
Copyright

by

Renee Marie St Amant

2014

The Dissertation Committee for Renee Marie St Amant
certifies that this is the approved version of the following dissertation:

Enabling High-Performance, Mixed-Signal Approximate

Computing

Committee:

Calvin Lin, Supervisor

Doug Burger, Co-Supervisor

Daniel A. Jiménez

Lizy K. John

Donald Fussell

Enabling High-Performance, Mixed-Signal Approximate

Computing

by

Renee Marie St Amant, B.S.E.E.; M.S.C.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2014

To my godchild, Cameron.

Acknowledgments

I would like to thank and acknowledge technical collaborators Doug

Burger, Daniel A. Jiménez, Hadi Esmaeilzadeh, Amir Yazdanbakhsh, and Ar-

jang Hassibi who have contributed to the body of work presented in this doc-

ument. I wish to thank Doug Burger for his sustained support and invaluable

guidance. I feel extremely privileged to have had access to his deep tech-

nical knowledge, experience, and vision of computing. I also wish to thank

Calvin Lin for his support and always-enthusiastic willingness to be of service.

Thank you to my committee members, conference reviewers, fellow students,

and friends for your valuable feedback and suggestions for improving this work.

Specifically, thank you to Lizy K. John who suggested that I revisit the history

of analog computing. That investigation served as the foundation and driving

inspiration for the composition of this document.

To my parents – thank you for consistently supporting me in receiving

the best education possible. And to my father – thank you for the countless

hours spent with me in perfecting every sentence of my high-school writing

assignments. I’m sure that you will find your writing style present throughout

this document.

I wish to thank Travis M. Grigsby for his years of support and encour-

agement. His copious enthusiasm and belief in the abilities of others has been

v

a gift to me and to the world. I wish to thank Elizabeth Frances Wellman for

all of her time, her uncompromising support, and her commitment to being

a good friend, which has served as a valuable example to me. She is truly

skilled in her work, and I have been blessed to benefit from it so often. Also, I

wish to thank Hadi Esmaeilzadeh for his ‘get it done’ support during critical

moments of this journey. Thank you to those that I now consider family. Your

nourishing love and support have helped me to complete this process.

vi

Enabling High-Performance, Mixed-Signal Approximate

Computing

Renee Marie St Amant, Ph.D.

The University of Texas at Austin, 2014

Supervisors: Calvin Lin
Doug Burger

For decades, the semiconductor industry enjoyed exponential improve-

ments in microprocessor power and performance with the device scaling of

successive technology generations. Scaling limitations at sub-micron technolo-

gies, however, have ceased to provide these historical performance improve-

ments within a limited power budget. While device scaling provides a larger

number of transistors per chip, for the same chip area, a growing percentage of

the chip will have to be powered off at any given time due to power constraints.

As such, the architecture community has focused on energy-efficient designs

and is looking to specialized hardware to provide gains in performance.

A focus on energy efficiency, along with increasingly less reliable tran-

sistors due to device scaling, has led to research in the area of approximate

computing, where accuracy is traded for energy efficiency when precise com-

putation is not required. There is a growing body of approximation-tolerant

vii

applications that, for example, compute on noisy or incomplete data, such as

real-world sensor inputs, or make approximations to decrease the computation

load in the analysis of cumbersome data sets. These approximation-tolerant

applications span application domains, such as machine learning, image pro-

cessing, robotics, and financial analysis, among others.

Since the advent of the modern processor, computing models have

largely presumed the attribute of accuracy. A willingness to relax accuracy

requirements, however, with goal of gaining energy efficiency, warrants the

re-investigation of the potential of analog computing. Analog hardware of-

fers the opportunity for fast and low-power computation; however, it presents

challenges in the form of accuracy. Where analog compute blocks have been

applied to solve fixed-function problems, general-purpose computing has relied

on digital hardware implementations that provide generality and programma-

bility. The work presented in this thesis aims to answer the following questions:

Can analog circuits be successfully integrated into general-purpose computing

to provide performance and energy savings? And, what is required to address

the historical analog challenges of inaccuracy, programmability, and a lack of

generality to enable such an approach?

This thesis work suggests a neural approach as a means to address

the historical analog challenges in accuracy, programmability, and generality

and to enable the use of analog circuits in high-performance, general-purpose

computing. The first piece of this thesis work investigates the use of analog

circuits at the microarchitecture level in the form of an analog neural branch

viii

predictor. The task of branch prediction can tolerate imprecision, as roll-back

mechanisms correct for branch mispredictions, and application-level accuracy

remains unaffected. We show that analog circuits enable the implementation of

a highly-accurate, neural-prediction algorithm that is infeasible to implement

in the digital domain. The second piece of this thesis work presents a neural

accelerator that targets approximation-tolerant code. Analog neural acceler-

ation provides application speedup of 3.3x and energy savings of 12.1x with

a quality loss less than 10% for all except one approximation-tolerant bench-

mark. These results show that, through a neural approach, analog circuits can

be applied to provide performance and energy efficiency in high-performance,

general-purpose computing.

ix

Table of Contents

Acknowledgments v

Abstract vii

List of Tables xiii

List of Figures xiv

Chapter 1. Introduction 1

1.1 Problem . 1

1.2 Opportunity . 3

1.3 Solutions and Contributions 4

Chapter 2. Context 9

2.1 A Brief History of Analog Computing 9

2.2 Neural Networks for Computing 12

2.3 Approximate Computing . 14

Chapter 3. Challenges of an Analog Approach to Neural Com-
putation 16

3.1 Review of Neural Network Computation 16

3.2 Challenges of an Analog Approach 18

3.2.1 Design-Time Signal-Range Restrictions 18

3.2.2 Manufacture-Time Non-Idealities 22

3.2.3 Run-Time Noise . 22

3.2.4 Analog-Digital Boundaries 23

3.3 Analog Challenges in Classification and Regression 24

x

Chapter 4. Analog Neural Prediction 27

4.1 Background on Neural Predictors 28

4.1.1 The Perceptron Predictor 29

4.1.2 Improvements to the Perceptron Predictor 30

4.2 Analog-Enabled Neural Prediction Algorithm 30

4.3 Scaled Neural Analog Predictor 35

4.4 Addressing Analog Challenges 41

4.5 Evaluation . 43

4.5.1 Methodology . 43

4.5.2 Analog Power, Speed, and Accuracy 45

4.5.3 Analog vs. Digital Comparison 48

4.5.4 State-of-the-Art Predictors 50

4.6 Conclusions and Implications 52

4.6.1 Contributions . 53

Chapter 5. Analog Neural Acceleration 55

5.1 Background and Overview . 58

5.1.1 Programming . 59

5.1.2 Design . 60

5.1.3 Compilation . 61

5.1.4 Execution . 63

5.2 Mixed-Signal, Neural Accelerator (A-NPU) Design 63

5.2.1 Analog Neural Unit (ANU) Circuit Design 64

5.2.2 Reconfigurable A-NPU 75

5.3 Compilation to Address Analog-Imposed Challenges 78

5.3.1 Addressing Topology Restrictions 79

5.3.2 Addressing Activation-Function Restrictions: RPROP . 81

5.3.3 Addressing Limited Bit Widths: CDLM 88

5.4 Performance and Energy Evaluation 99

5.4.1 Methodology . 99

5.4.2 Analog-Digital NPU Comparison 103

5.5 Future Considerations for Addressing Analog Challenges . . . 106

xi

5.5.1 Addressing Manufacture-Time Variability 107

5.5.2 Addressing Run-Time Variability 108

5.6 Conclusions . 110

Chapter 6. Related Work 113

6.1 Approximate Computing . 113

6.2 Analog and Digital Hardware for Neural Networks 116

6.3 Learning Techniques for Hardware Neural Networks 122

Chapter 7. Conclusions 128

Bibliography 135

xii

List of Tables

4.1 Excerpts from the list of DAC transistor widths [121] 38

5.1 Area estimates for the analog neuron (ANU) [4]. 100

5.2 The evaluated benchmarks, characterization of each offloaded
function, training data, and the trained neural network [4]. . . 102

5.3 Error with a floating point D-NPU, A-NPU with ideal sigmoid,
and A-NPU with non-ideal sigmoid [4]. 105

xiii

List of Figures

1.1 Desirable attributes of computation devices. 2

1.2 Neural prediction: addressing analog shortcomings. 6

1.3 Neural acceleration: addressing analog shortcomings. 7

2.1 Neural network design space. As computing tools, neural-network
designs trade off the desirable attributes of a computing device
(shown in Figure 1.1): performance, energy efficiency, result quality
(accuracy), programmability, and generality. 12

2.2 Research areas in approximate computing. 14

3.1 Sigmoid function with varying activation steepness (α). Acti-
vation steepness determines the numerical range of input values
that translate to output values between 0 and 1. 20

4.1 Weight position and branch outcome correlation [121] 31

4.2 Prediction data path [121] . 33

4.3 Top-level diagram of a Scaled Neural Analog Predictor 36

4.4 Time required for current differentiation 45

4.5 Prediction errors for sum combinations 46

4.6 Tradeoff between power, speed, and accuracy 47

4.7 Accuracy of digital vs. analog implementations of the Scaled
Neural Predictor . 48

5.1 Framework for using analog computation to accelerate code
written in conventional languages [4]. 58

5.2 One neuron and its conceptual analog circuit [4]. 64

5.3 Circuit design of a single analog neuron (ANU). 66

5.4 Mixed-signal, neural accelerator (A-NPU). Only four ANUs are
shown. Each ANU processes eight inputs [4]. 75

5.5 Network accuracies for limited (eight inputs per neuron), but
reconfigurable, network topologies and fully connected topologies. 82

xiv

5.6 Backpropagation and resilient propagation (RPROP) sensitiv-
ity to activation-function steepness. 86

5.7 Continuous-discrete learning method (CDLM) compensates for
limited bit widths. Results show accuracy for three-layer net-
works with 8 hidden neurons and a traditional activation steep-
ness of 0.5. The number of network inputs for sobel and jpeg
exceed the analog-imposed connectivity restriction. 91

5.8 Continuous-discrete learning method (CDLM) compensates for
limited bit widths. Results show accuracy for a three-layer net-
work with 8 hidden neurons and a traditional activation steep-
ness of 0.5. 92

5.9 CDLM and bit-width sensitivity to activation steepness for kmeans
(three-layer network with 8 hidden neurons). The full-precision
baselines correspond to a traditional activation steepness of 0.5. 94

5.10 Bit width sensitivity to activation steepness. The full-precision
baselines correspond to a traditional activation steepness of 0.5. 96

5.11 Bit width sensitivity to activation steepness. The full-precision
baselines correspond to a traditional activation steepness of 0.5. 97

5.12 CDLM accuracy for jpeg (three-layer network with 8 hidden
neurons, 64 inputs, and 64 outputs) for varying activation steep-
ness values. The full-precision baselines correspond to a tradi-
tional activation steepness of 0.5. 98

5.13 A-NPU with 8 ANUs vs. D-NPU with 8 PEs [4]. 103

5.14 Whole application speedup and energy saving with D-NPU, A-
NPU, and an ideal NPU that consumes zero energy and takes
zero cycles for neural computation [4]. 104

5.15 CDF plot of application output error. A point (x,y) indicates
that y% of the output elements see error ≤ x% [4]. 106

xv

Chapter 1

Introduction

1.1 Problem

For decades, the semiconductor industry enjoyed exponential improve-

ments in microprocessor power and performance with the device scaling of suc-

cessive technology generations. This phenomenon was enabled by Dennard’s

scaling principles, proposed in 1974 [27], which state that decreasing circuit

dimensions and voltages by a constant factor, k, and increasing substrate dop-

ing by k results in decreased delay by k and a decrease in power consumption

by k2. Consequently, since area is also decreased by k2, transistors could be

scaled to provide improved performance without significantly worsening power

density. However, the Dennard scaling approach broke down with sub-micron

technologies, as decreasing threshold voltages and oxide thickness resulted in

large leakage currents and power dissipation.

