accesses (cache-to-cache transfers) decrease as the sharing degree

increases since the likelihood that shared cache lines fall within the same L2 cache

increases.

Memory accesses also decrease as the sharing degree increases. With a high

sharing degree, processors can share the cache capacity dynamically, reducing the

effect of a temporal working set imbalance, resulting in fewer capacity misses than

smaller caches. Furthermore, by reducing the number of replicated copies of shared
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Figure 4.2: L1 miss latencies with varying sharing degrees (16x16 banks)

data, the limited on-chip cache capacity can be more efficiently utilized. As shown

in Table 4.3, increasing the sharing degree to 16 can reduce the external memory

accesses by 33% on average.

In several ways, the sharing degree affects L1 miss penalties. Figure 4.2

shows a breakdown of the average L1 miss penalty for each application as the L2

cache sharing degree is varied. L1 misses are served by either the local L2 cache,

a remote L2 cache, or external memory. Each bar in the graph shows how much

latency each component contributes to the average L1 miss penalty.

Across all benchmark applications, the L2 hit time component (black bar)

increases monotonically as the sharing degree increases, due to the wire delay in-

crease in the larger caches. The remote L2 and memory components decrease as the

degree of L2 sharing is increased; however, those reductions in latency are often not

enough to outweigh the increase in local L2 hit latency. For applications that have

high local L2 hit rates and low sharing of cache lines like Barnes-Hut, an increased

sharing degree beyond private L2 caches degrades performance.
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Figure 4.3: Normalized execution times with varying sharing degrees (normalized
to SD=1)

Figure 4.3 shows the relative execution times for each application as the

sharing degree is varied. As expected from Figure 4.2, SPECWeb99, Ocean, and LU

have the best performance at sharing degree two or four. For Barnes and SPECjbb,

increasing the sharing degree degrades performance, with the best performance at

the sharing degree of one. The bar with the lowest average L1 miss penalty does

not always correspond to the fastest execution time since each miss may affect the

execution time with different weight (e.g., SPECWeb99 with SD=4). Critical misses

that are not overlapped with other misses can increase execution times more than

non-critical misses.

We draw three conclusions from these results. First, building high-degree

shared caches for CMPs does not have any advantage in wire-delay dominated future

technologies even when high degrees of application sharing exist. The increase in

L2 hit latency in shared caches degrades performance more than the reduced misses

improve it. Second, the sharing degree can change overall performance significantly.

The difference between the best and worst sharing degree ranges from 9% to 22%.
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Third, no single sharing degree provides the best performance for all the benchmarks.

The best performing sharing degree varies across applications. Nevertheless, the

SD=4 design point has the best average performance for the applications used in

this evaluation, and would be the best compromise fixed design point for this mix

of workloads for S-NUCA.

4.4 Dynamic Migration to Reduce L2 hit latencies

In the previous section, we showed the main drawback of higher sharing degrees is

the increased hit latencies. In this section, we evaluate dynamic block migration to

reduce hit latencies of shared caches. In the next section, we will evaluate another

technique to mitigate the increased latencies.

Dynamic mapping (D-NUCA) addresses the problem faced by static mapping

by allowing a block to go to multiple candidate banks, or a bank set. With proper

placement and migration policies, D-NUCA enables the cache to place frequently

accessed blocks in the banks closest to the CPU and less frequently accessed block

in the banks that are farther away. Previous studies have shown that generational

promotion that migrates blocks towards banks near the requesting processors yields

good performance in uniprocessor systems [16, 53].

CMPs pose new challenges to dynamic mapping. First, migration in multiple

directions can cause migration conflicts, with shared blocks ping-ponging between

two processors. Second, searching blocks in bank sets becomes more complicated

than single-processor D-NUCA organizations. Past studies have shown that cen-

tralized partial tags work well in uniprocessor D-NUCA [53]. In CMPs, however,

besides increased bandwidth requirements on the central partial tag array, the cen-
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Figure 4.4: D-NUCA block migration policies (D-NUCA 1D and D-NUCA 2D)

tral partial tags cannot be located close to all processors, thus requiring multi-hop

latencies to access the tags.

We address the challenge with two mechanisms: distributed partial tags and

a dynamic lookup mechanism.

4.4.1 Migration Policies

A simple migration policy permits a block to be mapped to only one column and

restricts migration to the vertical dimension only (D-NUCA 1D, Figure 4.4 (a)).

In this policy, the vertical migration does not reduce the network latency for the

horizontal traversal of requests and data blocks. We assumed the following bank set

policies for misses: new cache blocks are inserted at the tail of a column bank set.

For 8 and 16 sharing degrees, the victim banks are selected from the banks in the

middle.

The second migration policy allows blocks to be mapped to any bank with-

out restriction. Migration can happen in both vertical and horizontal directions
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(D-NUCA 2D, Figure 4.4 (b)). This policy can further reduce hit latency by decreas-

ing horizontal network latencies. However, it requires a more complicated search

mechanism since an L1 miss might need to look up all banks in a shared cache.

In D-NUCA 2D, new blocks are inserted at the column closest to the requesting

processor.

Unlike single-processor D-NUCA caches, in which blocks are always pro-

moted in one direction, multiple processors from different locations in CMPs can

cause cache blocks to be promoted in conflicting directions. In a worst-case sce-

nario, a block may ping-pong between two adjacent banks, with no reduction in

hit latencies. To reduce unnecessary migration for conflicting promotion, we simu-

lated two-bit saturated counters embedded in the cache tags, which allow a block

to migrate only if the relevant counter for that moving direction is saturated.

4.4.2 Lookup Mechanisms

A partial tag structure replicates low-order bits of full cache tags as a way to re-

duce the number of requests to full tags [52]. In single-processor D-NUCA caches,

centralized partial tags detect L2 misses early and reduce the number of requests to

banks. However, the centralized partial tag approach has three drawbacks. First,

since the global partial tag array is required to hold the information about all cache

blocks in the cache, its access time and energy consumption will be relatively large.

Second, since the centralized structure should be placed near the center of the cache,

wire delays to and from it can be significant. Finally, the centralized tag array may

require many ports since all primary cache misses must access it.

To overcome these drawbacks, we employ a distributed scheme: partial tags
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are distributed over the columns, and each column’s partial tag array tracks the

state of blocks cached in that column. Any changes in a bank column’s contents

must be reflected in its partial tags synchronously. Cache lookups for a bank column

always start from the distributed partial tag array. In the SD=8 or 16 cases, we

replicate the partial tags at both ends of a column. This doubles the space overhead

of partial tags, but greatly decreases the distance from processors to column partial

tags.

In D-NUCA 1D, the search mechanism is straightforward with column partial

tags. L1 misses are sent to the head of statically mapped columns, and the first

bank and partial tags are accessed simultaneously. For a miss in the first bank,

the column partial tags can command further lookups of other banks in the same

column or start an L2 refill request. In D-NUCA 2D, the partial tags of all columns

that a block can map to may be searched. L1 misses are first sent to the column

closest to the requesting processor. If the block is not found in that column, other

columns’ partial tags are searched.

4.4.3 Results: Reducing Hit Latencies with Dynamic Mapping

In this section, we evaluate dynamic mapping policies which can potentially reduce

long latencies with large sharing degrees. Performance improvements are achieved

when the migration policy is successful and the reduction in latency dominates

the increased latency of the more complex lookup mechanism. To isolate the ef-

fectiveness of dynamic migration from the overheads of the search mechanism, we

evaluated two more configurations: perfect D-NUCA 1D and 2D caches. The two

configurations assume an oracle searching mechanism that allows L1 misses to be
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Sharing Degree SD=1 SD=2 SD=4 SD=8 SD=16
S-NUCA 16.5 18.0 20.9 30.0 35.9
D-NUCA 1D Perfect 9.8 11.2 13.8 21.7 28.6
D-NUCA 1D Real 11.2 12.3 15.0 24.8 31.5
D-NUCA 2D Perfect 10.0 10.4 11.7 19.8 25.2
D-NUCA 2D Real 11.6 13.5 16.2 25.1 31.9

Table 4.4: Average D-NUCA L2 hit latencies with varying sharing degrees

sent directly to the L2 bank storing the requested block on a hit. L2 misses are

detected without any overhead. The simulated system models other overheads such

as network and bank bandwidth consumption for accesses and migration in detail.

Table 4.4 shows the average L2 hit times across all applications for five shar-

ing degrees. With the perfect lookup mechanism, both 1D and 2D migration policies

show significant reductions in L2 hit latencies. The latency reductions increase as

the sharing degree increases. At SD=16, the perfect D-NUCA 1D and 2D policies

reduce the average L2 hit latency by 22% and 33%, respectively compared to the S-

NUCA design. However, with a realistic search mechanism with distributed partial

tags, the hit latencies of D-NUCA are significantly increased from the perfect lookup

mechanism, confirming the search mechanism is a key design issue with D-NUCA.

Figure 4.5 shows the relative execution times of the best performing sharing

degree for the S-NUCA and D-NUCA design points across all applications. Each

bar shows the SD with the best performance noted at the top. This figure illustrates

two issues: (1) the performance potential of the two perfect search and migration

mechanisms (1D and 2D perfect) and how closely the realistic implementations can

match them, and (2) performance of two realistic D-NUCA designs compared to

S-NUCA with the best sharing degree.
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Figure 4.5: D-NUCA execution times (normalized to S-NUCA with SD=1)

The perfect search mechanisms with 1D and 2D dynamic migration can re-

duce execution time by 3-25%, except Ocean. For Ocean, although D-NUCA re-

duces average hit latencies, L2 miss rates are increased since blocks are not promoted

quickly, and thus replaced by new blocks. For SPECjbb, the performance improve-

ment is small, since SPECjbb does not take any advantage of the increased sharing

degree, and the effect of dynamic migration is not high at low sharing degrees.

With realistic search mechanisms, performance improvement of D-NUCA can be

lost (SPECWeb99 and TPC-W). For LU and Radix, both 1D and 2D migrations

show large improvement by 17%-20%. LU has a relatively large L1 data miss rate

of 12%, but the entire working set nearly fits in the L2 caches. The reduction in

L2 hit latencies directly improves performance. In Radix however, external mem-

ory accesses dominate performance due to both capacity and conflict misses. The

increased bank associativity with dynamic migration reduced conflict misses sig-

nificantly. Since shared caches, especially with high sharing degrees, are prone to

conflict misses, the increased associativity helps avoid certain pathological conflict
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Apps. S-NUCA Best D-NUCA 2D Best
SPECweb99 44 72 (40%)
TPC-W 25 34 (28%)
SPECjbb 4 6 (32%)
Ocean 10 18 (49%)
Barnes 12 15 (27%)
LU 31 60 (43%)
Radix 20 49 (48%)

Table 4.5: Bank accesses per 1K instructions

miss cases.

Although dynamic migration improves the performance of shared caches, the

improvement is still modest (less than 5%) for 5 tested applications. Considering

the complexity of a D-NUCA implementation and the extra energy consumption

due to lookups, it is unlikely that implementing dynamic migration is justified for

CMPs.

4.4.4 Results: Energy Trade-Offs

One concern with dynamic migration designs is the increased energy consumption

due to the complex search mechanism and cache line movement. Instead of esti-

mating the actual energy consumption, we indirectly show the total number of bank

accesses of S-NUCA and 2D D-NUCA. For each application, we compared the best

sharing degree of the two configurations in Table 4.5. The numbers in parentheses

in the 2D D-NUCA row show the percentage of extra bank accesses compared to

the S-NUCA case.

As expected, block migration increases the total bank accesses significantly.

The extra bank accesses for block migration constitute 28-48% for the tested appli-
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cations. In shared caches, unnecessary block migration may occur more frequently

than private D-NUCA caches. Although we reduced the unnecessary migration by

2-bit saturating counters, the number of bank accesses due to migration is still

significant.

D-NUCA lookup mechanisms also consume energy. For each L2 access, at

least a part of distributed partial tags should be accessed. With D-NUCA 2D, the

number of partial tag lookups may increase, if blocks are not found in the closest

column.

4.5 Using L1 Prefetching to Hide L2 Hit Latencies

In this section, we investigate the effect of hardware-based strided prefetching [6, 47]

on NUCA design alternatives. Since effective prefetching can tolerate L1 miss laten-

cies, it can potentially diminish the effect of the increased L2 hit latency observed

with larger sharing degrees. We evaluated the effect of strided prefetching on the

CMP caches using an implementation similar to the one used by Beckmann and

Wood [9], but restricted to L1 prefetching. The strided prefetching strategy uses

three filters with 32 entries each to detect streams. The three filters, positive unit

stride, negative unit stride, and non-unit stride use four consecutive misses before

confirming a stream, and allocate an entry in an eight-entry stream table. As soon

as a stream is detected, six consecutive prefetch requests are issued on behalf of

the L1 caches. Prefetching stops when all MSHR entries are used or prefetches

cross physical page boundaries. Prefetched cache blocks are stored directly into

the caches, which may cause cache pollution problems. If the processors access a

prefetched block, another prefetch for the stream is issued from the stream table if
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SPECweb99 TPC-W SPECjbb Ocean Barnes LU Radix
L1 I Coverage 31.3% 14.1% 28.3% 20.3% 15.0% 14.8% 25.5%
L1 I Accuracy 46.4% 39.2% 34.0% 61.4% 50.4% 56.5% 49.4%

L1 D Coverage 14.0% 6.8% 0.5% 32.4% 12.2% 0.1% 10.3%
L1 D Accuracy 96.9% 90.0% 35.2% 95.3% 41.5% 0.1% 98.8%

Table 4.6: Prefetching coverage and accuracy for L1 instruction and data caches
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Figure 4.6: Execution times with L1 hardware prefetching (normalized to S-NUCA
with SD=1)

the entry is still resident. Stream table entries are replaced using an LRU policy.