With the end of Dennard scaling, the architecture community shifted

focus to multicore designs (leveraging application parallelism) with a combi-

nation of less complex or lower-frequency cores to provide performance im-

provements within a limited power budget. As shown [34], however, even with

high levels of parallelism, the multicore approach can not scale to provide the

1

Result
Quality

(Accuracy)

Programmability

Performance

Power
(Energy Efficiency)

Generality

Optimized by
Digital Hardware

Optimized by
Analog Hardware

Figure 1.1: Desirable attributes of computation devices.

historical improvements in performance and energy efficiency that have driven

the continued advancements in technology scaling. While device scaling pro-

vides a larger number of transistors per chip, for a fixed-size chip, a growing

percentage of the chip will have to be powered off at any given time due to

power constraints; this percentage of dark silicon is expected to reach over

50% at 8 nm [35].

As the multicore approach wanes in its ability to provide performance

improvements, the architecture community has focused on special-purpose ac-

celerators to translate the growing number of transistors into gains in perfor-

mance, though their scope is limited. Accelerators highlight an ‘iron triangle’

consisting of performance, energy, and generality, where designing for any two

2

aspects sacrifices the third. Accelerators have been proposed to speed-up spe-

cific applications or to accelerate code in specific domains, sacrificing generality

to reap gains in performance and energy efficiency [21, 83, 101].

Generality, however, is a highly desirable attribute for computer design

that has economically driven the industry since the first modern computing

machines [31]. (See Chapter 2 for further discussion on the history of comput-

ing.) The economic drivers of business determine the desirable attributes of a

computing device shown in Figure 1.1: speed, low energy, generality, quality

results, and programmability.

1.2 Opportunity

Since the advent of modern processing, the attribute of result quality

has largely been assumed to be fixed; however, a new class of approximate ap-

plications have emerged that can tolerate some level of imprecision. Examples

of approximation-tolerant applications include those in the areas of machine

learning, human-computer interaction, financial analysis, 3D gaming, sensor-

data processing, and robotics.For these many applications, accuracy can be

sacrificed to gain energy efficiency, performance, and generality, potentially

providing a workaround to the iron triangle. Though point solutions exist

that express the effect of trading accuracy for those gains [8, 19, 88], the scope

of that space is still largely unexplored. The work presented in this thesis aims

to investigate this tradeoff space in the context of mixed-signal design, i.e. the

combination of analog and digital circuits.

3

Analog hardware warrants investigation for its potential in the realm of

approximate computing since analog circuits traditionally trade accuracy for

efficiency. In the analog domain, values are physically represented as voltages

and currents. This physical representation can enable fast and efficient compu-

tation. For example, multiple values, represented as currents, can be quickly

and efficiently summed on a wire. This physical representation, though, also

presents challenges due to limited range, as well as inaccuracy due to non-

linearity and noise. These limitations have made analog circuits difficult to

program and lacking in generality. Figure 1.1 highlights the computing design

attributes that favor analog hardware - performance and energy efficiency - and

those that favor digital hardware - accuracy, programmability, and generality.

1.3 Solutions and Contributions

The work presented in this thesis aims to answer the following ques-

tions:

Can analog circuits be successfully integrated into general-purpose com-

puting to provide performance and energy savings? And, what is required to

address the historical analog challenges of inaccuracy, programmability, and a

lack of generality, to enable such an approach?

This thesis work suggests a neural approach as a path toward address-

ing the historical analog challenges of inaccuracy, programmability, and a lack

of generality.

4

Generality. Neural networks have been shown to learn complex functions,

generating approximate outputs given a set of inputs. In the case of approxi-

mate computing, neural networks can address challenges in generality as they

can learn arbitrary functions across applications that can tolerate impreci-

sion [37]. Neural networks, therefore, have the opportunity to retain generality,

while providing a fixed-function quality to the computation, which addresses

the analog implementation challenge of limited signal ranges.

Accuracy. Neural models of computing have been shown to be resilient to

various types of hardware inaccuracies, as they utilize a learning process to

minimize output errors [44, 29, 28].

Programmability. The analog challenge of programmability is linked with

a general-purpose, von Neumann model of computing. A neural approach

adopts a strategy independent of that model, and the clever application of a

neural approach at various layers in the computing stack can overcome the

analog challenge of programmability.

This thesis work investigates the incorporation of analog neural compu-

tation to provide gains in efficiency and performance in both microarchitecture-

level and application-level approximate computing. Chapter 4 presents an

analog neural branch predictor (SNAP), which applies analog neural compu-

tation at the microarchitecture level [121, 122]. Figure 1.2 illustrates how this

technique addresses the high-level challenges of analog hardware. The branch

5

Generality Programmability
Result
Quality

(Accuracy)

Branch Prediction

uArch
construct

applies
across apps rollback

mechanisms

Neural Approach

corrections
via online
training

Figure 1.2: Neural prediction: addressing analog shortcomings.

predictor is a microarchitecture construct, and, as such, does not require any

change to the programming model. Branch prediction applies across appli-

cations, which maintains generality. Additionally, an inaccurate prediction is

tolerated with the use of roll-back mechanisms to ensure correct program be-

havior. A neural approach addresses analog circuit inaccuracy by using online

training to improve prediction accuracy.

An analog predictor implementation enables a highly-accurate predic-

tion algorithm (Scaled Neural Prediction) that is infeasible to implement in

the digital domain as it would require orders of magnitude more power than

the analog implementation. We show that despite analog circuit behaviors,

such as non-linearity, fast, low-power analog computation enables improve-

ments in prediction accuracy over less-feasible, digital neural predictors (5.18

mispredictions per thousand instructions vs. 5.4 MPKI for the piecewise-linear

neural predictor [65]). As compared to a fully-precise, infeasible, digital im-

plementation of the Scaled Neural Prediction algorithm, an analog implemen-

tation results in an increase of only 0.12 MPKI. This analog neural prediction

6

Generality Programmability
Result
Quality

(Accuracy)

Neural Transformation
[Esmaeilzadeh et al.] simple

annotationsacross
approximate

programs

Compiler Learning Algorithm

Analog-aware
learning

Figure 1.3: Neural acceleration: addressing analog shortcomings.

work opens the door for further advancements in implementing approximation-

tolerant microarchitecture tasks with efficient analog hardware. For example,

other kinds of predictors, confidence estimators, resource managers, and sched-

ulers that can be mapped to a neural model [84, 60] will benefit from this work.

Chapter 5 presents a mixed-signal, neural accelerator (A-NPU) that

aims to further investigate the potential for incorporating analog circuits into

general-purpose computing by allowing for application-level approximate com-

puting [4]. While an increase in branch prediction accuracy results in applica-

tion performance and energy improvements, these improvements are limited

by the overheads of ensuring precise operation on a von Neumann architec-

ture. The removal of the von Neumann computing model and the addition

of analog computation presents the opportunity for improvements in applica-

tion performance and energy efficiency by orders of magnitude. The A-NPU

leverages prior work that outlines a neural approach to transform general-

purpose, approximate code regions to a neural network computation that can

be accelerated on specialized hardware [38]. As illustrated in Figure 1.3, the

leveraged neural transformation addresses the high-level, analog challenges

7

of programmability and generality, as it requires only simple annotations to

identify approximate code regions and can be applied across error-tolerant

application domains.

Chapter 5 includes a 45 nm, transistor-level circuit design of the basic

computation unit of the A-NPU– an analog neural unit, or ANU. The ANU

design demonstrates the effects of analog design-time constraints on the neural

model for computation. Specifically, analog range limitations restrict network

connectivity by limiting (and fixing) the number of inputs per neuron, restrict

the bit widths of inputs, outputs, and weights in the network, and restrict

the behavior of the non-linear activation function utilized in the neurons. We

show that exposing these analog-imposed limitations to the compiler allows for

compile-time techniques that specifically address these limitations and enable

the use of analog circuits to improve the performance and energy efficiency of

conventionally-written, approximate code.

As compared to an 8-bit digital NPU, the A-NPU achieves 12.1x more

energy savings and 3.3x speedup on average for each accelerator invocation.

These gains translate to 6.3x energy savings and 3.7x application-level speedup

over the original, conventionally-written application run on an aggressive, out-

of-order architecture. These gains in speed and energy efficiency come at the

expense of accuracy; but, with the proposed compilation support, application

error levels remain below 10% despite analog-signal range limitations.

8

Chapter 2

Context

This chapter attempts to set the context for this dissertation work by

giving a brief history of analog computing followed by sections on the design

space of neural networks and approximate computing. More details on related

work can be found in Chapter 6.

2.1 A Brief History of Analog Computing

The word analog, which we use today to describe a particular class of

computing, stems from the 15th-century word analogy, meaning a comparison

of two things based on their being alike in some way [16]. As such, the first ana-

log computers were combinations of physical devices designed to model some

physical phenomenon based on their similar behavior. Such mechanical aids

for calculation have a long history, beginning with computation systems for

navigation and astronomy. The Antikythera mechanism, for example, dated

87 B.C., was a system of various-sized gears for predicting astronomical posi-

tions [52]. In 1872, Sir William Thomson developed a tide-predicting machine

that used a system of pulleys and chains to model individual tidal harmonics

and combine them to predict tide levels for easier navigation [127]. Wheel and

9

disc mechanisms, first used in planimeters to analyze maps for land taxation

and allocation purposes [16, 10], were designed to perform integration and

later formed the basis of mechanical differential analyzers [13].

Advancements in electronic technology, necessitated by World War II,

gave rise to electronic analog computers, where mechanical integrators were

replaced with capacitor-based circuits. These electronic analog computers were

important in the fields of science and technology, with their major applications

being differential equation solving, modeling complex systems, and simulating

control systems [16]. Though electronic, these machines were still not general

purpose.

In 1936, Alan Turing demonstrated the computation power of algorithm-

based, discrete value manipulation, engendering a new abstraction for thinking

about the design of computational devices [130]. Turing’s abstraction pre-

sented an opportunity for generality, and the move to digital computation in

the 1940s [12, 31] was linked with a goal of providing flexibility and increasing

application coverage. In the description of the Electronic Numerical Integrator

and Computer (ENIAC), Eckert and Mauchly wrote [31]:

Analogy computing devices vary greatly in flexibility. These machines

are somewhat specialized and restricted in application. A digital machine which

can be directed to carry out any of the common arithmetic operations in any

desired sequence on any given set of numbers has all the generality and flexi-

bility required for any practical purpose. (It cannot compute the exact value of

pi, but it can compute in a finite number of steps any desired approximation of

10

pi.) Therefore, it can, for example, compute to any specified definite approxi-

mation the solutions of non-linear partial differential equations which are not

obtainable from any existing analogy computer. This attainment is one of the

important objects of our invention.

The move away from analogy computing and toward a general-purpose,

computing abstraction favored repeatable, digital design. The ENIAC, a digi-

tal electronic computer with vacuum tubes that acted as switches, still required

significant time in physical re-wiring to run various programs. With contribu-

tions from von Neumann that included the idea of stored-program control, the

ENIAC’s successor, the EDVAC, represents a truly flexible, general-purpose

machine [132]. The von Neumann model, in addition to the development of

transistors [119], made computers assets for business, not just science and

technology endeavors, economically driving the computing industry in the di-

rection of digital, von Neumann designs.

For decades, device scaling enabled exponential gains in performance

within a fixed power budget, while maintaining generality, programmability,

and quality results within a digital, von Neumann model of computing. How-

ever, scaling limitations at sub-micron technologies halted this trend, as power

density increased due to leakage currents. Now the industry must optimize en-

ergy efficiency to deliver increased performance, and, as such, the assumptions

of the modern computing era must be reconsidered – in particular, that of a

digital, von Neumann model of computing.

11

Figure 2.1: Neural network design space. As computing tools, neural-network de-
signs trade off the desirable attributes of a computing device (shown in Figure 1.1):
performance, energy efficiency, result quality (accuracy), programmability, and gen-
erality.

2.2 Neural Networks for Computing

Artificial neural networks offer an abstraction for computation that de-

viates from the traditional model. These networks can act as arbitrary function

approximators that learn how to solve various problems through observation.

And , as suggested, these networks are inherently approximate. A significant

amount of work in artificial neural networks has resulted in various network

types and learning techniques, which can be realized in hardware or software.

Figure 2.1 illustrates the space of neural network design, and as a computing

tool, the neural network design space trades the attributes shown in Figure 1.1.

The choice of network type or network topology, for example, can affect the

learning ability of the network (result quality) as well as the range of applica-

tions that can utilize it to achieve high quality results (generality). The choice

of implementation can affect result quality as well as performance and energy

12

efficiency.

Hardware implementations vary with these design choices depending on

their overarching goal. Neural network hardware has been designed with the

goals of supporting biological research [62, 45], accelerating specific applica-

tions [41, 18], or solving more general-purpose problems in classification [126]

and regression [37]. For example, the goal of accelerating biological research

may favor a highly-parallel, spiking neuron implementation.

Since the work presented in this thesis aims to achieve improvements

in performance and energy efficiency, we choose analog circuits to perform

computation; storage resides in the digital domain for easy integration, and

both the neural predictor and neural accelerator are mixed-signal designs.

The neural branch predictor presented in Chapter 4 sits on the limb of mi-

croarchitectural integration [67, 84, 60]. Chapter 5 presents a reconfigurable,

mixed-signal, neural accelerator that targets general-purpose regression tasks,

where compile-time learning techniques are utilized to compensate for analog

non-idealities. For the sake of generality, this accelerator implements a multi-

layered perceptron (MLP) network, since MLP networks have been shown to

produce quality results over a variety of tasks [20]. The leveraged prior work on

neural transformation [37] and the mixed-signal microarchitecture presented

in Chapter 5 allow for tight integration with a general-purpose CPU and the

acceleration of approximation-tolerant code, while maintaining programmabil-

ity.

13

Approximate Applications
 [Intel RMS suite, UCI machine learning suite]

Programming Model
[EnerJ]

Microarchitecture
[PerceptronPredictor]

Architecture Accelerators
[NPU, DianNao]

Traditional
[Truffle]

Compilation
[NPU, Green, LoopPerforation]

Circuit Analog
[Li2013]

Digital
[PCMOS]

Device, Storage
[Flikker, ReRAM]

Figure 2.2: Research areas in approximate computing.

2.3 Approximate Computing

There is a quickly growing body of work in the area of approximate com-

puting, which spans the computing stack, as shown in Figure 2.2. Architecture

support for approximate computing covers both traditional architectures [36]

as well as accelerators, and both digital and analog approximate computa-

tion blocks have been proposed [30, 82, 75]. Analog functional blocks offer

potential performance improvements and energy savings, however, they suf-

fer from difficult integration with high-speed, general-purpose microprocessors

14

due to challenges such as restricted signal ranges, conversion requirements,

and storage technologies. Accelerator architectures for approximate comput-

ing can reduce programmability, as some require the use of new programming

models [9, 98], and generality, depending on which application, or class of

applications is targeted [21, 81].

The analog neural branch predictor presented in Chapter 4 represents

the utilization of analog circuits for microarchitecture-level approximate com-

puting. The mixed-signal, neural accelerator presented in Chapter 5 targets

an application-level opportunity for approximate computing; it builds on the

prior work of a compile-time approximation transformation [37] but addition-

ally adds approximation at the circuit level through the use of analog hardware.

We show that exposing analog circuit limitations to the compiler allows for

further compile-time optimizations that compensate for inaccuracies due to an

analog approach.

15

Chapter 3

Challenges of an Analog Approach to Neural

Computation

This chapter gives a review of neural network computation and high-

lights the potential of an analog implementation. It outlines the challenges of

computing in the analog domain, as well as the effects of those limitations on

neural computation, and discusses high-level solutions. Additionally, it differ-

entiates between two classes of tasks typically targeted by neural networks,

classification and regression, and describes the implications of the two classes

on analog neural hardware.

3.1 Review of Neural Network Computation

The neural predictor in Chapter 4 and neural accelerator in Chapter 5

both utilize a perceptron-based neural network model. The perceptron was

developed as a binary classifier, which takes in a set of rational-valued inputs,

xi, and produces a binary output that is a function of those inputs, f(xi).

The perceptron learns a set of weights, wi, through training. To produce an

output, the perceptron, or neuron, acts as a computation unit that performs

a weighted sum of the input values,
∑

i xiwi. After the summation stage, the

16

neuron applies an activation function, such as a threshold function, where, if

the resulting weighted sum is positive, the neuron output is 1, otherwise the

neuron output is 0.

These neurons can be connected together to form a multilayer-perceptron

(MLP) network, where the neuron outputs in one layer feed into neuron in-

puts in the following layer. These networks have been shown to solve regres-

sion problems (producing a rational-valued output) in addition to classification

problems [55]. MLP networks typically utilize, differentiable, non-linear acti-

vation functions, such as the sigmoid function, rather than the more simplistic

threshold function utilized in a single perceptron.

Classification vs. Regression Tasks. The MLP neural model has been

applied to two different types of learning tasks: (1) classification and (2) re-

gression (function approximation). Classification aims to answer the question

– to which set of categories does a new observation (input) belong? Examples

of classification tasks include character recognition based on a set pixel val-

ues or predicting the presence of cancer based on a set of patient diagnostics.

Regression, which is also referred to as function approximation, on the other

hand, aims to map inputs to a continuous target function. One simple exam-

ple of a regression problem is the task of producing the output of the sine

function given an input value between 0 and 2π.

17

Potential of Analog Computation. The neuron computation is charac-

terized by a potentially expensive dot-product operation as well as an acti-

vation function. Analog circuits present the opportunity for efficient parallel

computation. For example, current-steering techniques can efficiently perform

highly-parallel summation by simply steering multiple analog currents to a

single wire in accordance with Kirchhoff’s current law [71, 114]. Addition-

ally, transistor physics support the possibility of efficiently implementing a

non-linear activation function [85], though limited signal ranges in the analog

domain present some practical challenges.

3.2 Challenges of an Analog Approach

The three major challenges of an analog approach are limited signal

ranges, non-idealities (such as process variation), and noise. These challenges

can also be categorized by timeline – design time for limited ranges, manufac-

ture time for non-idealities, and run time for noise. In addition to a discussion

of the major challenges of analog hardware and their effect on neural com-

putation, this section discusses the placement of the analog-digital boundary,

which is relevant for mixed-signal, neural implementations.

3.2.1 Design-Time Signal-Range Restrictions

In the analog domain, values are represented physically as voltages or

currents on one or more wires, and the form of physical value representation

affects the power, performance, and accuracy of the various computation oper-

18

ations. For example, addition can be performed extremely fast using currents,

where as a multiply operation executes more efficiently using voltages [1].

Similarly, some analog circuit blocks can only realize efficient computation by

restricting the range of the input values. For example, an analog circuit might

be able to efficiently compute a sigmoid function by utilizing the physics of

transistor behavior, however, the input to that function must be within a spec-

ified range and of a specific representation type to produce the desired output.

Additionally, such a computation block will produce an output voltage or cur-

rent within a restricted range. Conversion between representation types and

signal scaling are unique challenges in the analog domain.

Data density is another challenge that stems from a physical represen-

tation. For example, the range of any voltage signal is fixed by the supply volt-

age. As such, the same fixed signal range can represent a small (low-precision)

or large (high-precision) amount of information. Packing high-precision infor-

mation within a fixed range exacerbates challenges due to range restrictions.

For neural computation, analog range restrictions can affect the ideal

network topology, activation function, and practical bit width of computa-

tion, all of which can decrease the learning and approximation capacity of the

network.

Effect on topology. Limited signal ranges affect the flexibility of the topol-

ogy connections as well as the degree of parallelism. Since analog circuits are

designed to operate well within a certain range, and that range typically must

19

0"

1"

!600$!400$!200$ 0$ 200$ 400$ 600$

Ac
&v

a&
on

"fu
nc
&o

n"
ou

tp
ut
"

Weighted"sum"ac&va&on"func&on"input"

ActStp$=$1.0$

ActStp$=$0.1$

ActStp$=$0.01$

!
!
!

f(x) =
1

1 + e�x↵

Figure 3.1: Sigmoid function with varying activation steepness (α). Activation
steepness determines the numerical range of input values that translate to
output values between 0 and 1.

be fully utilized to maintain accuracy, an analog implementation favors a pre-

determined number of inputs to a neuron for accurate computation. Data

density limits this number of inputs, and therefore, the size of the network

and its connectivity.

Effect on activation function. In the analog domain, limited signal ranges

and data density pose challenges for implementing non-trivial activation func-

tions, such as the sigmoid function. The sigmoid function can be described

by f(x) = 1
1+e−xα

, where α, the activation steepness, defines the slope of

the near-linear portion of the function. Figure 3.1 shows a sigmoid function

with various activation steepnesses. As shown, as activation steepness in-

creases, the numerical input range (on the x-axis) that maps to output values

20

(y-axis) between saturation levels decreases. As such, increasing activation

steepness increases pressure on the fixed analog range, as a smaller physical

signal range must be translated to a non-saturated output. An analog im-

plementation, therefore, favors shallow activation functions; neural networks,

however, require the non-linear activation function for learning, and decreas-

ing the activation steepness can result in a decreased capacity of the network

to learn and produce high-quality outputs. Although prior work has shown

the implementation of sigmoid functions with analog circuits [56], there is a

challenge in scaling the input signal to match a specified sigmoid steepness.

Effect on bit width. For a neural network that requires integration with a

high-performance microprocessor, the network inputs and outputs must reside

in the digital domain. Just as limited signal ranges restrict the number of

inputs per neuron, they also limit the bit width of input values and weight

values, as increasing the number of bits increases data density. Additionally,

analog-to-digital converters (ADCs) can not distinguish between small varia-

tions in signal level, and, as such, they place requirements on the minimum

size of the signal range between quantization levels. This restriction plus a

limited signal range at the input to the ADC restricts the number of out-

put bits. Like topology and activation function restrictions, limited bit-width

value representations can limit the ability of the network to learn and produce

useful outputs.

21

3.2.2 Manufacture-Time Non-Idealities

Analog circuits suffer from process variation and mismatch between

device components on a single die, as well as across dies, and these non-

idealities can lead to inaccuracies in computation. For example, a current

signal representing a particular input value might be slightly larger on one die

than on another due to process variation. Additionally, analog circuits often

present a challenge of non-linearity. For example, a digital-to-analog converter

(DAC) converts a digital value to an analog one, however, this conversion is

not exactly linear.

Training to address manufacture-time non-idealities. Because neural

networks learn to generate quality results through a training process that

minimizes error, the use of chip-in-the-loop training, in which a portion of

the training takes place on real hardware, can train around manufacture time

non-idealities, such as non-linearity and process variation [44, 29, 28].

3.2.3 Run-Time Noise

In addition to device mismatch, analog circuits are subject to run-time

noise. Noise refers to inaccuracy due to stochastic events such as nearby

digital switching and temperature fluctuations. Noise results in decreased

result quality.

22

Circuit design to mitigate the effects of noise. Traditional techniques,

such as guard rings, can be used to mitigate the effects of substrate noise due to

digital switching [123]. A guard ring separates analog and digital circuits and

creates a large capacitance that provides noise currents with a low-impedance

path to ground. General design practices leave margins to allow for some

amount of noise, such as quantization margins for analog-to-digital conversion.