Table 4.6 shows the coverage and accuracy of L1 prefetching. Coverage is

the ratio of prefetch hits to L1 misses, and accuracy is the ratio of prefetch hits

to the total number of prefetches, ignoring any late prefetches that may partially

hide latency. SPECjbb and LU have small coverage (0.5% for SPECjbb and 0.1%

for LU) and relatively low accuracy. Prefetching is most effective for Ocean, with a

coverage of 32% of the L1 data misses and 95% accuracy.

Figure 4.6 shows the relative execution times of S-NUCA and D-NUCA 2D

with L1 prefetching compared to the baseline without prefetching using the best per-

forming SD configuration for each run. For S-NUCA shared caches, L1 prefetching
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can reduce execution time for SPECweb99 (3%), Ocean (10%), and Radix (20%).

For SPECjbb, L1 prefetching does not reduce execution time due to the low cover-

age. Although prefetching can improve performance for many applications for the

different configurations, it does not change the choice of the best average sharing

degree for each design significantly. For six applications, the best sharing degrees

with prefetching are either the same as or close to the best sharing degree without

L1 prefetching.

We observe that prefetching can also improve dynamic migration. For appli-

cations where S-NUCA prefetching is effective, D-NUCA caches have similar per-

formance improvements. This observation confirms that dynamic migration and

prefetching are complementary memory latency reduction/tolerance techniques.

4.6 Per-Application Best Configuration and Per-line Shar-

ing Degree

In this chapter, so far, we have showed which configurations of sharing degrees, block

migration, and L1 prefetching have the best performance across entire benchmarks.

In this section, we will discuss how per-application configurations can improve overall

performance, dynamically adapting to the different usage patterns of applications.

We investigate the adaptability further into per-line sharing degrees. Even in

an application, different memory areas may demand different sharing degrees. We

show the possibility of having different sharing degrees for different regions of the

same application.
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Figure 4.7: Execution time for fixed best, fixed worst and variable best sharing
degree

S-NUCA S-NUCA + pref. D-NUCA 2D
SPECWeb99 2 (1.4%) 4 (0.4%) 4 (0.0%)
TPC-W 2 (1.4%) 1 (0.4%) 4 (0.0%)
SPECjbb 1 (1.6%) 2 (0.0%) 2 (9.4%)
Ocean 4 (0.0%) 4 (2.4%) 16 (4.1%)
Barnes 1 (2.0%) 1 (0.9%) 1 (3.6%)
LU 4 (0.0%) 2 (0.0%) 4 (0.0%)
Radix 16 (6.6%) 2 (0.0%) 16 (25.4%)

Fixed Best 4 2 4

Table 4.7: Per-application best sharing degrees

4.6.1 Per-application Best Configuration

Since the underlying cache framework permits different degrees of sharing on the

same hardware, further opportunity exists: The cache can be configured differently

to have the ideal sharing degree for each specific application or for individual cache

lines. Figure 4.7 shows a comparison of the average execution time across all appli-

cations for the S-NUCA and D-NUCA designs normalized to the S-NUCA design

with the best sharing degree of four. For each policy, we show the performance

with the best fixed sharing degree across all applications, the worst fixed sharing

degree, and a per-application “variable” degree. Choosing the best sharing degree
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at a finer granularity provides a small but measurable (5%) speedup for the more

aggressive policies. In Table 4.7, we list the ideal per-application sharing degrees for

each policy and show the percentage speedup over the best fixed sharing degree for

that policy. For D-NUCA, SPECjbb, Ocean, and Radix showed a measurable boost

of 5-25% from fixed best sharing degrees, by using per-application sharing degrees.

4.6.2 Per-line Sharing Degree

Sharing degree can affect individual cache blocks in different ways based on the

sharing patterns of the block. For private blocks, which will never be replicated in

other caches, a low sharing degree can reduce the access latencies without hurting

caching efficiency. For shared blocks, a higher sharing degree may be more beneficial

than lower sharing degree when the reduction of replicated blocks can decrease miss

rates significantly. In this section, we investigate the potential benefit of multiple

sharing degrees for different classes of blocks.

We divide the address space into private and shared block addresses, and

assign different sharing degrees to the two address classes. To evaluate the per-line

sharing degrees, we simulated S-NUCA with the two different sharing degrees, pri-

vate and shared (PSD and SSD). Since our full-system simulator does not have sup-

port for distinguishing private and shared blocks, we used an approximate method

of tracking access patterns for the entire address space during run time. Until more

than one processor accesses a block address, we assume the address is a private

block. Once an address is recognized as a shared block, the block is re-mapped to

caches by the default sharing degree. We assumed that the sharing degree is always

higher than or equal to the private sharing degree.
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Figure 4.8 presents the breakdown of L1 miss penalties for the two applica-

tions in which per-line sharing degree is effective. We measured all combinations

of private and shared sharing degrees. The two bars for each application repre-

sent the baseline ideal uniform sharing degree and the best per-line sharing degree

configuration. We divided the local L2 hit latencies into private and shared accesses.

For the two applications, per-line sharing degree reduced execution time by

7% and 6%. With fixed sharing degree, the best sharing degree was 4 (Ocean) or 16

(Radix). When different sharing degrees are allowed for private and shared blocks,

the best combination is 1 or 2 for private sharing degree and 16 for shared sharing

degree. For these two benchmarks, access latencies to private blocks are reduced by

having lower sharing degrees (1 or 2), while replications are minimized with high

shared a sharing degree (16). With a low private sharing degree, private blocks,

which will never be accessed by other processors, are placed on a small range of

banks close to processors. With a high shared sharing degree, block replication is

reduced, although the shared blocks may be spread across a larger range of banks
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than private blocks, thus increasing access latencies. It is possible that a finer-

grained distribution of lines to banks would improve performance.

4.7 Summary

The CMP organization that we introduced in this chapter is designed to support

both low-latency, private logical caches as well as highly shared caches, simply by

adjusting the mapping of the same address on different processors to the L2 cache.

The results showed that–compared to private, non-shared L2 partitions–the L2 la-

tency more than doubled for a fully shared cache. The results also showed that

the fully shared cache could eliminate a third of off-chip misses. Clearly, a large

opportunity exists if this gap can be bridged.

The S-NUCA organization (static mapping) worked best with a low-to-

medium sharing degree for all applications; the extra hit latency was simply too

detrimental with larger sharing degrees. Consequently, we evaluated L1 prefetching

and dynamic migration of lines, attempting to reduce the average hit latencies and

make the larger sharing degrees more effective. L1 prefetching worked uniformly

well, but did not drive the ideal sharing degree significantly in one direction or the

other, even though the L1 miss rates were reduced.

Dynamic migration (D-NUCA 1D and 2D) showed modest performance im-

provements, despite reductions in average hit latency. However, for a subset of

applications, D-NUCA drove the ideal sharing degree to higher sharing degrees,

showing that mechanisms to reduce latency can indeed make higher-degree shared

caches the optimal point. It remains to be seen whether the added complexity and

power consumption justify moving to a D-NUCA design since only a subset of the
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applications benefit appreciably; we think it unlikely to be justifiable.

Probably the best: an S-NUCA organization with a sharing degree of two

or four. However, the D-NUCA results still hold promise, and we are continuing to

explore ways to exploit the flexible mapping. Treating different classes of lines with

different sharing degrees showed significant potential for two applications.

In this chapter, we investigated cache sharing as a miss reduction technique

for CMPs. We showed that shared caches can reduce external memory accesses sig-

nificantly and proposed techniques to overcome the latency disadvantage of shared

caches. However, the techniques in this chapter do not address coherence communi-

cation in large-scale systems beyond the on-chip shared caches. In the next chapter,

we will propose a technique, which uses speculation to address the communication

latency aspect of MP cache performance.
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Chapter 5

Coherence Decoupling: Using

Speculation to Hide Coherence

Latency

In this chapter, we use the speculative execution capability of microprocessors to

hide long communication latencies in multiprocessors. In the past two decades,

techniques based on speculation have been used to improve microprocessor perfor-

mance. With speculation, microprocessors can continue to execute instructions with

predicted results. Rather than incurring the latency of waiting for the outcome of

an event, the outcome is predicted, allowing execution to proceed with the pre-

diction. The prediction is verified when the outcome of the event is known, and

corrective action is taken if the prediction was wrong. Speculative execution has

been successfully used to overcome performance hurdles in a variety of scenarios, for

example, branch instructions (control speculation) [86, 98], ambiguous dependences
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(dependence speculation) [76], parallelization (speculative parallelization) [99], and

locking overheads (speculative lock elision) [88].

In shared memory multiprocessors, communication misses occur when other

processors update shared data and the blocks in local caches become invalid. Sub-

sequent accesses to the invalid data in the local cache will incur a cache miss (com-

munication miss or coherence miss). In the conventional cache coherence protocols,

such cache misses block the execution of instructions dependent upon the missed

data, incurring performance losses. By using speculation, the coherence-missed data

can be predicted, and the processor can continue to execute the dependent instruc-

tions. If the missed communication data can be predicted correctly, speculation can

reduce or completely hide the long latencies to resolve communication misses.

We propose a technique called coherence decoupling, which applies specula-

tion to the problem of long-latency shared-memory communication. This technique

reduces the effect of these latencies, but neither exacerbates the programmer’s task

nor makes correctness of the coherence protocol more difficult to ascertain. Coher-

ence decoupling breaks the communication of a shared value into two constituent

parts: (i) the acquisition and use of the value, and (ii) the communication of the

coherence permissions that indicate the correctness of the value and thus the execu-

tion. In traditional cache coherence protocols, these two aspects of communication

have been merged into a single protocol; obtaining the coherence permissions must

strictly occur before use of the data, thus serializing the two. Coherence decoupling

enables separate protocols for the speculative use and eventual verification of the

data. A Speculative Cache Lookup (or SCL) protocol provides a speculative value as

quickly as possible, while in parallel the coherence protocol executes and eventually
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Figure 5.1: Timing diagram for coherence decoupling

produces the correct value along with the requisite access permissions.

Separating the SCL protocol and the coherence protocol allows each to be

tuned independently. This capability enables novel optimizations that permit higher

performance with less complexity than traditional protocol optimizations. The sep-

aration also allows the two to be overlapped. The top part of Figure 5.1 shows the

timing of events, with a conventional coherence protocol, for a read to a cache line

that requires a change in coherence permissions. The cache coherence operation is

followed by the arrival of the line with the correct data and the appropriate permis-

sions, at which point the data can be used. The bottom part of Figure 5.1 shows

the timing of events in a system with coherence decoupling. Here the SCL protocol

could speculatively return the data earlier, for example, if a tag match occurs in a

local cache (even if the line is invalid), while simultaneously launching the invalid-

to-shared upgrade via the coherence protocol. When the coherence protocol returns

the permissions and the correct value, the value is compared to the value returned

by the SCL protocol. If the values are identical, the speculation was correct, and

the coherence latency will have been partially or fully overlapped with useful com-
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putation (“best case” in the figure). If the SCL and coherence protocol values differ,

a full or partial rollback must occur, resulting in a performance loss compared to no

speculation (“worst case” in the figure). The utility of coherence decoupling, as with

all speculation policies, depends on the ratio of correct to incorrect speculations, the

benefit of a successful speculation, and the cost of recovery.

5.1 Related Work

The prior research in reducing multiprocessor communication overhead that is most

relevant to coherence decoupling falls into three broad categories: (1) customized

coherence protocols, (2) speculative coherence operations, and (3) speculation on

the outcome of events in a multiprocessor execution. We describe each category in

turn below.

Customized coherence protocols attempt to specialize underlying coherence

protocols to reduce communication and coherence latencies for special cases. The

Stanford Dash multiprocessor [61] included directory protocol optimizations for spe-

cific sharing patterns, as did the pairwise sharing protocol in the Scalable Coherent

Interface [45], and migratory sharing protocols [18, 101, 21]. Some protocols were

proposed to adapt to different sharing patterns [108, 22], or traded-off write invali-

date and write-update protocols [5, 77, 90].

Another set of protocols exposed coherence protocols to software; cooperative

shared memory [42] used software directives to allow applications to guide the coher-

ence protocols with check-in and check-out primitives. Exposure to software reached

its zenith with the Stanford Flash [55] and Wisconsin Tempest/Typhoon [91], which

enabled software to customize coherence protocols on a per-application basis [26].
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These research directions were discontinued as it became apparent that protocol

customization was too difficult for most programmers.

Speculative coherence operations are in some sense the converse of the coher-

ence decoupling approach. Coherence decoupling performs speculative computation

to tolerate the latencies of unmodified coherence protocols, using a SCL protocol

to increase speculation accuracy without complicating the base coherence protocol.

Speculative coherence operations, conversely, perform no actual speculative compu-

tation, but speculatively initiate coherence messages (e.g., invalidates or upgrades)

in the base protocol to reduce the latency eventually seen by mandatory coherence

operations. Lebeck and Wood proposed Dynamic Self Invalidation [58]: proces-

sors speculatively flush their blocks based on access history, reducing the latency of

later invalidations by remote writers. Subsequently, Mukherjee and Hill proposed a

“coherence message predictor” [79] that initiated coherence messages speculatively,

triggered by other messages indexing into cache block indexed two-level adaptive

predictors [110]. Kaxiras and Goodman evaluated message predictors using PC-

indexed tables rather than address-indexed tables [49]. Lai and Falsafi augmented

the use of tables containing patterns of messages by restricting these tables to mem-

ory demand requests only [56], showing that limiting the table to demand request

messages only provided a more effective predicted stream of coherent block read re-

quests. They also replaced the access counts used in Dynamic Self-Invalidation with

two-level adaptive prediction in a “last-touch predictor” [57]. Kaxiras and Young

explored a range of policies to predict the set of sharers of a cache line [50], as did

Martin et al. [66] with “destination set prediction,” which they used to enable more

complex, adaptive coherence protocols that exploited the predicted sets of sharers.
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The prior work most similar to coherence decoupling is the work that spec-

ulates on the outcome of a multiprocessor event — a form of value speculation

different from the typical value prediction strategies. There are two categories of

such techniques. The first category is speculative synchronization, where the out-

come of a synchronization event is speculated. For example, a lock is speculated to

be unheld, permitting entry into critical sections [88, 89, 71]. The similarity with

coherence decoupling is that both techniques employ speculative access to shared

variables, which for speculative synchronization is limited to locks. Temporally

silent stores and the MESTI protocol [63], a proposed alternative to speculative

synchronization, is, in our classification, an example of a customized coherence pro-

tocol. The MESTI protocol exploits the predictable behavior of the values of lock

variables to reduce the coherence protocol overhead in a lock handoff, but is neither

a speculative protocol, nor does it launch speculative operations.

The second category of event outcome speculation techniques use speculation

to overcome the performance limitations of strong memory models [31, 109, 84, 34].

These techniques speculate that a memory model (e.g., sequential consistency) will

not be violated if memory references are executed in an optimistic fashion. Memory

operations that have been carried out optimistically are buffered and these buffers

are checked to see if the optimistic execution has resulted in a possible violation of

the memory consistency model [32]. Execution is rolled back in case of a violation.

This form of speculative execution is widely used in commercial multiprocessors

today.

Recent work by Martin, et al. [67], proposes token coherence, a new way of

implementing cache coherence in a multiprocessor with an arbitrary interconnec-
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tion network. Token coherence distinguishes between a performance protocol and a

correctness protocol. A correctness protocol returns the correct value in all cases;

a faster performance protocol returns the correct value in most cases. Unlike co-

herence decoupling, the performance protocol, however, always returns a correct,

non-speculative value, and token coherence is not a technique that employs specu-

lative execution.

5.2 Potential Latency Reduction with Coherence De-

coupling

In this section, we categorize L2 cache misses in multiprocessors, and show the poten-

tial communication misses to be hidden by coherence decoupling. In Section 5.2.1,

we discuss how L2 misses are classified, and which classes of misses can be effectively

hidden with coherence decoupling. In section 5.2.2, through experimental simula-

tions, we show what fraction of misses can potentially be covered with coherence

decoupling.

5.2.1 Classification of Communication Misses

In uniprocessor caches, cache misses are classified to capacity, conflict, and cold

misses [43]. Besides the three types of misses, communication in shared memory

multiprocessors with invalidation-based coherence, adds one more type of misses,

coherence misses. Coherence misses, or communication misses, occur when blocks

in local caches are invalidated by other processors which intend to update the blocks.

Subsequent accesses to the local copies cause cache misses, since the blocks are in

invalid states. Such coherence misses can only happen with multiple processors
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sharing cache blocks. Coherence decoupling reduces the effect of long latencies for

such coherence misses.

Coherence misses can be further divided into three classes, false sharing,

true sharing, and silent stores, and the effect of coherence decoupling can vary for

different classes.

• False sharing: False sharing misses occur due to block-based management of

coherence [25]. A cache block is the atomic unit of coherence in cache coherence

protocols. Even if processors update non-overlapped portions within a block,

any write to the block should invalidate the copies of the same block in other

processors. If a block is invalidated to update a word in the block, subsequent

reads to a different word in the same block become false sharing misses.

For false sharing misses, the portion of the cache block that a processor is

accessing in its local cache has not been updated by other processors, even

if the states of blocks are invalid. Therefore, predicting values for false shar-

ing misses is easy by using invalid values in the local cache, which have by

definition not been updated by remote processors.

• Silent stores: Silent stores differ from false sharing in that the data portion is

actually changed by other processors. As shown in Lepak et al [62], however,

the new value other processors write to the block is the same as the old value.

Temporal silent stores are slightly different from plain silent stores [63]. In

temporal silent stores, the old value in the local cache is updated with a

different new value, but eventually, the value is changed back to the original

one, before the local cache is accessed. In both cases, the old data value in

the local cache is correct.
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• True sharing: We define true sharing only for the coherence misses that are

neither false sharing misses nor silent stores. The data values in the local

caches have been changed and furthermore, new values are different from old

ones. For true sharing misses, using the invalid value in the local caches will

cause a miss prediction and recovery.

5.2.2 Miss Profiling Results

Figure 5.2 shows a breakdown of L2 read misses for a number of cache configurations

(1MB and 4MB capacity, and 128-byte and 512-byte cache lines). The number of

processors for the experiments is fixed to 16. We partition read misses into coherence

misses and “other” misses, which include capacity, conflict, and compulsory misses.

We define coherence misses as having a matching tag in the L2 cache but the

wrong coherence state (e.g., invalid state on a read), thus requiring remote commu-

nication. The actual coherence misses can be more than what are measured in the

experiments, since invalidated blocks can be replaced in local caches. However, this

restricted definition can show conservatively the potential of coherence decoupling.

We subdivide coherence misses into false sharing, silent stores, and true shar-

ing misses. Coherence misses are counted as true sharing misses only when the

correct values differ from those in the local cache’s stale copy. Silent stores update

a cache block, but the values have not been changed from the old values stored in

the local invalid block. The silent store bar in the figure includes both temporally

silent stores and silent stores. For false sharing misses and silent stores, local cache

lines in invalid state will have the correct values. The sum of silent stores and

true sharing misses are the traditional address-based true sharing misses by Dubois’
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Figure 5.2: L2 load miss breakdowns (false sharing, silent store, and true sharing)

definition [25].

The data show that the fraction of coherence misses is significant for every one

of the commercial benchmarks (a minimum of 12% in FFT). The data corroborate

the expected trend that as the cache size grows — for a fixed size workload —

the coherence misses increase, to 80% in SPECWeb, 81% in TPC-W, and 67% in

SPECJbb. Given the enormous cache sizes in future server-class systems (36MB

per processor die in IBM’s Power5 system), we expect that coherence misses will

be a significant and growing component of communication in future multiprocessor

systems.

A significant fraction of L2 load misses across the benchmarks are coherence

misses caused by silent stores, from 7% (Barnes) to 16% (Ocean). The base CD

protocol will predict the correct value for the silent stores as well as for false sharing

misses. The ratio of false sharing misses (plus silent stores) to true sharing misses

increases as the block sizes increase, for all benchmarks. Of those being simulated,

the cache configuration with the lowest average miss rate (4MB with 512B blocks)

shows that from 13% (FFT) to 71% (Barnes) of all L2 misses result from false
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sharing. If cache size growth outstrips working set size growth, as is certain for

some benchmarks, coherence misses in general and false sharing in particular will

increase as a fraction of L2 misses.

5.3 Coherence Decoupling Architecture

Coherence decoupling separates a cache coherence protocol into two parts: (i) a

speculative cache lookup (SCL) protocol, which returns a speculative value that

can be used for further computation, and (ii) a coherence protocol, which returns

the correct value (as defined by the memory consistency model) and the requisite

permissions to use the value. If the SCL protocol can return a value faster than the

coherence protocol, the computation using the value and the coherence operations

can be overlapped. Higher accuracy in the SCL protocol allows for more frequent

hiding of coherence protocol latencies, allowing simpler but lower performance co-

herence protocols to be used without a commensurate performance penalty. In this

section, we consider three components to support coherence decoupling (Section

5.3.1), and discuss how to ensure the correctness of coherence decoupling (Section

5.4).

5.3.1 Three Mechanisms to Support Coherence Decoupling

Coherence Decoupling system architectures must provide three mechanisms: i) a

value acquisition mechanism to obtain speculative load values, ii) a verification

mechanism to receive a correct value and permission by communicating with other

processors, iii) a recovery mechanism to detect misspeculation and recover correctly

from it.
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• Value Acquisition (SCL protocol): The value acquisition must provide load

values with high accuracy. There are three criteria a good value acquisition

protocol should meet. i) The latency of obtaining a value is important to

minimize processor stalls. It must return a speculative load value far ahead

before a coherence protocol returns a correct value. ii) A good value acqui-

sition protocol must be able to generate speculative values for the majority

of coherence misses. iii) The accuracy of the protocol is also important to

minimize the recovery cost of misspeculation. We use the Speculative Cache

Lookup (SCL) protocol as our value acquisition protocol. The most basic pro-

tocol uses values in the local cache, although the cachelines are in the invalid

state. This basic protocol attempts to eliminate the effect of false sharing,

silent stores [62], and temporal silent stores [63].

• Verification: Any coherence protocol can be used for verification. This safety

net can take much longer than the SCL protocol, but must always return a

correct value. This verification protocol must also ensure global consistency

in multiprocessors. In the discussion, we use an invalidation-based protocol

with a snooping bus.

• Recovery: A recovery mechanism recovers from an inconsistent state incurred

by misspeculation. Any misspeculation recovery mechanism in modern spec-

ulative processors can be used. For example, the recovery mechanisms from

branch missprediction, or from value mispredication can be used. However, the

recovery for coherence decoupling may require the ability to buffer deep specu-

lative execution, since the latency of a coherence protocol is already hundreds

of processor cycles, and it will grow. The other requirement for the recovery

93



mechanism is to recover as quickly as possible. In this work, I model flushing,

which squashes all the instructions succeeding the misspeculated loads.

To support coherence decoupling the system architecture must: (i) split,

providing a means to split a memory operation into a speculative load operation

and a coherence operation, (ii) compute, providing mechanisms to support execution

with speculative values, and (iii) recover, providing a means for detecting a mis-

speculation and recovering correctly from it.

Splitting a memory operation (i above) into two sub-operations is straightfor-

ward, as is the recovery process (iii above) of comparing the results of the speculative

load operation and the coherence operation to detect a mis-speculation. The spec-

ulated value may be buffered in an MSHR, which then compares the value against

the correct value when the coherence protocol returns the cache line.

To support speculative computation (ii above), the same mechanisms that are

used to support other forms of speculative execution can be used. Since coherence

latencies are growing to hundreds of cycles, however, current microarchitectural

mechanisms to support in-processor speculation (e.g., branch speculation) are likely

to be inadequate. Mechanisms that can buffer speculative state across hundreds to

thousands of speculative instructions will be necessary.

In this chapter, for recovering from mis-speculations, we model the standard

recovery policy for techniques that use deep speculation: squashing the offending

instruction and all succeeding instructions.
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5.3.2 Correctness of Coherence Decoupling

Coherence decoupling is a form of value prediction for multiprocessors. As Martin et

al. have observed [69], implementing value speculation correctly requires hardware

that performs the same function as that used for aggressive implementations of

sequential consistency (SC) and vice versa.

Coherence decoupling relies upon the above observation for correctness. Ob-

taining a value speculatively with an SCL protocol — and later verifying the specula-

tion via the coherence protocol — is analogous to carrying out a memory operation

speculatively assuming that the memory consistency model will not be violated,

and using the coherence protocol to verify the speculation. Thus, if we use the

same hardware to implement coherence decoupling that we use to implement ag-

gressive implementations of SC, coherence decoupling can be implemented without

any correctness implications for the memory consistency model.

5.4 SCL Protocols for Coherence Decoupling

A wide range of SCL protocols for coherence decoupling are possible. Although

the SCL protocols can be combined with arbitrarily-complex coherence protocols,

coherence decoupling enables these aggressive SCL protocols to be backed by a

simple, easily-verifiable coherence protocol. In this work we therefore measure only

a simple invalidation-based coherence protocol and rely on the SCL protocols to

improve performance.

An SCL protocol has two components. The first is the read component —

the policy for obtaining the speculative value (i.e., where the protocol searches for
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SCL Component Policy Description

Read CD Use the locally cached incoherent value for every L2 miss
Read CD-F Add a PC-indexed confidence predictor to filter speculations

Update CD-IA Use invalidation piggyback to update all invalid blocks
Update CD-C Use invalidation piggyback if the value is special (compressed)
Update CD-N Update all sharers after N writes to a block (N=5 in Section 6.4)
Update CD-W (Ideal): Update on every write if any sharers exist

Table 5.1: Coherence Decoupling protocol components (read and update)

a speculative value to use). The second is the update component, in which the SCL

protocol may speculatively send writes to invalid cache lines (former sharers) to

increase the probability that a subsequent coherence decoupled access will read the

correct value. This component trades increased bandwidth — consumed by sending

speculative writes around the system — for improved speculation accuracy. The

update component may be null in some SCL protocols.

5.4.1 SCL Protocol Read Component

The first policy for the read component we propose simply uses the value in the

local cache if the block is present (i.e., the tag matches) and if the block is either in

an invalid state. We call this CD, for basic coherence decoupling.