Also, certain circuit design blocks are less susceptible to noise than others.

Differential circuit designs mitigate non-ideal, analog-signal behavior due to

noise by computing with a differential between two nearby signals that change

similarly in the presence of noise.

3.2.4 Analog-Digital Boundaries

A mixed-signal approach, with conversions to the digital domain, can

ease the challenges of an analog approach, though the placement of analog-

digital boundaries exhibit tradeoffs in power, performance, and accuracy. One

challenge with a mixed-signal approach is to determine the optimal placement

of these boundaries to achieve the computational goals of the network. Neu-

ral hardware designed for biological research, for example, might input data

directly into the analog domain based on sensor data. Alternatively, a neu-

ral network designed for integration with a high-performance microprocessor

would require digital inputs and outputs to the network. Internal values could

reside in either the digital or the analog domain.

A completely analog implementation with fixed-wire connections be-

23

tween neurons maximizes performance and energy efficiency; however, fixed

connections effectively fix the network topology and limit the generality of the

neural network. Storing intermediate values can increase generality, however,

analog storage does not lend itself to satisfying high-performance requirements.

Additionally, the analog domain suffers from challenges in accurately replicat-

ing and buffering signals for routing signals between neurons. Conversion to

the digital domain can increase network flexibility and limit signal susceptibil-

ity to noise; however, conversions between the analog and digital domains are

expensive in terms of energy and introduce inaccuracy due to quantization.

As such, frequent conversions limit the benefit of analog computation.

3.3 Analog Challenges in Classification and Regression

Classification tasks, as compared to regression tasks, place different

requirements on a multilayer-perceptron network. One example of a classi-

fication task is determining the presence or absence of cancer, and one of

regression (or function approximation) is that of approximating the output of

the sine function. Classification tasks target binary outputs, where regression

tasks target multi-bit (and ideally continuous) outputs. Additionally, even for

hidden-layer neurons, a trained classification network is typically character-

ized by extreme neuron outputs (saturated to 0 or 1), where a network trained

to perform a regression task often utilizes hidden-layer neuron outputs in the

linear portion of the activation function (values between 0 and 1).

Saturated hidden-layer outputs and the requirement of only single-bit

24

network outputs (which can simply be determined by a threshold function im-

plemented as a single comparator) make classification tasks more robust in the

presence of inaccuracies and the challenges of an analog implementation [32].

For example, if the learned network weights are saturated to fit within a spec-

ified number of bits, this modification is less likely to result in a change in

a neuron output, as the output likely resides in one of the extremes of the

activation function. However, for regression tasks that utilize neuron outputs

between the extremes, modifying weight values to fit within a specified number

of bits is more likely to change the output value of a neuron. Manufacture-time

non-idealities and noise result in similar behavior, where small variations in

the neuron inputs and weights are less likely to result in changes at a neuron

output in the case of classification. As the number of output bits required to

perform a regression task increases (which is problem dependent), the chal-

lenges and resulting inaccuracies due to an analog implementation become

more pronounced and can result in detrimental decreases in network accuracy.

Though multilayer perceptrons have been successfully applied to prob-

lems in function approximation [55], this work often assumes full-precision

computation. The literature related to hardware neural network implementa-

tions almost exclusively evaluates classification tasks, which are more robust

in the presence of analog implementation challenges [32, 79, 90, 124, 112]. The

ability to solve regression problems, however, is highly desirable for uphold-

ing generality, as it increases the scope of approximation-tolerant applications

that can utilize the hardware.

25

The neural predictor in Chapter 4 addresses the simpler task of clas-

sification; it classifies a branch as taken or not taken. The neural accelerator

presented in Chapter 5, however, targets the more challenging task of regres-

sion to increase the scope of applications that can benefit from the neural

acceleration. The techniques presented in Chapter 5 are necessary steps to-

ward enabling a mixed-signal, neural accelerator capable of solving problems

in regression.

26

Chapter 4

Analog Neural Prediction

Certain microarchitecture-level tasks provide the opportunity to ex-

ploit approximate computing and trade precise and/or repeatable computation

for more energy-efficient computation. These microarchitectural tasks include

those that aim to improve processor energy efficiency or performance, for ex-

ample, but do not impact program correctness. Examples include speculation

constructs for increasing instruction-level parallelism, such as control flow and

data-dependence prediction, thread scheduling in throughput architectures,

and the allocation of shared resources, including power, caches, and memory

bandwidth in heterogenous and multicore architectures. In particular, those

soft microarchitecture tasks that can be mapped to a neural model can benefit

from efficient, mixed-signal computing [84, 60, 73]. This chapter investigates

the use of approximate, mixed-signal computation in the microarchitectural

task of branch prediction.

Branch prediction offers a unique opportunity for the application of

analog circuits to general-purpose computing, as it addresses the historical

analog shortcomings of programmability, generality, and accuracy. Branch

predictors predict program control flow based on a program’s branch history.

27

As a microarchitectural construct, branch prediction requires no change in the

programming model. This same construct applies across applications, which

maintains general applicability. Additionally, roll-back mechanisms allow for

the correction of mispredicted branches, which produces accurate program

execution in the presence of mispredictions, and, in the case of approximate

computing, in the presence of inaccuracies in generating a prediction.

In particular, neural branch prediction offers further opportunities for

the successful integration of analog circuits. Neural branch prediction is char-

acterized by an expensive dot-product operation, which can be performed ef-

ficiently in the analog domain. Additionally, online training has the potential

to correct for analog non-idealities, such as process variation, as the training

continually adjusts a weights vector toward producing better predictions.

This chapter presents the design of an analog neural branch predictor,

called the Scaled Neural Analog Predictor (SNAP). This efficient analog imple-

mentation allows for two improvements over previous digital neural predictors,

which results in higher prediction accuracy, despite approximate analog com-

putation.

4.1 Background on Neural Predictors

This background section describes the computation and training of the

first neural predictor, the perceptron predictor [67, 68]. It also highlights the

path-based improvements to the original perceptron predictor that improve

neural predictor accuracy.

28

4.1.1 The Perceptron Predictor

Computation and Prediction: The basic perceptron predictor [67, 68]

consists of a single perceptron, or neuron. This neuron takes as input a binary

global history vector that contains the directions of the most recent program

branches. Each branch history value acts as a neuron input. A hash of the

branch PC selects the appropriate signed weights vector from a table of weights

vectors. The neuron computes a dot-product of the inputs and weights and

utilizes a threshold activation function that classifies the current branch as

taken or not taken. If the weighted sum is greater than 0, the neuron predicts

a taken branch, and if it is less than 0, the neuron predicts a not taken branch.

Training: The branch history can be interpreted as a vector of −1s and 1s,

where −1 corresponds to a not taken branch, and 1 corresponds to a taken

branch. The sign of each weight indicates a positive or negative correlation

between the corresponding bit in the history register and the branch to be

predicted; For example, if a bit in the history register contains a −1, or a not

taken branch, a positive weight value signifies a positive correlation between

the nottaken branch, and the direction of the current branch, which suggests

that the current branch will also be not taken. The magnitude indicates the

strength of the correlation.

The perceptron is trained during program execution when there is a

misprediction or when the magnitude of the perceptron output is below some

threshold value. Upon training, each weight is incremented if the predicted

29

branch has the same outcome as the corresponding history bit (a positive

correlation) and decremented otherwise (a negative correlation).

4.1.2 Improvements to the Perceptron Predictor

Path-based neural predictors improved upon the original perceptron

predictor by using path information with ahead-pipelining to reduce latency

and increase accuracy [64, 65]. With path-based predictors, the weighted

sum is performed in steps ahead of time such that to make a prediction, the

neuron only requires a final addition operation. This ahead-pipelining scheme,

however, does not fully capitalize on the potential prediction accuracy that

could result from efficient parallel computation, since the weights used in the

computation were not indexed with the PC of the actual predicting branch.

4.2 Analog-Enabled Neural Prediction Algorithm

The analog-enabled Scaled Neural Prediction (SNP) algorithm incorpo-

rates two major improvements over previous neural predictors, made feasible

by the power and latency reductions of an analog implementation: (1) the

elimination of ahead pipelining and (2) the scaling of individual weights by

predetermined coefficients, based on their history position, both of which im-

prove predictor accuracy.

Removal of Ahead Pipelining: The original path-based neural predictor

is ahead-pipelined, i.e., it begins computing the prediction for a branch well

30

100

History Position

0.0

0.2

0.4

0.6

0.8

1.0

C
o

rr
el

a
ti

o
n

 C
o

ef
fi

ci
en

ts

Fitted Inverse Linear Curve

0 50

Figure 4.1: Weight position and branch outcome correlation [121]

before that branch is fetched by using path information to index the table of

weights. This scheme reduces the effective latency of a prediction. However,

some accuracy is lost because, without knowing which branch it is predict-

ing, the predictor may use the same weight to compute predictions for many

different branches. That is, the weights used in the computation were not in-

dexed with the PC of the actual predicting branch. Because an analog design

can sum all of the weights quickly when the actual branch is being predicted,

ahead-pipelining is unnecessary and the predictor can use the branch PC when

choosing the weights to sum. Thus, accuracy is improved.

31

Scaling Weights by Coefficients: The weights in a perceptron vector rep-

resent the contribution of each branch in a given history to predictability, but

each branch does not contribute equally; more recent weights tend to have

a stronger correlation with branch outcomes [121]. Figure 4.1 quantifies this

non-uniform correlation for a neural predictor with a history length of 128. The

x-axis represents the position of a weight in the history (x = 0 represents the

bias weight). The y-axis gives the average correlation coefficient (Pearson’s r)

between actual branch outcome and the prediction obtained by using only the

weight in position x. The first weights have a much stronger correlation with

branch outcome than the later weights. The function f(i), fitted to the corre-

lation coefficients, is used to generate scaling coefficients for the various weight

positions; By multiplying weights with coefficients proportional to their corre-

lation, the predictor achieves higher accuracy. The analog design achieves the

weight scaling efficiently by varying transistor sizes, whereas a digital imple-

mentation would need to perform a number of power- and latency-prohibitive

multiplications for each prediction.

Figure 4.2 shows a high-level diagram of the prediction algorithm and

data path.

Predictor Parameters: The two key parameters of the predictor are h,

the length of the vector with which the dot product is computed, and r, the

number of rows in each weights table. In this design, h = 128 and r = 256, 512,

or 2048. Other inputs to the predictor are A, a vector of the low-order bit

32

Tables of
correlating
weights
(16 tables,
512 or 256 rows,
8 7-bit weights
per row)

Branch PC[8:0] XOR XORXOR

Hash of A[0..7] Hash of A[8..15] Hash of A[h−8..h−1]

Selected weights vector

...

Multiply by f(i)

Expanded branch history shift register (h =128 bits)

Dot product Add bias weight

{ Column of 2048
bias weights}

Prediction

...

Branch history shift register (H = 40 bits)

Figure 4.2: Prediction data path [121]

of each of the past h branch addresses (A is effectively a path vector), and

H, the global branch history register. This design uses a history register H

of 40 bits. The history vector of h = 128 bits is expanded from the 40 bits

of H, as the use of redundant history has been shown to improve prediction

accuracy [115]. Weights are stored as 7-bit signed integers.

Computation and Prediction: The computation required to produce a

prediction includes multiplying the selected weights vector by f(i) and then

computing the dot-product between the resulting scaled weights vector and

the expanded history vector. The size of h, 128 in this case, determines the

33

number of multiply and add operations required to compute a prediction. 0

signifies a taken prediction, and a dot-product result less than 0 signifies a not

taken prediction.

Predictor Updates and Training: Updating the predictor consists of

three phases, some of which can occur in parallel.