Since CD speculates on the value of every load operation that finds a match-

ing tag (but with the wrong permission), it may incur a large number of mis-

speculations, triggering too many rollbacks. The next SCL read component policy

we propose, called “Coherence Decoupling + Filter” (or CD-F), employs a confidence

mechanism — a PC-indexed table of counters — to throttle speculations. For some

extra hardware, CD-F reduces the number of times speculation is employed (i.e., it

reduces the coverage), thereby decreasing the total number of mis-speculations, but
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improving the average speculation accuracy over the base CD protocol.

In general the read component of an SCL protocol could return a (possibly

incorrect) value from anywhere it finds in the system, if the latency of doing so is

sufficiently lower than the latency of accessing it through the coherence protocol.

In a directory-based cache coherent machine, for example, the SCL protocol could

first access the local cache and then the home memory of the invalid line, using

the invalid data while the home directory communicated with an exclusive owner of

the block. In another example, the value could reside in a geographically-proximate

cache in a hierarchical multiprocessor (e.g., another cache on the same chip in a

multiprocessor built from CMPs). In this dissertation, however, we consider only

a flat symmetric multiprocessor leaving the issue of SCL protocols for hierarchical

systems to future work.

An SCL protocol with only a read component (and a null update compo-

nent) speculates correctly if the contents of the accessed word in the invalid block

have not changed remotely since being invalidated (false sharing [25]), have been

changed remotely to the same value (silent stores [62]), or have been changed re-

motely to a different value and then changed back to the original value (temporally

silent stores [63]). This capability allows the problem of false sharing to be greatly

mitigated. As long as there is sufficient work for the processor to do after it specu-

lates on falsely shared data, the coherence protocol latency for such a request can be

overlapped completely. A successful CD protocol will prevent the programmer from

having to recode data structures to reduce false sharing (if they can even figure out

that false sharing is occurring in the first place).
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5.4.2 SCL Protocol Update Component

We can further attempt to improve the accuracy of speculation for truly-shared data

by adding update components to the SCL protocol. An update component specu-

latively sends updated data around the system and writes them into invalid cache

lines. The update component of an SCL protocol thus trades increased speculation

accuracy for the extra bandwidth consumed by the updates.

A variety of protocols for the update component of an SCL protocol, with

different accuracies and bandwidth requirements, are possible. We present several

such protocols in this section; it is easiest to view them as variants of a basic write-

update protocol. It is important to note that since these updates are speculative,

they can be completely non-blocking for the writer and can proceed in parallel with

other operations. If a speculative write finds a copy of the line which is not in invalid

state, the write is simply dropped and correctness preserved. This capability is in

contrast to a canonical write-update cache coherence protocol which requires the

writer to view the transmission of the write updates as a blocking operation.

Our first update component for an SCL protocol, CD-IA, piggybacks the value

created by the writer along with the invalidation message used to invalidate remote

caches. The message size is increased to include a data packet in addition to the

address packet. However, since we model a bus-based broadcast coherence protocol

in this dissertation, CD-IA updates the data in all caches which have the block (i.e.,

caches already in an invalid state) and not only the sharing caches that need to be

invalidated.

CD-C is a variant of CD-IA; it uses compressed updates to reduce the message

overhead. For the commercial workloads studied in this dissertation, many of writes
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that result in an invalidation message frequently write the values 0, 1, or -1. CD-C

piggybacks updates for only these values to the initial invalidation message, allowing

these updates to be communicated to remote caches by adding only two additional

bits to the invalidation message.

The remaining protocols for the SCL update component that we consider

also send updates after the initial invalidations have been sent. Consequently these

additional updates require additional messages. CD-N broadcasts the dirty line af-

ter N updates have been made by the same writer. Other possible policies might

broadcast the block after every N writes, or broadcast the block after the (predicted)

last write to the block. With the bus-based interconnect that we model, which has

limited bandwidth, these policies performed much worse than the others. They may

be more compelling on higher-bandwidth topologies, which we leave to future work.

Finally, CD-W is an ideal policy that sends an update on every write, if invalid

sharers exist. That is, it uses a conventional write-broadcast protocol for the update

component of the SCL protocol. In a machine with directory-based cache coherence,

the writer could maintain the list of sharers after invalidations for propagating occa-

sional writes, or the system could use destination set prediction for guessing which

nodes hold invalid copies of a line [50, 66]. Table 5.1 summarizes the SCL protocol

components that we consider in this dissertation. Note that the read component of

the SCL protocol is orthogonal to the update component of the SCL protocol. Thus

either of the read components (CD or CD-F) could be used in conjunction with any

of the update components (CD-IA, CD-C, CD-N, or CD-W), or even with a null update

component. To reduce the number of combinations, however, for the remainder of

this chapter when we discuss an SCL protocol with a non-null update component
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(CD-IA, CD-C, CD-N, or CD-W), we will assume that it uses CD for its read component.

Clearly other options for speculatively passing around data are possible, trad-

ing off speculation accuracy with message bandwidth. Existing cache coherence

protocol optimizations for correctly passing data can be leveraged into have spec-

ulative versions. For example, we could have speculative competitive write-update

protocols, or speculative customized protocols that can dynamically learn the com-

munication pattern of an application and try to optimize the data communication.

Such protocols are left for future work.

5.5 Evaluating Coherence Decoupling

We ran the coherence decoupling experiments on MP-Sauce. Network contention

due to speculative updates is also modeled (except for the ideal CD-W protocol).

Table 5.2 lists the most relevant machine parameters from the simulated system.

We simulated three commercial applications and five scientific shared-memory

benchmarks from the SPLASH2 suites. The three commercial workloads are TPC-

W using a MySQL backend running on Apache, SPECWeb99 running on Apache,

and SPECJbb using the IBM Java virtual machine. The SPLASH applications we

simulate are Barnes, Ocean, Water-nsq, FFT, and Radix.

Since multi-threaded, full-system simulations produce results that vary from

run to run, we replicated the methodology in other studies and ran each experiment

multiple times, injecting small timing variations [3]. We report the mean of the

execution time across the multiple runs as our experimental result.

In this dissertation, we limit our simulations to 16-node SMP systems, for

two reasons. First, although small-scale hierarchical (CMP-based) NUMA systems
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Feature Parameters

Issue width 4
Window size 512-entry RUU
Number of CPUs 16
L1 cache split I/D, 128K, 4-way, 128-byte block
L2 cache unified, 4M, 4-way, 128-byte block
MSHR size 32
Base protocol bus-based MOESI
Bus bandwidth 12.8GB/s
L1/L2 hit latencies 2 cycles / 24 cycles
Memory access latency 460 cycles
Cache-to-cache latency 400 cycles

Table 5.2: Simulated system configuration for Coherence Decoupling

provide opportunities for coherence decoupling, they are not yet prevalent. Second,

more traditional, directory-based CC-NUMA multiprocessors are typically too large

to simulate in our full-system environment—the AIX 4.3.1 operating system that

we simulate can support configurations only up to 24 processors. We expect that

the relative performance benefits we show will only increase in larger-scale systems,

where coherence misses are more frequent and latencies are longer.

5.5.1 Microbenchmarks

To understand the effectiveness of coherence decoupling, we show the results of

two simple microbenchmarks, which are designed to generate false sharing misses.

simple-fs loads falsely shared data, while executing both dependent and inde-

pendent instructions every loop iteration. The ratio of dependent to independent

instructions is set to 1:3. The dependent instructions are simple additions and mul-

tiplications, which use the value returned from a load that incurred a false sharing

miss. critical-fs generates a false sharing miss on each iteration, but calculates
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   dep_val1 = fval + 2;
   indep_val1 = local + 2;
   dep_val2 = fval * 3;

   fval = array[i].value; 

...
/* dependent and independent instructions */

}

for(i = 0; i < MAX; i++) {

for(i = 0; i < MAX; i++) {

   /* false sharing miss */

index = array[index].value; /* false sharing miss */
sum += index;

}

(b) critical−fs

(a) simple−fs

Figure 5.3: Microbenchmark codes

the address of that load using the value returned from the false sharing miss of the

previous loop iteration. Figure 5.4 presents the key microbenchmark code fragments

on the left half of the figure.

The right half of Figure 5.4 shows the microbenchmarks’ normalized execu-

tion times, varying cache-to-cache communication latencies from 200 to 1000 cycles,

with each microbenchmark using both the baseline and the CD protocol. simple-fs

has speedups from 12% to 17% over the base case, as communication latencies

increase. With a 512-entry RUU, CD can execute approximately 120 dependent in-

structions, none of which can be executed in the baseline system until the falsely

shared data return. Despite this additional latency tolerance, however, CD can not

hide communication latencies past a certain size due to the finite instruction window

size (512 entries), after which point performance degrades more quickly as latencies

increase.

critical-fs forces a data dependence between two loads, placing consecu-

102



200 400 600 800 1000 

Comm. Latencies (Cycle)

0

1

2

3

4

E
x
e
c
u
t
i
o
n
 
T
i
m
e
 

simple-base

simple-CD 

critical-base

critical-CD

Figure 5.4: Microbenchmark performance results

tive false sharing misses on the critical path of execution. Since the delay to calculate

addresses and issue the subsequent loads can not be tolerated in this microbench-

mark, false sharing misses have a major effect on performance. CD can calculate the

next address by using data in local invalid blocks to issue the subsequent memory

accesses early, overlapping false sharing misses. Even at 200 cycles, the speedup

of CD is more than 45%. As communication latencies increase, the performance of

CD degrades much more slowly than the baseline. At a 1000-cycle communication

latency, the baseline system is about three times slower than CD, although the slopes

of performance degradation become similar once the finite window and MSHR sizes

prevent tolerance of longer latencies.

5.5.2 Coherence Decoupling Accuracy

In this section, we present speculation accuracies for a number of the coherence

decoupling policies that are described in Section 5.3. Figure 5.5 shows the ratio of
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Figure 5.5: Accuracy of coherence decoupling (from left to right: CD, CD-F, CD-IA,
CD-C, CD-N, CD-W)

correct to incorrect CD speculations (for all coherence misses) using a 4MB cache

with 128-byte blocks, for a subset of the policies described in Section 5.3. In the

CD-N experiment, we updated the invalid sharers after the first 5 writes to a line.

The CD-F policy is the only one to not speculate on all coherence misses, due

to its filter which blocks low-confidence speculations. The base CD protocol makes

more correct speculations than CD-F, but at the expense of more mispredictions.

However, this simple protocol provides accuracies that approach those of many of

the update protocols, due to silent stores and false sharing. For three commercial

benchmarks and Barnes, the base CD protocol can predict correct values for more

than 70% of coherence misses. Some of the update protocols lose accuracy by

sending the update too early, changing an invalid line to a new value, after which

the writer changes the value back (a temporally silent store) but may not broadcast

the change, resulting in a mis-speculation.

Update-component protocols have better accuracy than CD for some bench-

marks, but the improvement is modest. CD-W improves the prediction accuracy for

FFT and Radix, but it does not increase the accuracy for the other benchmarks.
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The CD-IA policy sees better accuracy for Water-nsq, FFT, and Radix, than CD-C,

because the latter policy can not deliver a truly-shared value, if the value is not one

of the values that can be encoded and sent along with the invalidation (-1, 0, or

1). Overall, coherence decoupling appears to have much better accuracies for the

commercial workloads, with the simplest CD protocol performing as well as the more

complex protocols, except on a few of the simpler scientific codes.

5.5.3 Coherence Decoupling Timing Results

We now consider timing simulation results for a system with coherence decoupling.

Table 5.3 shows the speedups over the baseline system (which is the simple in-

validation protocol with no coherence decoupling or speculation) for the range of

policies described in Section 5.3. We model a flushing mechanism to recover from

mis-speculations. The mechanism flushes all instructions younger in program order

when the violation is detected (a “rolling flush”) rather than waiting until the vio-

lation reaches the head of the reorder buffer. The rolling flush mechanism reduces

the cost of speculation recovery, and is implemented in modern server processors

such as IBM’s Power5 [33].

The right-most column of Table 5.3 places an upper bound on the perfor-

mance of coherence decoupling in the simulated system. In this model, all cache

accesses that would have been coherence load misses are treated as hits. For TPC-W,

the best-case speedup is 17.8%, providing only moderate opportunities for coher-

ence decoupling speedups. SPECWeb99 and Ocean show larger benefits (34.6% and

34.5%). The only benchmark with an ideal coherence decoupling speedup of under

15% is Barnes, which is a mere 1.4% due to its negligible L2 miss rates.
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Benchmark CD CD-F CD-IA CD-C CD-N5 CD-W Optimal
SPECWeb99 13.8% 11.0% 13.2% 13.1% 14.9% 18.0% 34.6%
TPC-W 1.2% 2.6% 2.3% 1.7% 1.4% 2.4% 17.8%
SPECjbb2000 16.6% 15.8% 13.5% 13.0% 17.1% 16.5% 26.3%
Barnes 0.6% 0.4% 0.7% 0.7% 0.8% 0.6% 1.4%
Ocean 6.9% 4.7% 8.2% 7.4% 6.0% 7.5% 34.5%
Water-Nsq 2.1% 1.7% 2.8% 3.5% 0.7% 5.4% 17.4%
FFT 5.1% 4.2% 6.1% 7.2% 4.6% 10.8% 21.4%
Radix 6.8% 3.6% 7.6% 8.8% 6.3% 12.0% 42.4%

Mean 6.6% 5.5% 6.8% 6.9% 6.5% 9.1% 24.5%

Table 5.3: Speedups for Coherence Decoupling

The accuracies of coherence decoupling are high, partially or fully tolerating

a third to a half of coherence misses. The speedups reflect those results for sev-

eral benchmarks; in particular, SPECJbb reaches over half of its ideal performance

improvement for most of the policies. Overall, with only simple mechanisms, the

base CD policy achieves a mean speedup of 6.6%, which is over a quarter of the

ideal speedup. In larger-scale systems (and particularly CC-NUMA systems), the

speedups will likely be much higher. In those systems, remote coherence latencies–

especially those that take multiple hops across the network–will have a more dele-

terious effect on performance.