• Updating histories. When the outcome of a branch becomes known, it

is shifted into H. The lowest-order bit of the branch’s address is shifted

into A. A high-accuracy implementation must keep speculative versions

of H and A that are restored on a misprediction.

• Training the predictor. At commit, if the prediction was incorrect,

or if the magnitude of the predictor output was under a set threshold,

then the predictor invokes its training algorithm. As in previous neural

predictors, the weights responsible for the output are incremented if the

corresponding history outcome matches the current branch outcome, and

decremented otherwise. The weights use saturating arithmetic.

• Updating the training threshold. An adaptive threshold training

algorithm dynamically adjusts the threshold at which training will be

invoked for a correct prediction. This algorithm is the same as the one

used for O-GEHL [116]: the threshold is increased after a certain number

of incorrect predictions, and decreased after a certain number of correct

predictions whose outputs were not as large as the current threshold.

34

More details on the prediction algorithm and predictor tuning param-

eters can be found in the original publication [121]. When evaluated with the

Championship Branch Prediction competition (CBP-2) infrastructure and a

32KB hardware budget for predictor state [66], the SNP predictor achieves

5.06 mispredictions per kilo-instruction (MPKI) as compared to 5.40 MPKI

for the piecewise linear (PWL) predictor [65], a high-accuracy neural predic-

tor that also has a high implementation cost. Although highly accurate, the

SNP predictor is not feasible to implement due to the large number (128) of

multiply-add operations. At 3GHz and 45nm, a digital implementation would

consume over 2 watts of power in the computation step, where an analog

implementation can perform the same computation while consuming under

10 milliwatts (demonstrating potential power savings over 200x for an analog

approach) [46].

4.3 Scaled Neural Analog Predictor

The goal of the Scaled Neural Analog Predictor (SNAP) circuit, shown

in Figure 4.3, is to classify a branch as taken or not taken. The circuit acts as a

neural computation unit, where the inputs are a binary history vector of length

128 and the weights are a selected vector (of comparable length) of signed in-

tegers with 6-bit magnitudes. In addition to the traditional dot-product com-

putation between the inputs and weights, this computation unit first scales the

weights vector by a predetermined vector of coefficients, which allows for more

accurate branch predictions as described in Section 4.2. A simple threshold

35

SRAM
Weight Table

SRAM
Weight Table

Weight127:Weight120 (56 bits)

Weight127 (7 bits)

 Bias Weight
Current Steering DAC

 Weight 0
Current Steering DAC

 Weight 127
Current Steering DAC

Prediction

Positive Line

Negative Line

Train (Taken)

Vdd Vdd

Weight7:Weight0 (56 bits)

Weight0 (7 bits)

uIW 0

positive linenegative line

magnitude line

outputoutput

 Threshold
Current Steering DAC

 Threshold
Current Steering DAC

P

T

N

SRAM
 Bias

Weight Table

Expanded branch history register

Weight0 h bitWeight127 h bit

BiasWeight (7 bits)

uIW 1 uIW 2 uIW 3 uIW 4 uIW 5 uI
b3b5

b6 XOR h

b4 b1 b0b2

Train (Not Taken)

Figure 4.3: Top-level diagram of a Scaled Neural Analog Predictor

36

activation function produces a one-bit, taken or not taken, prediction. Addi-

tionally, the circuit produces two signals to identify whether training should

occur, which depends on the result of the weighted sum in comparison to a

threshold value. The SNAP circuit uses analog current-steering and summa-

tion techniques to perform efficient parallel computation, since currents can

be summed quickly on a wire by Kirchhoff’s current law (KCL) [71, 114].

Analog-Digital Boundaries: This design places input and weight storage

in the digital domain and computation in the analog domain; the final pre-

diction and training outputs of the circuit are also latched as binary, digital

values.

Converting Weights to the Analog Domain: Simple, high-speed current

steering digital-to-analog converters (DACs) are used to convert digital weights

to analog signals (currents) that can be combined efficiently [1, 69]. Each DAC

uses one transistor per bit, sizing the width of the transistor to account for the

magnitude represented by the corresponding bit position. In the DAC shown in

Figure 4.3, W0 through W5 represent these transistor widths. The transistors

are configured as a current mirror, where a unit current, Iu, is “mirrored”

through each transistor approximately proportional to W . For example, for a

4-bit, base-2 digital magnitude, the DAC transistor widths would be set to 1,

2, 4, and 8 and draw currents Iu, 2Iu, 4Iu, and 8Iu, respectively.

This approach supports near-linear digital-to-analog conversion. A

37

Table 4.1: Excerpts from the list of DAC transistor widths [121]

Col. # Transistor Widths

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5
0 (bias) 1 2 4 8 16 32
1 1 2 4 8 15 30
2 1 2 3 7 13 26
3 1 1 3 5 11 21
10 - 1 2 3 7 14
20 - 1 1 2 5 9
128 - 1 1 2 4 8

switch is used to steer each transistor current according to its correspond-

ing weight bit, where a weight bit of 1 steers the current to the magnitude line

and a weight bit of 0 steers it to ground. In the example above, if the digital

magnitude to be converted is 5, or 0101, currents Iu and 4Iu would be steered

to the magnitude line, where 2Iu and 8Iu would be steered to ground. By the

properties of Kirchhoff’s current law (KCL), the magnitude line contains the

sum of the currents whose weights bits are 1 (5Iu in the example) and thus

approximates the digitally stored weight.

Scaling Weights by Coefficients: To achieve the effect of multiplying

weights by coefficients, non-traditional DAC transistor widths are chosen based

on the fitted inverse linear curve, f(i), mentioned in Section 4.2. As weight

position increases and correlation with current branch outcome decreases, DAC

transistor widths are scaled down, reducing the amount of current that a weight

contributes to the magnitude line. For example, rather than using traditional

DAC widths to convert a digital base-2 value to an analog value (1, 2, 4, 8,

38

16, and 32), a weight in position 3 has DAC transistor widths of 1, 1, 3, 5,

11 and 21, while a weight in position 128 has widths 0, 1, 1, 2, 4, and 8.

Table 4.1 shows excerpts of selected DAC transistor widths. Transistor widths

are limited to 32, and this technique actually reduces power consumption by

drawing less current than would be drawn by traditionally-sized DACs. Where

the multiplication operation would increase power in a digital design, it serves

to decrease power in an analog one.

Computing the Dot-Product of Inputs and Scaled Weights: The

scaled magnitude value is then steered to a positive line or negative line based

on the XOR of the sign bit for that weight and the appropriate history bit,

effectively multiplying the signed weight value by the history bit. The positive

and negative lines are shared across all weights, and again by KCL, all positive

values are added, and all negative values are added.

The currents on the positive line and the negative line are split roughly

equally by three transistors to allow for three circuit outputs: a one-bit predic-

tion and two bits that are used to determine whether training should occur.

Splitting the current, rather than duplicating it through additional current

mirrors, maintains the relative relationship of positive and negative weights

without increasing total current draw, thereby avoiding an increase in power

consumption. The currents from the splitters pass through resistors, creating

voltage signals that are used as comparator inputs.

39

Threshold Activation Function: A comparator performs the threshold

activation function by comparing a voltage associated with the magnitude of

the positive weights to one associated with the magnitude of the negative

weights. It outputs a 1, or a taken prediction, if the voltage corresponding to

the positive line outweighs the negative line and a 0, or not-taken prediction,

otherwise.

The comparator also functions as a one-bit, analog-to-digital converter

(ADC) that uses positive feedback to regenerate the analog signal into a digital

one. A track-and-latch comparator design [1, 69] was chosen based on its high

speed and simplicity.

Training: Training should occur if the prediction was incorrect or if the

magnitude of the predictor output is less than the threshold value. Rather

than actually computing the difference between the positive and negative lines

to determine the magnitude of the predictor output (which would require

more complex circuitry), and then comparing that magnitude to the threshold

value,the circuit instead latches two additional signals, based on comparisons,

that will be used when the branch is resolved to indicate whether training

should occur (T and N in Figure 4.3). If C is the direction of the branch on

commit, and P is the prediction, the following logic formula indicates training:

(C ⊕ P) + PT + PN

C ⊕ P indicates an incorrect prediction. To determine if the absolute

difference between the positive and negative lines is less than the threshold

40

value, the absolute value comparison is split into two separate cases: one case

for the positive weights being larger than the negative weights (PT) and the

other for the negative weights being larger than the positive ones (PN). T

is the relevant training bit if the prediction is taken (P = 1), and N is the

relevant training bit if the prediction is not taken (P = 0).

If the prediction is taken, then the positive line outweighs the negative

line. To determine whether this occurs by an amount less than or greater

than the threshold value, the threshold value is added to the negative line to

produce the comparison output T . If the prediction P is 1 (taken) and T is 0,

which means the negative line with the threshold value added is larger than

the positive line, then the difference between the positive and negative weights

is less than the threshold value and the predictor should train. Similarly, to

produce N, the threshold value is added to the current on the positive line. If

the prediction P is 0 (not taken) and N is 1, which means the positive line with

the threshold value added is larger than the negative line, then the difference

between the negative and positive weights is less than the threshold value and

the predictor should train. Instead of waiting for the prediction output P to be

produced, which would increase the total circuit delay, all three comparisons

are done in parallel.

4.4 Addressing Analog Challenges

This section describes how the SNAP predictor design addresses the

challenges of an analog approach to neural computation (discussed in Chap-

41

ter 3).

Design-Time Signal-Range Restrictions. Although the neural branch

predictor structure applies generally across applications, it aims to solve a

single problem; that is, it aims to predict the outcome of a branch based on

branch history information. This shared goal (across applications) allows for

a fixed neural topology that can be easily implemented in the analog domain,

while maintaining the computing goal of generality. Predetermined scaling

coefficients and a predetermined history length allow for known analog signal

ranges. Because the predictor uses a mathematically simplistic threshold ac-

tivation function that simply requires a comparison, data density and limited

signal range at the activation function input do not significantly affect predic-

tion accuracy. As branch prediction is a classification task that requires only

a single-bit output, output bit width is not affected by limited analog signal

ranges.

Manufacture-Time Non-Idealities and Run-Time Noise. As the neu-

ral predictor described in this chapter contains only a single perceptron with

a one-bit activation-function output, it is resilient to both manufacture-time

analog non-idealities, such as process variation, and noise, since small changes

in signal value often do not affect the result of the comparison.

Furthermore, online training allows for the correction of manufacture

time non-idealities, as the predictor continues to adjust the weights vector

42

to produce correct predictions. Also, a differential design helps mitigate the

impact of environmental noise, as a spike in signal value on the positive line

would also occur on the negative line, with little change in the differential

between them.

Analog-Digital Boundaries. The placement of analog-digital boundaries,

with storage and weight indexing in the digital domain and fixed computation

in the analog domain, allows for similar integration as previous, all-digital

neural branch predictors.

4.5 Evaluation

4.5.1 Methodology

Circuit Evaluation: We composed a transistor-level implementation of the

analog SNAP circuit in the Cadence Analog Design Environment using the

Predictive Technology Models at 45nm [94]. These models are the standard

for academic research and circuit design, and they take into account numerous

non-idealities that become important as transistor sizes shrink. They include

basic effects such as drain-induced barrier lowering, non-uniform doping, and

short and narrow channel length effects on threshold voltage, as well as various

leakage currents including subthreshold leakage. All transistors in the design

utilize 45nm bulk CMOS model cards that can be found on the PTM web-

site [94]; a description of the model parameters can be found in the BSIM4

User’s Guide [11].

43

Spectre transient analyses were used for all analog circuit simulations.

A 1V power supply and a 10% rise/fall time were assumed for each clock

speed. Analog power is measured by multiplying the supply voltage by the

average current drawn from the power supply. We use CACTI 4.2 [125] with

45nm technology files to measure the dynamic power of the digital table reads.

Analog accuracy numbers were generated by characterizing the analog circuit

behavior as a statistical error model and mapping it back to our CBP-2 sim-

ulation infrastructure.

Simulation Infrastructure: We report accuracy results for both an ideal

Scaled Neural Predictor (SNP) that assumes perfectly accurate operation, as

well as the Scaled Neural Analog Predictor (SNAP). Accuracy was measured

using a trace-driven simulator, derived from the 2nd Championship Branch

Prediction competition (CBP-2) infrastructure [66]. The SNP and SNAP de-

signs were restricted to 32KB of state, consistent with the implementable

CBP-2 predictors. As is common practice, the predictor was tuned using

a set of training traces provided in the CBP-2 infrastructure, and accuracy

experiments were run on a different set of traces, which includes the SPEC

CPU2006 integer benchmarks. Accuracy is reported as mispredictions per

kilo-instruction, or MPKI.

We compare against two other predictors: the piecewise linear (PWL)

predictor [65] and L-TAGE [117]. The PWL predictor is a neural predictor

with high accuracy, but high implementation cost. L-TAGE is a table-based

44

0 1 2 3

Time (ns)

-50

0

50

100

150

200

C
u

r
r
e
n

t
(u

A
)

Positive

Negative

100 ps 200 ps

Figure 4.4: Time required for current differentiation

predictor that utilizes partial matching and represented the most accurate im-

plementable predictor in the literature at the time of publication [121]. All

designs evaluated include a 256-entry loop predictor, included in the hardware

budget, and the PWL predictor was updated from its original design to also

utilize the adaptive threshold training algorithm [116] to further improve ac-

curacy (and provide a better comparison that reflects state-of-the-art accuracy

optimization techniques).

4.5.2 Analog Power, Speed, and Accuracy

The analog circuit design presents the traditional trade-off between

power, speed, and accuracy. The principal factor determining circuit delay is

the size of the currents produced in the DACs. Larger currents drive outputs to

stabilize sooner, thereby decreasing delay through the circuit; however, large

currents increase power consumption by increasing the total current draw.

45

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70

Ex
pe

cte
d S

um
 of

 N
eg

ati
ve

 W
eig

hts

Expected Sum of Positive Weights

SNP, SNAP agree
disagree

Figure 4.5: Prediction errors for sum combinations

The relative difference between the positive and negative weights also

determines when the correct output can be latched. Figure 4.4 demonstrates

the current behavior for two different sets of input weights: one where the

positive and negative sums vary greatly in magnitude and one where the sums

are similar. In this example, the weights change at 1ns such that the negative

sum greatly outweighs the positive, and the two currents quickly diverge. At

2ns the weights change such that the negative sum is only slightly larger than

the positive; in this case, the currents require more time to stabilize before a

winner can be determined.

Figure 4.5 shows prediction errors for various positive/negative sum

combinations; unsurprisingly, errors arise when the two sums are closest in

magnitude. These errors occur because the currents were not given sufficient

46

0 2 4 6 8
Power (milliwatts)

4

5

6

7

8

Ac
cu

ra
cy

 (M
PK

I)

1 GHz SNAP
2 GHz SNAP
3 GHz SNAP

SNP (infeasible)Leakage current

Figure 4.6: Tradeoff between power, speed, and accuracy

time to stabilize before the output was latched or because the currents pro-

duced by the DACs resulted in the wrong line having the larger value, since

similar sums allow less room for errors in current values. Incorrect currents

can result from non-linearity in the DACs as well as process variation and

noise.

Similar sums correspond to low prediction confidence, since the dot-

product result is close to zero and does not signify a strongly taken or not-

taken prediction; errors on low-confidence predictions mitigate the impact of

errors on overall prediction accuracy. In addition, this case occurs on a small

percentage of the total number of predictions. The simulations run to gener-

ate Figure 4.5 focused on this small space, even though these points are less

common, to clearly illustrate the diagonal error band.

The width of the error band shown in Figure 4.5 increases as clock

speed increases or power decreases, causing a decrease in predictor accuracy.

47

255.vortex
252.eon

253.perlbmk

462.libquantum

464.h264ref

483.xalancbmk

254.gap
471.omnetpp

400.perlbench

186.crafty
458.sjeng

473.astar
403.gcc

197.parser
175.vpr

429.mcf
456.hmmer

164.gzip
401.bzip2

445.gobmk
300.twolf

Arithmetic

Benchmark

0

5

10

15

M
isp

re
dic

tio
ns

 pe
r k

ilo
-in

str
uc

tio
n Piecewise Linear

L-TAGE
Scaled Neural Predictor
Scaled Neural Analog Predictor (3GHz, 7.4mW)

Mean

Figure 4.7: Accuracy of digital vs. analog implementations of the Scaled
Neural Predictor

Figure 4.6 illustrates the trade-off space between power, speed, and accuracy

for a Scaled Neural Analog Predictor. The DAC bias currents were adjusted

to generate the multiple power levels, and the lowest power shown (0.4mW)

corresponds to the DACs running strictly on leakage currents. At 1GHz, high

accuracy is maintained over the range of power levels simulated, where leakage

current alone achieves an MPKI of 5.13. The drop in accuracy from 4.9mW to

7.4mW at 2GHz is a function of inaccuracy in the DAC currents coupled with

the particular behavior of the traces simulated. At 3GHz, increasing power

from 1.9mW to 7.4mW shows an improvement of .32 MPKI.

4.5.3 Analog vs. Digital Comparison

Accuracy: Figure 4.7 shows that, when published [121], the Scaled Neu-

ral Predictor was the most accurate neural predictor measured, though not

48

competitive from a power perspective (requiring several watts to make a pre-

diction). The Scaled Neural Analog Predictor incurs a small loss in potential

prediction accuracy due to the use of non-ideal analog circuits, yet main-

tains higher accuracy than any previous neural predictor. The analog version

achieves an average accuracy of 5.18 MPKI compared to 5.06 for the digital

version; thus, the imprecision of the analog circuit results in only a .12 MPKI

decrease in accuracy. Piecewise linear branch prediction, which is less feasible

than SNAP, results in 5.4 MPKI. As such, the Scaled Neural Analog Predictor

is more accurate than the piecewise linear predictor, despite aggressive tun-

ing and extensions to increase PWL accuracy. L-TAGE achieves an average

accuracy of 4.91 MPKI.

Power: The total power consumed by the prediction step includes both dig-

ital table lookups and the dot-product computation. A precise, digital imple-

mentation of Scaled Neural Prediction is infeasible due to the 128 expensive

multiply operations required for scaling the weights vector by coefficients. At

3GHz and 45nm, a single 8-bit digital multiply-add operation consumes ap-

proximately 32mW [46], which is more than the power required for the total

dot-product computation in the analog domain. Running at 3GHz with a

1V supply voltage, the average analog power required to obtain high predic-

tion accuracy is 7.4mW. At slower clock speeds, however, high accuracy can

be achieved at lower power levels; for example, at 1GHz, the 0.4mW power

configuration achieves high accuracy.

49

The total dynamic read power at maximum frequency is estimated to

be 117mW. For comparison, the power consumed by the various memory struc-

tures of L-TAGE (a table-based predictor that does not require a computation

step) is estimated at 112mW. Thus, the memory components of the two pre-

dictors have comparable dynamic power, and the analog computation of the

dot product is a small fraction of the total power consumed by the predictor.

Training may also require significant amounts of power. For training,

the predictor update requires the use of an array of narrow up/down counters.

On the various benchmarks simulated, including SPEC CPU2006, the weights

need to be adjusted 10% of the time on average; the other 90% of the time

the adders are idle. This observation supports the possibility of multiplexing

fewer up/down counters over time.

Read power and update power could potentially be decreased through

the use of analog storage [107, 133]. In particular, the neural training algorithm

uses simple increment and decrement operations to adjust weight values, which

is more conducive to efficient analog storage updates than arbitrary write

operations.

4.5.4 State-of-the-Art Predictors

The 2011 Championship Branch Prediction Competition (JWAC-2) in-

cluded augmented versions of both the L-TAGE predictor and the SNAP pre-

dictor. The Optimized Scaled Neural Branch Predictor (OH-SNAP) [63] makes

several optimizations to the SNAP predictor; the optimization that produces

50

the largest increase in predictor accuracy is the use of a dynamic vector of co-

efficients (represented as 24-bit fixed-point values) to scale the weights vector

in place of the static coefficients vector utilized in the SNAP predictor. When

evaluated in the JWAC-2 infrastructure, which included a set of 40 traces pro-

vided by Intel and a 64KB budget for predictor state, OH-SNAP results in

3.78 MPKI – a 3.1% improvement over L-TAGE (at 3.90 MPKI) and a 7.6%

improvement over the SNP predictor (at 4.09 MPKI). The dynamic coefficient

improvement alone increased accuracy by 7% over SNP.

Despite the 24-bit multiplication utilized in OH-SNAP, the requirement

of only a single-bit output prediction from a simple, threshold activation func-

tion drastically decreases effects on accuracy due to range pressure in the ana-

log domain. One possible analog implementation of OH-SNAP would scale the

inputs (represented as currents) by variable resistances that are determined by

the scaling coefficients. This design would be similar to that of the neural ac-

celerator discussed in Chapter 5. A prediction accuracy estimate for an analog

implementation of OH-SNAP would require transistor-level simulations.

Two TAGE-based predictors, TAGE-ISL and TAGE-LSC, showed higher

accuracy on average than the OH-SNAP predictor; however, OH-SNAP per-

formed better on the 7 most unpredictable benchmarks [118]. As such, research

in branch prediction will likely continue down both paths. Additionally, push-

ing neural-predictor weight storage into the analog domain has the potential to

enable both power and accuracy advantages over table-based predictors, which

motivates continued exploration of neural prediction in conjunction with ad-

51

vancements in resistive memory technologies.

4.6 Conclusions and Implications

Neural branch predictors occupy an interesting point in the space of

hardware neural-network designs – that of microarchitectural integration. This

analog neural predictor work presents an initial proof of concept for incorpo-

rating analog design techniques at the microarchitecture level to exploit the

benefits of approximate computing, i.e. to trade accuracy for energy efficiency

when 100% accuracy is not required. The context of branch prediction ad-

dresses the historic challenges of analog design – programmability, generality,

and accuracy. Additionally, a neural approach compensates for computation

inaccuracy with online training.

This chapter explores the tradeoff space of a Scaled Neural Analog

Predictor in terms of accuracy, energy efficiency, and performance. The 45nm

analog design can operate over a range of power and clock-speed configura-

tions, and at 3GHz and 7.4mW, shows an increase of only .12 MPKI over an

ideal, digital implementation, while saving orders of magnitude in power con-

sumption over a digital version. At 1GHz, the 0.4mW power configuration,

which runs on leakage currents alone, achieves accuracy close to a precise,

digital implementation. The Scaled Neural Analog Predictor represented the

most accurate, feasible neural predictor in the literature at the time of pub-

lication [121], and subsequent work assuming an analog implementation has

further improved neural predictor accuracy [63]. Future implementations may

52

reduce the lookup and update power by pushing these functions into the ana-

log portion of the design as well, using multi-level memory cells to adjust the

weighted currents directly, rather than performing a digital-to-analog conver-

sion.

4.6.1 Contributions

Previous neural branch predictors implement the dot-product step us-

ing many relatively slow and power-inefficient digital adders and a pipelining

scheme that reduces accuracy. This design uses fast analog circuits for the

dot-product step, greatly improving power and efficiency and eliminating the

need for pipelining, which results in improved accuracy and implementation

feasibility despite inaccurate analog computation. By making more aggressive

computation functions feasible in the prediction loop, analog techniques open

the door for more aggressive neural prediction algorithms.