The update-based SCL protocols consume extra network bandwidth to in-

crease prediction accuracies. Table 5.4 presents the network bandwidth overhead for

CD-IA and CD-N5. In all update protocol experiments, we only transmit the updated

words (not entire cache lines) to reduce bandwidth consumed. CD-IA incurs only

small traffic increases (under 4%). CD-N5 incurs much larger increases in traffic,

with a range of 6% to 30% except for Barnes, which increases traffic by 95%. Due

to Barnes’ low L2 miss rates, however, that outlier has little effect on performance.
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Benchmarks CD-IA CD-N5
SPECWeb99 3.6% 7.9%
TPC-W 3.9% 18.5%
SPECjbb2000 2.5% 2.5%
Barnes 2.7% 95.3%
Ocean 3.4% 6.1%
Water-Nsq 2.0% 28.1%
FFT 2.8% 10.5%
Radix 3.2% 8.2%

Table 5.4: Data traffic increase (%) for CD-IA and CD-N5

5.6 Comparing Coherence Decoupling to Transactional

Memory

Transactional memory provides a new programming model for shared memory par-

allel programmers [41, 89, 40, 4]. In traditional shared memory programming mod-

els, programmers must identify conflicting accesses to critical regions, and protect

the critical regions by serializing the accesses through locks. Such lock-based syn-

chronization causes two problems: low programmer productivity and system per-

formance losses. Programmers must use very fine-grained locks to avoid lock con-

tentions, which complicates parallel programming. If locks are not optimized for

fine-grained accesses, processors can contend to acquire locks, even if the data ac-

cessed in critical regions are mutually exclusive.

Unlike traditional shared memory programming models, transactional mem-

ory eliminates the need for locks by guaranteeing the serialization of conflicting

accesses without explicit locks. Hardware detects conflicting accesses to the same

data (Read/Write or Write/Write), and rolls back transactions, allowing one trans-

action to progress. Since transactional memory does not rely on explicit lock vari-
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Coherence Decoupling Transactional Memory
Lock accesses May be speculated No locks
False sharing Can hide Can not hide
True sharing May hide with updates Can not hide
Access conflicts Can not occur (lock) Transaction rollback

Table 5.5: Comparison between coherence decoupling and transactional memory

ables to avoid access conflicts, it can eliminate locks and false contentions on locks

completely.

Coherence decoupling may also improve performance for lock accesses. A lock

is usually updated as a temporal silent store, with a locking store and a subsequent

unlocking store. If a lock contention does not occur, coherence decoupling allows

processors to execute critical regions speculatively. If there is any lock contention,

speculatively executed instructions will be squashed except one processor which ac-

quired the lock. All stores are buffered in the store queue of processors till they

become non-speculative. However, unlike transactional memory, coherence decou-

pling still relies on serialization through lock variables to ensure mutually exclusive

accesses to critical regions. Coherence decoupling can not mitigate lock contentions

due to unoptimized coarse-grained locks.

Although transactional memory can completely eliminate locks, transactional

memory can not reduce the true communication of shared data. Since transactional

memory also uses caches for fast local accesses and coherence protocols for com-

munication among processors, both false sharing and true sharing misses occur in

transactional memory. The performance losses due to false sharing misses may be

more severe with transactional memory. The false sharing misses may cause un-
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necessary rollbacks of transactions, if two conflicting transactions accesses the block

simultaneously.

Coherence decoupling can be combined to transactional memory to hide the

effect of false and true sharing misses, if transaction conflicts do not occur. Mis-

speculation with coherence decoupling does not necessarily start rolling back the

current transaction, since the requested block might have been updated before the

current transaction started.

Table 5.5 summarizes the comparison between coherence decoupling and

transactional memory.

5.7 Summary

This chapter considered the use of speculation to tolerate the long latencies of inter-

processor communication in shared memory multiprocessors. The proposed ap-

proach, called coherence decoupling, breaks up the cache coherence protocol, which

is used to implement coherent inter-processor communication, into a speculative

cache lookup (SCL) protocol that returns a speculative value, and a coherence cor-

rectness protocol that confirms the correctness of the speculation. An early return

of a (speculative) value allows further useful computation to proceed in parallel

with the coherence correctness protocol, thereby overlapping long coherence laten-

cies with useful computation. Furthermore, decoupling the SCL protocol, which

returns a value from the protocol that ensures the correctness of the value, allows

each protocol to be optimized separately. The SCL protocol can be optimized for

performance since it does not have to ensure correctness; the coherence protocol can

be simple since its performance is not paramount.
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We implemented a variety of options for the two components of an SCL pro-

tocol: the read component and the update component. The basic read component

returns the value from a matching invalid cache line for which the access permissions

are not correct. Another option we measured was the addition of a confidence filter

to determine when coherence decoupling should be employed, to reduce the number

of mis-speculations. For the update component, we considered several variations

of a canonical write-update protocol. These variations trade off the accuracy of

speculation of the SCL protocol with the additional bandwidth required.

Using the MP-sauce full-system simulator running a set of commercial work-

loads and scientific workloads, our experiments showed that coherence misses are

a significant fraction of total L2 misses, ranging from 10% to 80%, and averaging

around 40% for large caches. Coherence decoupling has the potential to hide the

miss latency for about 40% to 90% of all coherence misses, mis-speculating roughly

20% of the time.

We also measured the performance benefits of coherence decoupling. Several

of the benchmarks are sensitive to coherence misses, so lower coherence latencies can

improve performance. On these workloads, coherence decoupling was able to achieve

modest improvements. One of the benchmarks is affected little by coherence misses

and, unsurprisingly, coherence decoupling did not help in this case. These results

suggest that coherence decoupling is generally able to overcome the performance

drawbacks of false sharing and, furthermore, allow lower effective latencies even

when true sharing is present.

We expect techniques like coherence decoupling to grow in importance for

future processors and systems for several reasons:
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• First, multiprocessors and/or multithreaded processors will be soon be ubiqui-

tous; almost every future processing chip will employ some form of multipro-

cessing or multithreading. Rather than burdening programmers with having to

reason about the performance effects of data sharing, architects can develop

alternative techniques to overcome these performance impediments without

burdening the programmer. Coherence decoupling is a technique that over-

comes one such performance impediment (false sharing), and mitigates true

sharing in some cases.

• Second, with increasing cache sizes, coherence misses will account for a larger

fraction of all cache misses. This trend, coupled with increasing communi-

cation latencies, will cause the performance loss due to coherence misses to

become a larger fraction of the overall performance loss. The performance

loss for coherence misses will be magnified even further as other sources of

performance losses (e.g., locks) are attenuated (for example, with speculative

synchronization).

• Third, as communication latencies grow, there will be temptation to make

coherence protocols more complex to reduce average latency. We believe that

coherence protocols should be kept simple, relying on microarchitectural tech-

niques to reduce communication-induced performance losses. Again, coherence

decoupling is such a technique: the SCL protocol can allow the latency of the

coherence protocol to be overlapped with computation that is likely to be

useful.

• Finally, much of the hardware support required to support coherence decou-
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pling is very likely to exist for other reasons — e.g., to overcome the perfor-

mance limitations of sequential consistency, or to implement other speculative

execution techniques. This fact will permit coherence decoupling to be imple-

mented with less additional hardware and complexity.

In this chapter, among the three aspects of MP cache performance, we ad-

dressed the communication latency issue. Instead of forcing system designers and

application programmers to reduce protocol latencies and fine-tune applications,

coherence decoupling transparently hides long communication latencies with specu-

lation. In the next chapter, we address the last aspect of the MP cache performance:

communication bandwidth.
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Chapter 6

Subspace Snooping: Increasing

Snoop Tag Bandwidth

In the previous two chapters, we proposed and evaluated two techniques: shared

caches to reduce off-chip misses in CMPs, and coherence decoupling to hide com-

munication latencies with speculation. In this chapter, we propose a new type of

coherence protocol called subspace snooping, which increases the effective bandwidth

of snooping coherence protocols.

The expense of supporting cache coherence is what has limited very large-

scale shared-memory multiprocessors. The largest message-passing clusters now

number in the tens of thousands of processors, but shared-memory machines have

not kept pace. This divergence is in part due to the financial cost of developing

custom hardware for large-scale shared-memory machines, and in part due to the

complexity of the protocols.

The two broad classes of coherence protocols, snooping protocols and di-
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rectory protocols, have traditionally targeted different scales of systems. Snooping

systems offer low-cost, simple coherence at small system scales (two to a few tens of

processors). Directory protocols have been built to scale much higher, but at great

cost and complexity. Directory protocols also suffer from the latency of numerous

point-to-point messages in a large-scale system, which can be reduced at the expense

of additional protocol complexity.

Snooping protocols do not scale to large numbers of processors for three

major reasons: bus bandwidth, bus speed, and snoop tag bandwidth. As more

processors snoop a single address bus, the traffic on the bus grows linearly with the

number of processors. Sun’s Wildfire system mitigated this problem by providing

multiple address-interleaved snoop buses [38] supported by a point-to-point data

transfer network. This solution allowed the number of processors to increase, but

the bus backplane must still be routed to all snooping processors, resulting in long

traces and decreasing the bus speed. Finally, perhaps the worst factor for scaling is

snooping tag bandwidth. As the number of processors grows, the number of snoops

that happen system-wide grow as O(n2). For each request that each processor puts

on the snooping bus, n processors must snoop the request. For multiple interleaved

address buses, providing the L2 (or L3) tag bandwidth for snooping, even with

replicated tag banks, quickly becomes a performance and energy bottleneck.

The ideal large-scale hybrid protocol would allow many processors to share

a high-bandwidth, low-latency bus, but also to have scalable snoop tag bandwidth.

Viewed another way, in the ideal system, processors would only snoop the bus

transactions for operations on data that they were likely to be sharing.

We define subspaces as regions of data that are consistently shared by a
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stable subset of processors. These subspaces can be dynamically evolving, so long

as they are stable for sufficiently long to be useful. For example, the faces on a cubic

data decomposition in a CFD (Computational Fluid Dynamics) code are shared by

stable pairs of processors for the duration of the application, assuming that it is a

non-adaptive code.

Subspace snooping is a new type of snooping protocol that attempts to ex-

ploit stable subspaces to improve snooping scalability and energy efficiency. In a

subspace snooping implementation, the system would provide some number of data

channels (address buses being one example) that could all be snooped. However, an

individual processor would likely only have enough snoop tag bandwidth to snoop a

subset of the channels. Ideally, stable sets of processors sharing a subspace would al-

locate that subspace to a single channel that all of the participating processors would

share. Processors not sharing that subspace would be snooping other channels, not

incurring the energy or delay costs of snooping data that they were guaranteed not

to share.

Subspace snooping protocols are likely to be best in systems where the ag-

gregate available bus bandwidth exceeds the snooping tag bandwidth, and in which

large numbers of processors can be partitioned into regular and fairly stable sharing

sets. Optical buses may be an excellent match for the former constraint. Many

processors may share them, their latency scales significantly better with added pro-

cessors than do electrical buses, many channels may be implemented using wave-

or time-division multiplexing, and, most important, the available bandwidth on the

optical link greatly exceeds what a set of snoop tags would be able to follow.
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6.1 Scaling Snooping Cache Coherence

Traditionally, the bandwidth of address and data buses has limited the scalability

of snooping cache coherence systems. Bus bandwidth has been increasing with

faster system clocks, wider buses, split transactions, separate address/data buses

and switched networks. However, the cost of wide electrical buses still limits the

expansion of snooping coherence systems. Recently, there has been a significant

improvement of the cost-performance of optical interconnects for multiprocessor

systems. Optical interconnects can provide large bandwidth with relatively low

cost and energy consumption, thus improving the scalability of snooping coherence

systems. As optical interconnects can increase bus bandwidth significantly, snoop

tag bandwidth will still limit the bandwidth of snooping coherence protocols, since

all snoop tags should respond to each bus transaction.

In this section, we first describe optical interconnection technologies for mul-

tiprocessors. As bus bandwidth increases, the limited bandwidth and energy con-

sumption of snoop tags will become a bottleneck. In the second part of this section,

we discuss how snooping protocols will be limited by snoop tag bandwidth in terms

of both energy and performance scalability.

6.1.1 Optical Interconnection Technologies for Snooping Cache Co-

herence

Recently, optical interconnection technologies for multiprocessors have improved sig-

nificantly. Arrays of Vertical Cavity Surface Emitting Lasers (VCSELs) and arrays

of photodectors (PDs) provide inexpensive and fast electro-optic and opto-electric

conversion [73, 112]. In current technologies, a VCSEL can transmit 3-5 Gb/s and an
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array of the VCSELs can achieve 200-300 Gb/s transmission rates [65]. In addition

to traditional optical fibers, polymer waveguides enable dense board-level optical in-

terconnections [112]. These optical device advances have made optical interconnects

a high-bandwidth alternative for traditional electrical buses in multiprocessors.

The optical interconnects have two advantages over traditional electrical

wires for snooping multiprocessor systems. First, the bandwidth/cost and band-

width/power of optical interconnects are superior to those of electrical wires. In

optical links, furthermore, multiple wavelengths can co-exist in a single optical

fiber [78, 12]. Such wave-length division multiplexing (WDM) can multiply the

interconnection bandwidth without adding more physical links. The number of

wavelengths are typically limited by the cost and latency of electro-optic/opto-

electric conversion devices. Optical links for wide area networks, in which the

bandwidth per distance is more important than the conversion latency of optical

and electrical signals, use a dense WDM with tens or even hundreds of wavelengths.

However, in current technologies, the optical interconnects for multiprocessors are

constrained by the conversion latency and can support coarse-grained WDMs with

4-12 wavelengths, but the number of wavelengths are likely to increase as the optical

technologies mature.

Second, optical interconnection can broadcast signals efficiently with passive

components. In optical interconnects, high fan-outs at high frequencies are feasible.

A passive star coupler can provide all-to-all connectivity over hundreds of nodes.

This broadcast capability makes the optical links desirable for the address networks

of snooping cache coherence. In current technologies, hundreds of fan-outs are pos-

sible without a significant loss of signal strength. The optical broadcast can be
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more power-efficient than hierarchical packet switched buses that are widely used

for snooping address buses. Furthermore, the topology of optical interconnections

can be simple and easily extended for more processors. Current electrical intercon-

nections in multiprocessors use switched networks, the topology of which is fixed

and not modularized. Optical interconnects can connect multiple processors with

passive star couplers, which simply divide light signals into multiple links [35].

Recent studies have shown that off-the-shelf parallel optical fibers can be

used for multiprocessor interconnections. The Lambda-connect project at Lawrence

Livermore National Laboratory and Multi-wavelength Assemblies for Ubiquitous In-

terconnects (MAUI) demonstrated that multi-wavelength parallel optical intercon-

nect (MPOI) can greatly improve the bandwidth of multiprocessor systems [85, 60].

In both projects, parallel multi-mode fiber ribbon cables with 10-12 wires have been

used for short distance optical interconnects with 4 channel WDM. In MAUI, an

array of 48 VCSELs and 48 photodetectors were used to construct 12 wires and 4

wavelengths/wire. For each fiber, signals from 4 VCSELs with different wavelengths

are multiplexed. Four photodectors in the receiving port pick up four different wave-

lengths.

The large bandwidth and efficient broadcast capability of optical links have

led to several research investigations for optical snooping buses [83, 10, 24]. In

SPEED, optical buses have multiple WDM channels and the channels are divided

into a shared channel and multiple private channels. Bus requests for writes (owner-

ship request) are sent over a shared channel, and read requests are sent to memory

through private channels [37]. SYMNET used passive Y-splitters/couplers to con-

nect processing nodes in a tree [65]. SYMNET modified a coherence protocol to
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eliminate combined snoop results from all processors. Future optical interconnects

will provide effective broadcast networks with enormous bandwidth. In the next

section, I will show how snoop tags can hinder the scalability of snooping cache

coherence.

6.1.2 Power Limitation of Snoop Tag Lookups

As the number of processors in multiprocessors increases to solve larger problems,

the size of data set also scales with the number of processors. Therefore, to support

the increased coherence traffic, address bus bandwidth should increase linearly with

the number of processors. However in snooping cache coherence, all cache tags must

respond to bus requests, so the total number of snoop tag accesses will increase

quadratically with the number of processors. We assume the data set size scales

linearly with the number of processors (Np), so L2 misses per processor, MissesL2

is a constant, independent of Np. With Np and MissesL2, the number of bus

transactions is Np ×MissesL2. Since every tag should be snooped for each L2 miss,

the number of total tag lookups is computed:

TotalTagLookups = Np × Np × MissesL2

The quadratic increase of the number of tag snoops will consume a significant

power to access tag arrays and drive signals through I/O pins. A recent study showed

that a significant fraction of L2 cache energy is consumed for snoop tag lookups [75].

We used a similar analytic method to show how the energy consumption of snoop

tags will increase as the number of processors in SMPs increases. In the analysis,

each processor incurs the same number of L2 misses and the number of L2 misses per

processor is constant across different numbers of processors, assuming that the data
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Figure 6.1: Energy consumed by snoop tag accesses (% of total dynamic cache
energy)

set scales to the number of processors. EnergyData and EnergyTag are the energy

used for each access to the data array and tag array in the local cache. RemoteHits

is the rate for missed blocks to be found in one of the remote caches. The model for

the ratio of snoop energy to the total energy (RatioSnoop) is as follows:

EnergyDataAll = EnergyData × (1 + MissesL2 × RemoteHits)

EnergySnoop = EnergyTag × (Np − 1) × MissesL2

EnergyTagAll = EnergySnoop + EnergyTag × (1 + MissesL2)

RatioSnoop = EnergySnoop/(EnergyData + EnergyTagAll)

Figure 6.1 shows the fraction of L2 energy consumed for tag snooping, as

the number of processors increase. At 128 processors, with 10% of L2 miss rate for

each processor, tag lookups consume more than 80% of the total L2 dynamic energy.

With the miss rates of 20 and 30%, snoop tag lookups consume more than 95% of
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Bus Systems SGI Challenge Sun Gigaplane-XB Sun Fireplane
Bus Bandwidth 47.6M/sec 167M/sec 150M/sec
Maximum Processors 36 64 24
Processor Clocks 150MHz 300MHz 750MHz

Transactions/1K cycle/processor 8.8 transactions 8.6 transactions 8.3 transactions

Table 6.1: Bandwidth requirements for past SMP systems

the L2 dynamic energy at 128 processors.

6.1.3 Performance Limitation of Snoop Tag Bandwidth

In conventional snooping protocols, snoop tag bandwidth is tightly coupled with bus

bandwidth. Since the bus bandwidth has been smaller than the potential bandwidth

of snoop tags, the bus bandwidth has been the focus of research to scale snooping

coherence [11, 70, 66]. However, optical links with WDM can greatly improve the

address network bandwidth, but the snoop tag bandwidth is constrained by proces-

sor clock speed and pin bandwidth. Although multi-ported snoop tags can increase

the bandwidth, multi-porting is not a scalable solution due to large area and energy

overheads. Furthermore, processor clock speed improvement has been slowed down

recently due to power consumption even in high performance systems. For example,

massively parallel systems, such as BlueGene/L, use a slow processor clock speed

but scale out the system with many processors [29].

Table 6.1 shows a simple extrapolation of snoop bandwidth for three SMP

systems. Estimated from the snoop bandwidth and processor clock speed data, the

last row shows how much bandwidth the system designers assigned to each processor.

We used processor clock speeds at the years when the buses were first introduced.

For all three systems, approximately 9 bus transactions/1K cycles should be sus-
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tained for each processor. If we extrapolate this requirement to larger systems,

about 110 processors will need a coherence bandwidth of 1000 transactions/1K cy-

cle, which is the maximum snooping speed a perfectly pipelined single-ported tag

can provide. Even when optical buses can support scaled bandwidth for a large

number of processors, snoop tag bandwidth, essentially limited by processor speed,

limits the size of the system to 110 processors.

As discussed in this section, optical technologies can provide broadcast net-

works with enormous bandwidth. However, the energy consumption and limited

bandwidth of snoop tag accesses will limit the scalability of SMPs.

6.1.4 Related Work

There have been several studies for reducing snoop-induced energy consumption.

In Jetty, coarse-grained filters between snoop tags and a bus are used to discard

snoops on the blocks which are not in caches [75]. The coarse-grained filters are

much smaller than the cache tags, consuming less energy. RegionScout exploits the

observation that there are large continuous private regions, which are not shared

by other processors [74]. The RegionScout filters detect private regions and use the

detected regions to reduce unnecessary snoop tag lookups.

Previous work on coherence bandwidth problem in multiprocessors includes

using both snooping coherence and directory protocols adaptively in one system [70],

multicasting snoop requests based on the prediction of potential sharers [11, 66],

and using a token-based coherence mechanism on fast but un-ordered switched net-

works [68].
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Figure 6.2: Conventional snooping and subspace snooping coherence

6.2 Subspace Snooping Coherence Architecture

Subspaces are regions of data that are consistently shared by a stable subset of

processors. A subspace is represented by a partition of address space (data) and

a subset of processors (sharers), which share the address partition. To maintain

coherence for a cache block, bus requests should be delivered to the processors in

the subspace the block is mapped to. Subspaces are not static, but may dynamically

evolve during program execution.

Figure 6.2 describes conventional snooping and subspace snooping coherence.

In conventional snooping protocols, all processors snoop every bus request, incurring

a large number of snoop tag lookups. Even if the address bus consists of multiple
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address-interleaved buses, processors must snoop all the buses.

In subspace snooping, we divide the available bus bandwidth into multiple

channels. Coherence messages for a subspace are delivered through the channel des-

ignated to the subspace. The processors in a subspace snoop the channel dedicated

to the subspace. In Figure 6.2 (b), there are three channels and each processor

snoops only two channels. For example, P1 snoops only channel 1 and 3. The chan-

nel 1 is snooped by P1, P3, and P4, so a bus transaction on the channel 1 will cause

three tag lookups.

The last channel is reserved for a fully associative channel, which is snooped

by all processors. The fully associative channel covers the subspace shared by all

processors or the subspaces which can not be mapped to any other channels.

There are three key issues to design subspace snooping coherence:

• Mapping data and processors to subspaces: The physical address space is parti-

tioned and mapped to subspaces. Subspace snooping should have a mechanism

to maintain the address mapping and to route bus requests to correct channels.

• Guaranteeing correctness: Subspace snooping should guarantee the correct-

ness of coherence by preventing processors from caching addresses which the

processors do not snoop. Since subspaces are not static, processors may at-

tempt to access addresses mapped on un-snooped channels.

• Forming optimized subspaces: Subspaces should be formed to minimize snoop

tag lookups. Subspace snooping should identify frequently communicating

processors and group them to share a channel.

6.2.1 presents a mapping mechanism to ensure that requests are sent through
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correct channels. In 6.2.2, I will discuss how to maintain correctness when subspaces

evolve during execution. 6.2.3, compares subspace snooping to directory protocols.

6.2.1 Logical Channels and Channel directory

In optical interconnects, channels can be created in various ways. First, when an

optical bus consists of multiple optical fibers, each channel can use a separate set of

fibers. Second, for the same set of fibers, wavelength division multiplexing (WDM)

can make separate channels, assigning a wavelength to each channel. Third, for

the same set of fibers and a wavelength, time division multiplexing (TDM) can

use different time slots to distinguish different channels. Any combination of these

techniques can be used to create logical channels. With these techniques, snoop

interfaces can discard requests on un-snooped channels without consuming any pin

bandwidth.

Subspace snooping partitions the physical address space and maps the sub-

spaces to logical channels. A channel directory contains the mapping between ad-

dresses and channel ids, similar to the directories in directory protocols. For each

block of memory, the channel directory should contain the corresponding channel

id. The mapping can be stored in a separate memory or ECC bits of external

DRAM memory [30]. The bit width of a channel directory entry is the logarithm

of the number of channels, which is smaller than that of directory protocols. Sub-

space partitions can change as subspace snooping adapts to actual memory sharing

patterns. Whenever an address is moved to another channel, the channel direc-

tory should be updated synchronously. However, unlike directory protocols that

must constantly keep track of accurate sharers, the subspace changes are much less
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frequent than the directory updates.

For a bus request, the channel directory should route the request to a cor-

rect channel. In our baseline protocol, a node must first send a bus request to the

channel directory, which will put the request on the correct channel. Due to the

two-step bus transactions to route bus requests on correct channels, the baseline

subspace snooping requires three-hop cache-to-cache transfers, increasing communi-

cation latencies. The initial bus requests from processors to the channel directory

do not need to use the broadcasting address bus. Instead, subspace snooping uses

un-ordered data networks to send the initial requests to the channel directory, to

avoid using the broadcast bandwidth of address bus.

Subspace snooping reduces the latency increase from indirect bus accesses

by embedding channel ids in cache tags. Cache tags store the current channel

ids of cached blocks. For upgrade transactions, which change a block state from

a shared to a modified state, issuing processors can put bus requests on correct

channels directly by using the channel ids. However, for read requests for sharing or

ownership, issuing processors can not know correct channels, since the missed blocks

are not in the local cache. For such misses, issuing processors conservatively send

requests to the channel directory, which will queue the requests on correct channels.

An extended protocol I developed can predict a channel and send a request

directly on the predicted channel. The channel directory checks the speculative

bus request. If a bus request is on a wrong channel, the channel directory will re-

route the request to the correct channel. If prediction is incorrect, this speculative

technique can waste snoop tag bandwidth since a request can cause snooping on two

channels. We use a simple prediction mechanism using the information in invalid
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cache blocks. As shown in Chapter 5, some invalidated blocks remain invalid in

local caches. The performance protocol uses the channel id in the invalid blocks. If

addresses match in the cache tags but the block state is invalid, the performance

protocol uses the embedded channel id to predict a channel.