More broadly, the work presented in this chapter signals a trend to-

ward improving power and latency in microarchitectures by mixing analog and

digital circuitry in situations where 100% precision is not necessary. Microar-

chitecture constructs that utilize prediction and confidence estimation [47], as

well as constructs that perform tasks in resource allocation (caches, memory

bandwidth, and power management, for example) and scheduling (instruc-

tion scheduling, task scheduling, and memory-access scheduling, for exam-

ple) will benefit from the work presented in this chapter. It has been shown,

for example, that a neural model can allow sophisticated resource allocation

53

and scheduling policies that capture complex relationships between monitored

system variables and application execution characteristics [84]. Similarly, a

self-optimizing DRAM controller has been proposed that optimizes the long-

term performance impact of scheduling decisions through reinforcement learn-

ing [60]. Improvements in the feasibility of implementing these dynamic opti-

mization strategies will enable further improvements in energy-efficient com-

puting.

Although the utilization of microarchitecture-level approximate com-

puting enables improvements in application performance and energy efficiency,

these gains are limited by the requirement of precise computation at the appli-

cation level. Chapter 5 relaxes this requirement of application-level accuracy

to explore the potential for higher gains in performance and energy efficiency

with the utilization of analog hardware.

54

Chapter 5

Analog Neural Acceleration

As outlined in Chapter 1, this dissertation aims to answer the questions:

Can analog circuits be successfully integrated into general-purpose computing

to provide performance and energy savings? And, what is required to address

the historical analog challenges of inaccuracy, programmability, and a lack of

generality, to enable such an approach?

The careful application of analog circuits to approximate computing

tasks, where 100% computation accuracy is not required, can circumvent

the restrictions of analog inaccuracy and enable the use of analog circuits

to provide performance and energy efficiency gains in general-purpose, high-

performance computing. The analog neural predictor described in Chap-

ter 4 integrates approximate analog circuits at the microarchitecture level;

this microarchitecture-level task does not reduce application-level accuracy,

programmability, or generality. This chapter aims to further investigate the

potential gains in the tradeoff between accuracy and performance and energy

efficiency by allowing for application-level inaccuracy.

Error-tolerance has been shown to be a common characteristic among

emerging workloads [25, 40, 77, 134]. For example, these approximation-

55

tolerant applications may compute on noisy data, may inherently use ap-

proximation techniques (e.g. machine learning), or may use approximation

to decrease the computation load of complex operations on large data sets.

This chapter investigates a neural approach to application-level, ap-

proximate computing in the form of a mixed-signal, neural accelerator. It uti-

lizes prior work on a compile-time technique that translates approximation-

tolerant code segments, written in conventional programming languages, to

a neural network computation structure that approximates the desired re-

sults [37]. This code transformation maintains programmability by not re-

quiring significant changes to the programming model. The approximate code

segment is translated to a more fixed-function neural model for computation,

which supports the possibility of an analog implementation.

As illustrated in Figure 1.3, the mixed-signal, neural accelerator de-

scribed in this chapter aims to address the historical challenges of an analog

computing in the following ways:

Generality: Accelerators typically provide benefits in performance and en-

ergy efficiency at the expense of generality through application-specific or

domain-specific designs. To maintain a higher level of generality, we utilize

prior work that translates conventionally written, approximation-tolerant code

segments to a neural model of computation [37]. A neural approach assists in

maintaining generality as neural networks can approximate functions across

application domains [55]. The compilation techniques described in this chap-

56

ter further support generality as they target the enablement of performing

regression tasks with reasonable accuracy in the presence of hardware restric-

tions, which increases the range of applications that can benefit as compared

to those that can be mapped to simple classification tasks.

Programmability: While the analog neural predictor work presented in

Chapter 4 utilizes the microarchitecture abstraction layer to address pro-

grammability, the work presented in this chapter leverages prior work on a

digital neural accelerator that transforms conventionally written, approximate

code to a neural model of computation through the use of simple programmer-

given annotations that label an error-tolerant code segment as approximable [37].

Section 5.1 gives an overview of this prior work.

Accuracy: As described in Chapter 3, analog signal range limitations re-

strict the variety of implementable network topologies, activation functions,

and effective computation bit widths, potentially limiting accuracy and, thus,

the number of applications that can benefit from this approach. Section 5.3

investigates the effect of these analog-imposed restrictions and offers compile-

time solutions to compensate for the analog shortcomings.

Section 5.1 gives a high-level overview of the workflow and framework

for accelerating approximation-tolerant code segments on an Analog - Neu-

ral Processing Unit (A-NPU). Section 5.2 describes the design of the recon-

figurable, mixed-signal, neural accelerator, which includes the analog circuit

57

A"NPU&
Circuit&Design&

Annotated&
Source&Code

Profiling&Path&for&
Training&Data&
Collec;on

Training&Data
A"NPU&

High"Level&Model&

Custom&Training&
Algorithm&for&

Limited"Precision&
Analog&Accelerator

Trained&Neural&
Network

Instrumented&
Binary

Accelerator&
Config

Design

A"NPU

CORE

Accelera;on

Code&
Genera;on

Programmer

Programming Compila;on

Figure 5.1: Framework for using analog computation to accelerate code written
in conventional languages [4].

design of a basic neural computation unit, or ANU (Analog Neural Unit).

Section 5.3 presents compile-time techniques that address inaccuracy due to

restrictions in topology, activation function, and bit widths that manifest due

to design-time challenges of analog range restrictions. The work presented in

this chapter is a first step toward integrating analog circuits into modern micro-

processors to achieve gains in energy efficiency across approximation-tolerant

application domains. Section 5.6 discusses opportunities for future work to ad-

dress the additional challenges described in Chapter 3, i.e. manufacture-time

non-idealities and run-time noise.

5.1 Background and Overview

This section outlines the high-level framework for enabling code exe-

cution on an Analog - Neural Processing Unit, or A-NPU, that accelerates

approximation-tolerant portions of program code despite the restrictions of

analog hardware. The workflow, shown in Figure 5.1, can be partitioned into

four parts: programming, design, compilation, and execution. The work pre-

sented in this thesis deviates from prior work [37] in the areas of design and

58

one aspect of compilation stage. The programming model, compilation stages

of training data collection and code generation, and the accelerator-CPU com-

munication interface do not deviate from prior work [37]. The four workflow

components are briefly described in this section (following the diagram in Fig-

ure 5.1) to set the context and framework for neural acceleration. Section 5.2

describes the details of the mixed-signal neural accelerator design, and Sec-

tion 5.3 describes compilation techniques for enabling the utilization of efficient

but limited analog computation.

5.1.1 Programming

We leverage the programming model described in prior work [37], which

allows programmers to mark error-tolerant regions of code as candidates for

transformation using a simple keyword, approximable. Explicit annotation

of code for approximation is a common practice in approximate programming

languages [109, 15]. A natural candidate region for acceleration is an error-

tolerant function of any size, which can contain function calls, loops, and

complex control flow. In addition to error tolerance, the candidate function

must have well-defined inputs and outputs (e.g the number of inputs and out-

puts must be known at compile time). Additionally, for this architecture, the

code region must not read any data other than its inputs, nor affect any data

other than its outputs. No major changes are necessary to the programming

language beyond the addition of the approximable keyword.

59

5.1.2 Design

Mixed-signal, neural accelerator design. Mixed-signal, neural hardware

allows for the acceleration of multilayer-perceptron computation. Section 5.2

describes a reconfigurable A-NPU circuit design that utilizes a combination of

digital storage and efficient analog computation blocks (ANUs) that compute

a single neuron. The placement of the analog-digital boundary at each neuron

serves to increase flexibility, or the scope of network topologies that can be

accelerated on the hardware, over a more fixed-function, fully analog design.

The accelerator must support a large enough variety of neural network topolo-

gies, while adhering to the analog-imposed network restrictions, to be useful

over a wide range of applications.

Exposing analog circuits to the compiler. Although the incorporation

of analog computation presents the opportunity for gains in efficiency over a

digital accelerator, analog neural hardware suffers from reduced computation

accuracy and limitations due to physical signal range restrictions. These ana-

log challenges impose limitations on the neural computation that can result in

decreased network approximation capabilities, and, consequently, a decreased

range of applications that can utilize the acceleration. These hardware short-

comings, however, can be exposed as a high-level model to the compiler, which

allows for compensation during the training phase. Specifically, three design-

time, analog hardware characteristics can be exposed: (1) limited precision

for input, output, and weight encodings, (2) the behavior of the activation

60

function (sigmoid), and (3) limitations on the space of feasible neural network

topologies.

5.1.3 Compilation

The compiler aims to mimic approximation-tolerant regions of code

with neural networks that can be executed on the neural accelerator. While

respecting the topological limitations of the analog hardware, the compiler

searches the topology space of feasible neural networks and selects and trains

a neural network to produce outputs comparable to those produced by the

original code segment. Compilation occurs in three phases: (1) training-data

collection, (2) network topology selection and training, and (3) code gener-

ation. Compilation stages (1) and (3), briefly described here, are leveraged

from prior work [37]. Stage (2) deviates from prior work by adding techniques

to compensate for analog hardware limitations known at design time. These

techniques are described in more detail in Section 5.3.

1) Profile-driven training-data collection. During a profiling stage, the

compiler runs the application with representative profiling inputs and collects

the input/output pairs for the candidate code region. This step provides the

training data for the rest of the compilation workflow.

2) Topology selection and training. The compiler uses the collected

training data to train a multilayer perceptron neural network, choosing a net-

61

work topology, i.e. the number of neurons and their connectivity, and tak-

ing a gradient descent approach to find the synaptic weights of the network,

while minimizing the error with respect to the training data. This compila-

tion stage does a neural topology search to find the smallest neural network

that (a) adheres to the organization of the analog circuit and (b) delivers ac-

ceptable accuracy at the application level. The network training algorithm,

which learns favorable synaptic weights, uses a combination of a resilient back-

propagation algorithm, RPROP [57], that we found to outperform traditional

backpropagation for restricted activation function behavior, and a continuous-

discrete learning method, CDLM [23], that attempts to correct for error due

to limited-precision computation. Section 5.3 describes these techniques that

mitigate losses in accuracy due to analog-imposed restrictions on the neural

computation.

3) Code generation for hybrid analog-digital execution. In the code

generation phase, the compiler replaces each instance of the original program

code with code that initiates a computation on the analog neural accelerator.

ISA extensions given in prior work [37] specify the neural network topology,

send input and weight values to the A-NPU, and retrieve computed outputs

from the A-NPU.

62

5.1.4 Execution

As in prior work [37], the core communicates with the A-NPU through

three FIFO queues: one specifying network configuration, one for sending

inputs, and one for retrieving outputs. The queues are accessed using ISA

extensions in the form of enqueue and dequeue instructions. The CPU sets

up the A-NPU by sending configuration queueing instructions that specify the

network topology, the synaptic weights, the number of inputs, and number

of outputs. To invoke a computation on the A-NPU, the CPU issues a set of

input queueing instructions with the input data. When all inputs are received,

the A-NPU begins computation and populates the output queue. The program

executes a set of dequeue instructions to retrieve each output.

5.2 Mixed-Signal, Neural Accelerator (A-NPU) Design

This section describes the design of a mixed-signal, neural accelerator,

or A-NPU (Analog - Neural Processing Unit). The A-NPU accelerates the

computation of a multilayer-perceptron neural network given a set of inputs,

weights, and a network topology.

We define an ANU, or Analog Neural Unit, as the basic unit of compu-

tation that computes the output of a single neuron. The ANU circuit design

is described in Section 5.2.1. To increase network topology flexibility, we set

the analog-digital boundaries at the ANU level. Section 5.2.2 describes a re-

configurable, mixed-signal architecture that can perform the computation of

a variety of network topologies.