6.2.2 Guaranteeing the Correctness of Subspace Snooping

To guarantee the correctness of subspace snooping, one condition must be satisfied:

a node must snoop a channel, if it caches any address mapped to the channel. If a

processor attempts to read a block into its cache and does not snoop the channel

mapped to the block, the correctness condition can be violated. To avoid violations,

subspace snooping can take one of two actions: 1) move the conflicting address to

another channel, which the requesting processor already snoops, or 2) make the

processor snoop the new channel. In both cases, there is some cost to resolve such

channel conflicts.

To move the mapping of an address to a new channel, the address should be

invalidated from all the caches that snoop the old channel, if the caches do not snoop

the new channel too. The block can not reside in the caches, if the caches no longer

snoop the channel to which the block is newly mapped. If a request is an upgrade or

read for ownership, such invalidation does not cause any performance degradation,

since the request will invalidate the block anyway. However, if a request is a read

for sharing, the invalidation may cause subsequent misses from other caches.

If a block is shared by the processors that do not have a common channel,

the block will keep causing mapping conflicts and block invalidations. Frequently

conflicting addresses are moved to the fully-associative channel (FA channel). The
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FA channel is a safety channel to map the conflicting blocks, which otherwise can

not be mapped to other channels. However, the fully-associative channel consumes

the same snoop tag bandwidth as conventional snooping protocols.

Subspace snooping restricts the number of channels snooped by each proces-

sor. If a processor needs to snoop a new channel, it should stop snooping one of the

current channels. Disconnecting a processor from a channel is a costly operation.

The processor should flush any block in its local cache, if the block is mapped to

the channel to be disconnected. The channel ids in the cache tags are checked and

blocks are flushed if the blocks are mapped to the disconnected channel.

6.2.3 Comparing Subspace Snooping to Directory Protocols

Directory protocols can provide higher scalability than traditional snooping pro-

tocols. However, due to the complexity of protocols and the overheads for the

directory, the directory protocols have not replaced snooping protocols. Subspace

snooping mitigates the snoop tag limitation of snooping protocols, with the sim-

plicity of snooping protocols. In this section, we compare subspace snooping to

directory protocols:

• Subspace snooping uses broadcast buses and caches are snooped atomically

through the buses. Subspace snooping may avoid the protocol complexity of

directory protocols.

• Each cache maintains coherence states in tags. Unlike the directory in direc-

tory protocols, the channel directory does not have sharing states, and thus

the size of channel directory is much smaller than that of the directory in

directory protocols.
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• Increasing the granularity of coherence in directory protocols can degrade the

performance significantly due to false sharing. Subspace snooping decouples

sharing states from channel mapping states. Subspace snooping may increase

the channel mapping granularity without incurring false sharing.

• Since subspace mapping changes less frequently than sharing states in direc-

tory protocols, predicting the channel id may be more accurate than predicting

sharers for directory protocols. Such channel prediction allows two-hop cache-

to-cache transfers.

6.3 Subspace Snooping Protocols

In this section, we present two subspace snooping protocols. Our baseline protocol

always sends requests, except upgrade requests, to the channel directory first. After

receiving requests, the channel directory forwards them to correct channels. Our

performance protocol predicts channels for missed blocks and broadcasts requests

through the predicted channels. The channel directory will correct the speculation

of channel ids. In 6.3.3, we present our policy to form subspaces to reduce conflicts

as well as snoop tag lookups.

6.3.1 Conflict Resolution

A mapping conflict occurs if a processor attempts to read a cache block, and the

block is mapped to a channel that the processor is not snooping. In subspace

snooping, the maximum number of channels a processor can snoop (snoop count) is

limited, and in stable states, processors do not have free snoop counts. Therefore, if

a processor needs to snoop a new channel, the processor should stop snooping one
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of the current channels. However, as discussed in 6.2.2, detaching a processor from

a channel is a very expensive operation requiring cache flushing.

For a mapping conflict, we change the mapping of the conflicting block to one

of the channels the requesting processor is snooping. The channel directory informs

the change (new channel id) to the processors on the old channel. The processors

on the old channel should invalidate the block, if they are not snooping the new

channel.

If a block causes too many conflicts, we map the block to the fully associative

channel. In the channel directory, we add a 2-bit counter for each block, recording

the history of conflicts. Note that moving the mapping of an address to the fully-

associative channel, does not cause any block invalidation, since all processors snoop

the FA channel. However, if too many blocks are mapped to the FA channel, conflicts

may decrease, but snoop tag lookups will increase.

The mapping conflicts never occur for upgrade requests. For a upgrade

transaction, the requesting processor already has the shared copy, so the processor

must be snooping the current channel of the block the processor attempts to upgrade.

6.3.2 Baseline Subspace Snooping Protocol

To eliminate unnecessary accesses to the channel directory, the current channel ids

of blocks are appended to cache tags. For upgrade transactions (changing a block

state from shared to modified), requesting processors can put upgrade requests on

correct channels by using the embedded channel ids.

For read misses, requesting processors do not know the correct channels for

the missed blocks. Therefore, bus requests for reads are always forwarded first to
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the channel directory. For such forwarding, our implementation does not use the

address broadcasting bus. Instead, the bus request is sent through a point-to-point

data network to the channel directory. The forwarding does not need to use the

address bus, since request serialization occurs when the channel directory puts an

actual bus transaction on the bus.

As discussed in 6.3.1, if a requesting processor is not snooping on the channel

the requested block is mapped to, the channel directory starts the conflict resolution

procedure. The channel directory adds the new channel id to messages when it

forwards the request to the old channel.

6.3.3 Performance Subspace Snooping Protocol

The performance protocol improves the baseline protocol by broadcasting requests

on predicted channels. The channel directory, which snoops all channels, verifies

the predicted channels. If the predicted channel is incorrect, the channel directory

initiates the second broadcast on correct channels. If the prediction is correct,

the performance protocol reduces the latencies from the baseline protocol. If the

prediction is incorrect, unlike the baseline protocol, the performance protocol may

cause extra snoop tag lookups at the initially failed broadcasts of requests.

To predict the channel ids for read misses, we use a simple mechanism using

invalid blocks. As we have shown in Chapter 5, many invalidated blocks remain

invalid till processors access them again. If a missed block is in the invalid state,

we use the channel id in the local cache, and place the request on the predicted

channel. However, if the requesting processor does not snoop the predicted channel

currently, the request is sent to the channel directory conservatively.
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6.3.4 Policy for Forming Subspaces

As discussed in section 6.2.2, detaching a processor from a channel is a costly opera-

tion. The goals of dynamic channel mapping are: 1) to minimize snoop tag lookups

by mapping the smallest set of processors on each channel and 2) to minimize con-

flicts (invalidations) and cache flushings. Our mapping policy uses a simple greedy

algorithm to find a good processor mapping.

The mapping policy uses an NxN frequency matrix to keep track of com-

munication frequencies between a pair of processors. The communication statistics

are collected from snoop responses for each bus request. Using the communication

frequencies, processors are grouped and mapped to channels.

Based on the past communication patterns, processor mappings can be ad-

justed periodically for reorganization. To minimize unnecessary flushings, the map-

ping policy chooses the processors which are not communicating with other pro-

cessors in the same channel, and remove the processors from the channel. The

processors are moved to other channels, if the processors communicate more with

processors on the new channels.

6.4 Experimental Results

6.4.1 Methodology

We ran our experiments with the Augmint simulator [82]. The Augmint simulator

instruments x86 binaries and generates memory references. A back-end simulator

simulates the memory systems with multiple logical channels. The Augmint sim-

ulator does not simulate instruction caches, but the effect of instruction caches is
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Application Dataset/parameters Memory usage L2 miss rates No. of bus accesses

AppBT 36x36x36 grid 32MB 0.11 2.5M
Barnes 128K particles 20MB 0.01 2.5M
FFT 1M data points 49MB 0.44 1.8M
FMM 128K particles 73MB 0.13 6.2M
Ocean 258x258 grid 15MB 0.13 2.7M
Radix 2M numbers 16MB 0.23 1.3M
Water 4096 molecules 25MB 0.04 3.7M

Table 6.2: Application parameters for workloads

small in these scientific benchmarks, since all instructions fit in level-one instruction

caches. The simulator has a simple in-order processor model which always executes

one instruction every cycle, if all loads and stores are in the L1 data caches. Each

L1 and L2 cache can have a maximum of one pending request at a time. The num-

ber of processors is fixed to 64. The L1 and L2 caches are 2-way 16KB and 8-way

512KB respectively. The block sizes are 64B for the L1 and L2 caches. We simulate

seven scientific benchmarks, six from SPLASH-2 benchmark suite [107] and AppBT.

AppBT is a shared memory version of BT in the NAS parallel benchmark suite [14].

Table 6.2 shows the data sets and application statistics.

We simulate subspace snooping protocols with 9, 17 and 33 logical channels.

The last logical channel is always the fully-associative channel (FA channel). Each

processor can snoop at most three channels for 9, four channels for 17, and five

channels for 33 channels. For the results in this section, subspaces are formed with

pair-wise communication frequencies between two processors. They are created after

the initialization period. Since the execution times for the benchmarks are relatively

short compared to real systems, we do not reorganize the channel mapping.
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Applications 9 channels 17 channels 33 channels

AppBT 54% 63% 69%
Barnes 27% 26% 26%
FFT 74% 84% 90%
FMM 39% 47% 50%
Ocean 59% 71% 78%
Radix 61% 66% 66%
Water 23% 35% 37%

Table 6.3: Snoop tag lookup reduction (%) : 9, 17, and 33 channels

Application AppBT Barnes FFT FMM Ocean Radix Water

Snoop Reduction (%) 63% 26 % 84% 47% 71% 66% 35%
Bus access increase (%) 13.8% 4.9% 3.7% 3.5% 4.7% 3.2% 4.9%
FA channel usage (%) 22.9% 64.4% 0.0% 40% 14.9% 24.8% 70.6%

Table 6.4: Performance characteristics of subspace snooping: 17 channels

6.4.2 Reducing Snoop Tag Lookups

Table 6.3 shows the reduction of snoop tag lookups with 9, 17, and 33 logical chan-

nels. All seven benchmarks show the snoop reduction of 23-90% across different

numbers of channels. For Barnes and Water, the amounts of tag lookup reduc-

tion are small. For the two applications, our channel mapping algorithm could not

form stable subspaces effectively for the majority of data, due to relatively irregular

sharing patterns.

As the number of logical channels increases, the reductions increase signifi-

cantly for the five applications except Barnes and Radix. As more logical channels

are available, the mapping algorithm can find subspaces with smaller numbers of

processors. For the five applications, the reductions increase by 10-20% from 9 chan-

nels to 33 channels. As the bandwidth and the number of wavelengths in optical
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interconnects increase, subspace snooping will allow more fine-grained partitioning

of processors, reducing more snoop accesses.

The dynamic channel mapping in subspace snooping can incur cache misses

by invalidating cache blocks to maintain correctness for mapping conflicts. Such

extra misses caused by invalidations will increase, if subspace snooping can not

form a good set of subspaces. Table 6.4 shows the increase of total bus accesses due

to mapping conflicts and the percentage of bus accesses through the fully associative

channel.

Except AppBT, six other benchmarks show the low increases of bus accesses,

less than 5%. For those applications, the effect of extra bus accesses are small, but

AppBT has a relatively large 14% increase of bus accesses. When the mapping

algorithm can not find stable subspaces, there are many mapping conflicts and

the majority of communication blocks are mapped to the fully-associative channel.

Barnes and Water, which have the lowest reduction rates, show very high fully-

associative channel usages of 64-70%. As more bus accesses are mapped to the

fully-associative channel, subspace snooping may reduce tag lookups less effectively.

6.4.3 Accuracy of Performance Subspace Snooping Protocols

The performance subspace snooping protocol enhances the baseline protocol by send-

ing bus requests directly through predicted channels. However, incorrect prediction

can waste snoop tag bandwidth, since a request is broadcast twice on two channels.

Figure 6.3 shows the prediction accuracy for bus accesses with 17 channels. We

break down bus accesses to four classes: upgrade, no prediction, correct prediction,

and incorrect prediction. For upgrades, requests are always placed on correct chan-
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Figure 6.3: Channel prediction accuracy (17 channels)

nels directly without checking the channel directory. Therefore, upgrades do not use

prediction. For read misses, the performance subspace snooping uses channel pre-

diction only when there are invalid cache blocks for missed addresses and processors

are snooping predicted channels. Otherwise, requesting processors send requests to

the channel directory conservatively (no prediction).

For our benchmark applications, the ratios of upgrades are 20-30% except

FFT and Radix. For 50-80% of bus accesses, the performance subspace snooping

does not predict channels. The ratios of incorrect prediction are negligible except

Radix with less than 5% of the total bus accesses. For five benchmarks (AppBT,

Barnes, Ocean, Radix and Water), 10-25% of bus accesses can be predicted correctly

by just using embedded channel ids in invalid cache blocks. Ocean shows the best

ratio of 25%.
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Figure 6.4: Performance scalability of subspace snooping

6.4.4 Performance Scalability

In this section, we present how performance can scale with more processors. Our

simulation infrastructure does not allow scaling systems to hundreds of processors,

due to simulation time, memory constraints and application scalability. To investi-

gate the scalability of coherence protocols, we use an approximate method. Instead

of scaling the number of processors, we decreased the available snooping tag band-

width with a fixed number of processors (64), assuming the number of bus accesses

will linearly scale with the number of processors and the consumption of tag band-

width will increase linearly.

Figure 6.4 presents the results from selected two applications. The x-axis

represents system scaling factors of 1, 2, 4, and 8 from a 64-processor system. We

decrease the tag bandwidth accordingly by factors of 1, 2, 4, and 8 to approxi-

mate the system scaling. Among the seven applications, three applications (Ocean,
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Applications 64B 128B 256B 512B 1KB

AppBT 63% 62% 60% 59% 55%
Barnes 26% 14% 4% 3% 3%
FFT 84% 86% 84% 84% 83%
FMM 47% 32% 24% 21% 18%
Ocean 71% 72% 67% 52% 32%
Radix 66% 66% 66% 59% 35%
Water 25% 25% 24% 24% 23%

Table 6.5: Snoop tag lookup reduction with varying block sizes (%) : 64B, 128B,
256B, 512B, and 1K granularity

Radix, and FFT) showed significant increases of the execution times at 4x and

8x scalings. The other applications do not show any performance degradation up

to an 8x scaling factor, since the coherence bandwidth is sufficiently large for the

applications. Figure 6.4 shows the results of Ocean and Radix from the three ap-

plications. For Ocean, when the systems are at 1x and 2x scaling factors, subspace

snooping has lower performance than a conventional snooping protocol since the

subspace snooping has the overheads of increased misses from mapping conflicts

and increased latencies from indirect bus accesses through the channel directory.

However, as less tag bandwidth is available, the burst traffic in Ocean degrades the

performance of the conventional snooping protocol significantly. The results show

the subspace snooping scales much better than the conventional snooping protocol

beyond 4x and 8x scaling factors.

6.4.5 Address Mapping Granularity

One important difference of subspace snooping from directory protocols is to decou-

ple coherence granularity from mapping granularity. In directory protocols, increas-

ing block sizes will increase false sharing. Although there have been several studies
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to mitigate the false sharing effect, false sharing has been an important performance

issue in directory protocols [44]. Subspace snooping can still support small block

sizes for coherence purpose, but the mapping granularity can be increased indepen-

dently from the coherence block sizes.

Increasing mapping block sizes can be beneficial for two purposes: 1) it can

reduce the channel directory size. A small channel directory will be faster, and thus

reduce coherence latencies. 2) If channel ids are predicted for performance with

external tables, a prediction table can cover more addresses with larger block sizes.

Table 6.5 shows how mapping granularity affects snoop reduction. As the

granularity increases, mapping conflicts occur more frequently, and thus more ad-

dresses are mapped to the fully-associative channel. For all benchmarks except

Barnes, increasing the granularity to 256B does not decrease the reduction of snoop

tag lookups significantly. For AppBT and FFT, even 1KB mapping size has the tag

lookup reductions comparable to 64B mapping sizes.

6.5 Summary

In this chapter, we have explored a new coherence protocol to expand the scalability

of snooping coherence protocols. As bus bandwidth has been increasing by orders

of magnitude, snooping protocols will soon face the limitation of snoop tag lookups.

In traditional snooping protocols, every snoop tag must be looked up for each bus

transaction. The energy consumption and bandwidth limitation of the snoop tag

lookups will limit the scalability of snooping protocols. As optical interconnects can

provide enormous bandwidth for broadcasting addresses, snooping protocols will not

scale to hundreds of processors due to the limitation of snoop tag bandwidth.
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Subspace snooping increases the snoop tag bandwidth by forming subspaces.

Subspaces are regions of data stably shared by a subset of processors. Subspace

snooping allows a bus request to be snooped only by the processors sharing the

subspace. A hardware mechanism should recognize common communication pat-

terns and form subspaces. We used pair-wise communication statistics between two

processors to find subspaces.

We evaluated subspace snooping with the Augmint simulator. The results

showed a 23-90% reduction of snoop tag lookups by using 9, 17, and 33 channels.

Such snoop reduction allowed the systems to scale by factors of 4 and 8 for the

three applications which suffered from the limited snoop tag bandwidth with a

conventional snooping protocol.

While we believe that subspace snooping has potential for large-scale sys-

tems running regular, scientific applications, we do not believe that it can be made

practical on electrical buses. With optics, however, the tradeoff space is quite dif-

ferent, and new types of coherence protocols may well arise if optical interconnects,

particularly snooping ones, become widespread. We believe that many applications

have stable sharing patterns that can be exploited transparently and much more

efficiently, but it may require significantly larger systems (a higher number of pro-

cessors), with more logical channels and bigger datasets than we can safely simulate.

Nevertheless, we have shown that significant reductions in energy and tag contention

are possible using subspace snooping.
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Chapter 7

Conclusions

In this dissertation, we explored techniques to reduce the costs of communication

in multiprocessors. The techniques solved three different aspects of communication

problems in multiprocessors: cache misses in local caches, long coherence laten-

cies, and communication bandwidth limitations. We evaluated the solutions in the

context of chip-multiprocessor technologies, speculative out-of-order processors, and

optical interconnection technologies.

7.1 Summary

We compared the area and performance trade-offs for CMP implementations to

determine how many processing cores future server CMPs should have, whether

the cores should have in-order or out-of-order issue, and how big the per-processor

on-chip caches should be. We found that, contrary to some conventional wisdom,

out-of-order processing cores will maximize job throughput on future CMPs. As

technology shrinks, limited off-chip bandwidth will begin to curtail the number
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of cores that can be effective on a single die. Current projections show that the

transistor/signal pin ratio will increase by a factor of 6 between year 2005 and 2015.

That disparity will force increases in per-processor cache capacities as technology

shrinks, reducing the number of cores that would otherwise be possible. These

conclusions emphasize the importance of reducing off-chip misses in future CMPs.

To reduce off-chip memory accesses, we evaluated shared cache designs for

future CMPs. We proposed an organization for the on-chip memory system of a chip

multiprocessor, in which 16 processors share a 16MB pool of 256 L2 cache banks.

The L2 cache is organized as a non-uniform cache architecture (NUCA) array with

a switched network embedded in it for high performance. We show that this orga-

nization can support the spectrum of degrees of sharing: unshared, in which each

processor has a private portion of the cache, thus reducing hit latency, completely

shared, in which every processor shares the entire cache, thus minimizing misses,

and every point in between. We find the optimal degree of sharing for a number of

cache bank mapping policies, and also evaluate a per-application cache partitioning

strategy. We conclude that a static NUCA organization with sharing degrees of two

or four work best across a suite of commercial and scientific parallel workloads. We

also demonstrated that migratory, dynamic NUCA approaches improve performance

significantly for a subset of the workloads at the cost of increased power consump-

tion and complexity, especially as per-application cache partitioning strategies are

applied.

As a novel latency hiding method for communication misses, we proposed a

new technique called coherence decoupling, which breaks a traditional cache coher-

ence protocol into two protocols: a Speculative Cache Lookup (SCL) protocol and
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a safe, backing coherence protocol. The SCL protocol produces a speculative load

value, typically from an invalid cache line, permitting the processor to compute with

incoherent data. In parallel, the coherence protocol obtains the necessary coherence

permissions and the correct value. Eventually, the speculative use of the incoher-

ent data can be verified against the coherent data. Thus, coherence decoupling can

greatly reduce — if not eliminate — the effects of false sharing. Furthermore, coher-

ence decoupling can also reduce latencies incurred by true sharing. SCL protocols

reduce those latencies by speculatively writing updates into invalid lines, thereby

increasing the accuracy of speculation, without complicating the simple, underlying

coherence protocol that guarantees correctness.

The performance benefits of coherence decoupling are evaluated using the

MP-sauce simulator and a mix of commercial and scientific benchmarks. Our re-

sults show that 40% to 90% of all coherence misses can be speculated correctly,

and therefore their latencies partially or fully hidden. This capability results in

performance improvements ranging from 3% to over 16%, in most cases where the

latencies of coherence misses have an effect on performance.

Snooping tag bandwidth is one of the resources that limits the number of

processors that can participate in a cache-coherent snooping system. We evaluated

a type of coherence protocol called subspace snooping, which decouples the snoop

tag bandwidth from the address bus bandwidth. In subspace snooping, each pro-

cessor snoops a set of logical channels, which are a subset of the total snoopable

address buses in the system. Thus, each processor snoops a subset of the address

space, reducing the number of tag matches required for a system of a given size.

By dynamically assigning both processors and cache lines to channels, we support
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dynamic formation of subspaces, with the goal of having only sets of processors that

share data snooping on each given channel.

Subspace snooping aligns best with systems for which the address bus band-

width greatly exceeds the snooping tag bandwidth. Snooping optical interconnects

exhibit such characteristics, providing enormous transmission bandwidth, but which

quickly become limited by snooping tag energy and bandwidth as the number of

processors increases. Optical buses can be subdivided into logical channels using ei-

ther wave-division or time-division multiplexing, making them good candidates for

a subspace snooping implementation. We evaluated a range of subspace snooping

protocols on a number of parallel scientific benchmarks, running on the Augmint

simulator. The results showed 23-90% reductions of snoop tag lookups with 9, 17,

and 33 channels. For three applications, which suffer from burst traffics with con-

ventional protocols, subspace snooping allowed system scaling by factors of 4 and

8. Subspace snooping reduces the consumption of snoop tag bandwidth, but it does

not increase the bus bandwidth. Therefore, it will increase system scalability only

when optical interconnects can provide enough bus bandwidth.

7.2 Combining Three Techniques for Future Multipro-

cessors

Future large-scale shared memory multiprocessors will likely have many CMPs as

building blocks, connected with high bandwidth inter-chip coherence protocols. The

three techniques we proposed in this dissertation can be used together to enhance

such future multiprocessors. Combining the techniques may generate synergistic
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Figure 7.1: Future multiprocessor with combined three techniques

effect to improve the performance of multiprocessors.

Figure 7.1 shows a multiprocessor system projected to 32nm technologies

with the three techniques. Each CMP consists of 16 processors with a large in-

struction window size of 1000 instructions. The 16MB on-chip cache consists of an

S-NUCA array and an on-chip directory for coherence within the chip boundary.

The S-NUCA cache can support per-line dual sharing degrees for private data and

shared data.

Dual sharing degrees allow private data to be located close to processors,

while replications of shared data are reduced. Processors can distinguish private

and shared data either statically or dynamically. The static technique uses operating

system support to identify shared pages at page-level. The operating system marks

a private or shared flag for each page, and such sharing states of pages are also

stored in translation look-aside buffers (TLBs). When a L1 miss occurs, a processor

can identify the sharing state of the missed block (shared or private) from the flag
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in the TLB entry.

The dynamic technique uses the on-chip directory to identify sharing flags.

A block is considered private until more than one on-chip processors start sharing

the block. The on-chip directory includes sharing flags. Once a block becomes a

shared block, the sharing flag stays shared till the block is completely evicted from

the on-chip cache. For a L1 cache miss, a processor can either send requests to the

two banks (for private and shared degrees) serially for less power consumption or in

parallel for better performance.

The CMPs are connected with high bandwidth optical buses. The optical

interface of a CMP is connected to the directory. The on-chip directory responds

to snoop requests as snoop tags for chip-to-chip coherence. The subspace snooping

coherence system provides the chip-to-chip cache coherence with optical buses.

With a large instruction window size of 1000 instructions, speculative proces-

sors in CMPs can sustain long coherence latencies with coherence decoupling. Co-

herence decoupling supports both level-one cache misses and level-two cache misses.

If a block is in invalid state in the L1 cache, the SCL protocol of coherence decou-

pling uses the invalid block in the L1 cache. The L1 coherence decoupling can hide

communication latencies among processors on the same chip.

Combining the techniques can have both positive and negative effect on sys-

tem performance. The effects of combining each pair of three techniques are as

follows:

• CMP with shared NUCA and coherence decoupling: Coherence decoupling can

hide on-chip coherence latencies by using invalid blocks in L1 caches. However,

L1 cache capacity is much smaller than L2 cache capacity. Due to the small
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capacity, in L1 caches, invalid blocks are more likely replaced before they are

accessed again by processors, than in L2 caches, reducing the opportunities

for L1-level coherence decoupling.

• Coherence decoupling and subspace snooping: The increased coherence band-

width from subspace snooping can allow coherence decoupling to use update-

based protocols aggressively. Sending speculative updates may become costly,

if the coherence bandwidth is small and already saturated for the correctness

protocol. The high bandwidth of optical buses and the increased tag band-

width from subspace snooping can provide a large coherence bandwidth to

support aggressive update-based SCL protocols. Subspace snooping allows a

speculative update of a block to be sent only to the processors mapped to the

subspace of the block, reducing snoop tag lookups for the processors receiving

speculative updates to check snoop tags.

Coherence decoupling can reduce the effect of long coherence latencies in large-

scale multiprocessors, in which subspace snooping is effective. Although coher-

ence latencies are long for such large-scale multiprocessors, a kilo-instruction

window in future microprocessors will allows deep speculative execution to

hide the long latencies.

• CMP with shared NUCA and subspace snooping: CMPs can generate more

bus accesses than a single processor chip, and even if shared caches can reduce

off-chip misses, CMPs will still issue more off-chip accesses as the number of

processors on a chip increases. Subspace snooping can help scale multiproces-

sors with CMPs by increasing snoop tag bandwidth.
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However, wrong scheduling of processes on CMPs can disrupt effective sub-

space formation. If processors in a CMP are mapped to different subspaces,

the optical interface of the CMP must snoop many channels for the subspaces,

reducing the effectiveness of subspace snooping.
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