63

x0

y = sigmoid(
X

(xiwi))

w0 wi wn

xi xn

X
(xiwi)

… …

I(xi) I(xn)I(x0)

R(w0) R(wi) R(wn)

ADC

X
(I(xi)R(wi))

y ⇡ sigmoid(
X

(I(xi)R(wi)))

DAC DAC DAC

x0 xi xn

… …

(a) (b)

Figure 5.2: One neuron and its conceptual analog circuit [4].

5.2.1 Analog Neural Unit (ANU) Circuit Design

As Figure 5.2a illustrates, each neuron in a multilayer perceptron takes

in a set of inputs (xi) and performs a weighted sum of those input values

(
∑

i xiwi). The weights (wi) are the result of training the neural network on

training data (compile time) and are constant during the recall phase (execu-

tion time). After the summation stage, which produces a linear combination

of the weighted inputs, the neuron applies a non-linear function (sigmoid) to

the result of the summation.

Figure 5.2b depicts a conceptual analog circuit that performs the three

necessary operations of a neuron: (1) scaling inputs by weights (xiwi), (2)

summing the scaled inputs (
∑

i xiwi), and (3) applying the non-linear func-

64

tion (sigmoid). This conceptual design first encodes the digital inputs (xi)

as analog current levels (I(xi)). Then, these current levels pass through a set

of variable resistances whose values (R(wi)) are set proportional to the cor-

responding weights (wi). The voltage level at the output of each resistance

(I(xi)R(wi)), is proportional to xiwi. These voltages are then converted to cur-

rents that can be summed quickly according to Kirchhoff’s current law (KCL).

Analog circuits only operate linearly within a small range of voltage and cur-

rent levels [100], outside of which the transistors enter saturation mode with

IV characteristics similar in shape to a non-linear sigmoid function. Thus,

at a high level, the non-linearity is naturally applied to the result of sum-

mation when the final voltage reaches the analog-to-digital converter (ADC).

Compared to a digital implementation of a neuron, which requires multipliers,

adder trees, and sigmoid lookup tables, the analog implementation leverages

the physical properties of the circuit elements and can be orders of magnitude

more efficient.

Figure 5.3 illustrates the detailed design of a single analog neuron

(ANU). The analog-digital boundary at the ANU level places computation

in the analog domain and storage in the digital domain. Digital input and

weight values are represented in sign-magnitude form. In the figure, sxi and

swi represent the sign bits of the inputs and weights, and xi and wi repre-

sent the magnitudes. Digital input values are converted to the analog domain

through current-steering DACs that translate digital values to analog currents.

Current-steering DACs are used for their speed and simplicity. In Figure 5.3,

65

Current'
Steering'
DAC

x0sx0w0sw0

Resistor'
Ladder

Current'
Steering'
DAC

Resistor'
Ladder

Diff'
Pair

…

V (|w0x0|)

I+(w0x0)

V +
⇣X

wixi

⌘

swn
sxnwn xn

R(|w0|) R(|wn|)

I(|xn|)

V (|wnxn|)

I+(wnxn)

sy

y

Flash
ADC

y ⇡ sigmoid
⇣
V
⇣X

wixi

⌘⌘

I(|x0|)

Diff'
Pair

I�(w0x0)

I�(wnxn)

V �
⇣X

wixi

⌘
Diff'
Amp

+

-

+

;

Figure 5.3: Circuit design of a single analog neuron (ANU).

I(|xi|) is the analog current that represents the magnitude of the input value,

xi. Digital weight values control resistor-string ladders that create a vari-

able resistance depending on the magnitude of each weight (R(|wi|)) . We

use a standard resistor ladder thats consists of a set of resistors connected

to a tree-structured set of switches. The digital weight bits in wi control

the switches, adjusting the effective resistance (R(|wi|)) seen by the input

current (I(|xi|)). These variable resistances scale the input currents by the

digital weight values, effectively multiplying each input magnitude by its cor-

66

responding weight magnitude. The output of the resistor ladder is a voltage:

V (|wixi|) = I(|xi|) × R(|wi|). The resistor network requires 2m resistors and

approximately 2m+1 switches, where m is the number of digital weight bits.

This resistor ladder design has been shown to work well for m ≤ 10. Our

circuit simulations show that only minimally sized switches are necessary.

V (|wixi|) as well as the XOR of the weight and input sign bits feed

a differential pair that converts voltage values to two differential currents

(I+(wixi), I
−(wixi)) that capture the sign of the weighted input. These dif-

ferential currents are proportional to the voltage applied to the differential

pair, V (|wixi|). If the voltage difference between the two gates is kept small,

the current-voltage relationship is linear, producing I+(wixi) = Ibias
2

+ ∆I and

I−(wixi) = Ibias
2
− ∆I. Resistor ladder values are chosen such that the gate

voltage remains in the range that produces linear outputs, and consequently

a more accurate final result. Based on the sign of the computation, a switch

steers either the current associated with a positive value or the current associ-

ated with a negative value to a single wire to be efficiently summed according

to Kirchhoff’s current law. The alternate current is steered to a second wire,

retaining differential operation at later design stages. Differential operation

combats environmental noise and increases gain, the later being particularly

important for mitigating the impact of analog range challenges at later stages.

Resistors convert the resulting pair of differential currents to voltages,

V +(
∑

iwixi) and V −(
∑

iwixi), that represent the weighted sum of the inputs

to the ANU. These voltages are used as input to an additional amplifica-

67

tion stage (implemented as a current-mode differential amplifier with diode-

connected load). The goal of this amplification stage is to significantly magnify

the input voltage range of interest that maps to the linear output region of

the desired sigmoid function.

The amplified voltage is used as input to an analog-to-digital converter

(ADC) that converts the analog voltage to a digital value. We chose a flash

ADC design (named for its speed), which consists of a set of reference voltages

and comparators [1, 69]. The ADC requires 2n comparators, where n is the

number of digital output bits. Flash ADC designs are capable of converting 8

bits at a frequency on the order of gigahertz. We require 2–3 mV between ADC

quantization levels for accurate operation and noise tolerance. Typically, ADC

reference voltages increase linearly; however, we use a non-linearly increasing

set of reference voltages to capture the behavior of a sigmoid function, which

also improves the accuracy of the analog sigmoid, as compared to an analog

sigmoid block implementation.

Analog range limitations. There are two places in this ANU design with

notable range limitations that affect the optimal bit width of the inputs, out-

puts, and weight values, the number of allowable inputs to the neuron (compu-

tation width), and the behavior of the sigmoid activation function. The range

at the gate of the differential pair, V (|wixi|), which represents the multipli-

cation of an input value and its corresponding weight value, is limited to one

that keeps the current-steering DAC transistors operating in the saturation

68

region.

Similarly, the node voltages under the differential pair transistors,

V +(
∑

iwixi) and V −(
∑

iwixi), must be kept in a range that upholds the

linear relationship between voltage input and current output for the differen-

tial pair. This requirement limits both the computation width of the ANU,

which results in network topology restrictions by limiting the number of inputs

per neuron, as well as the input voltage range at the ADC. A limited voltage

range at the ADC input limits the number of bits that can be used to describe

the output, as the ADC requires 2 - 3 mV between quantization levels for

robustness in the presence of noise.

The node voltage requirements under the differential pair also affect the

behavior of the sigmoid function. A differential amplifier stage attempts to ex-

tend the range of input signals that translate to an output on the linear portion

of the function curve; however, modeling high activation steepness behavior

requires larger amplification, as a smaller signal range must be translated to

the various output values between the extremes. This challenge leads to an

analog implementation favoring shallow activation steepness behavior in the

sigmoid, though this requirement decreases the achievable network accuracy,

in general, as steep non-linear functions have a higher capacity for accurate

learning. Section 5.3 addresses the effects of limited bit-width value represen-

tations, limited computation width (limited network topology connectivity),

and restrictions on activation function steepness on the potential of a neural

network to mimic program code through compile-time training techniques.

69

Critical design point and hardware-software accuracy tradeoff. Where

this ANU design implements the sigmoid function as part of the analog-to-

digital converter (ADC) by setting the ADC reference voltages in a non-linear

fashion, other work has utilized specific analog sigmoid blocks [56]. Though

transistor current-voltage characteristics behave in a manner that resembles

a non-linear sigmoid function, a challenge exists in integrating that behavior

while meeting the input and output range requirements that (mathematically)

support a neural network that can be applied generally and achieve high net-

work accuracy.

For example, to implement neural hardware that is capable of solving

regression tasks with 8-bit outputs, the output range of the sigmoid must al-

low for differentiation between 256 signal levels. Though an analog sigmoid

compute block produces an output that is a non-linear function of the input,

this output range must be large enough for eventual conversion to the dig-

ital domain; furthermore, the front-end circuit design must produce inputs

within the specific operating range of the sigmoid block that also adheres

to the mathematical specifications of the non-linear activation function uti-

lized in the neural network being accelerated. That is, the physical input and

output signals of the non-linear circuit block must coincide with the mathe-

matical neural network requirements for learning and function approximation.

Non-linear functions with traditional values of activation steepness result in a

challenging implementation problem, though they are required for the learning

and approximation capacities of the network, particularly in the case of learn-

70

ing complex functions, such as those present in regression tasks (as opposed

to classification).

The satisfaction of this hardware-software agreement on activation func-

tion behavior must be explicitly addressed, and the data density at the input

to the non-linear function (the input to the differential amplifier in Figure 5.3),

along with the requirement of a multi-bit output, proved to be a critical point

in this design. This point requires the large amplification (for conversion to

an 8-bit output) of a small physical signal range that mathematically corre-

sponds to the numerical input values of the sigmoid function that translate

to output values between saturation levels (between 0 and 1) according to an

activation steepness sufficient for complex function approximation. Increased

bit widths for inputs and weights, an increased number of inputs per neuron,

and increased activation-function steepness requirements all pose challenges

for an analog implementation due to increased data density and range limita-

tions at this circuit point; however, these network attributes are also critical

for supporting high network accuracy over a broad range of applications.

Although some relaxation from a full-precision, fully connected MLP

neural network can be tolerated to utilize a hardware implementation with

specific limitations, this relaxation can only occur to the extent that the neu-

ral network model is still able to learn and produce high quality outputs.

Additionally, pushing the circuit beyond it’s limitations decreases accuracy.

This hardware-software accuracy tradeoff can be addressed by incorporating

the hardware limitations into the software learning process. As such, Sec-

71

tion 5.3 explores software techniques to mitigate the limitations of an analog

implementation on the achievable network accuracy.

Alternative circuit designs. Analog neural hardware has typically imple-

mented the multiplication of inputs and weights by scaling currents (which

represent the inputs) by variable resistances (which represent the weights).

Rosenblatt’s first hardware perceptron, the Mark I [50], used potentiometers to

provide variable resistances to represent weight values. Other implementations

utilize slightly different approaches, but all are surprisingly similar [90, 53, 79].

Intel’s ETANN chip, for example, represents inputs as voltages and stores

weight values as electrical charge on floating gates that feed Gilbert multi-

pliers and produce differential output currents for the summation stage [53].

Where the ANU design scales the gate voltage in a differential pair that uses

fixed bias currents, ETANN effectively utilizes the weight value to create cur-

rents of varying sizes and then uses only the input voltages at the gates of the

differential-amplifier components that make up the Gilbert multiplier. The

multiplier cell can be designed with varying complexity, however, all are lim-

ited by challenges in limited signal range and linearity. The goals of the neural

hardware will determine what tradeoffs are made between linear operation,

range, power, speed, noise tolerance, etc., with networks targeting regression

tasks being more sensitive to these design choices due to the increased precision

requirements. However, as show in Section 5.3, software training techniques

can compensate for the limitations due to analog hardware.

72

Advances in analog storage technologies could benefit the ANU design

presented in this chapter. For example, weights stored in resistive memory

cells (ReRAM), which act as variable resistors, could replace the resistor lad-

ders described in this design (potentially requiring only a single device for each

weight). The use of ReRAM weight storage could provide decreased area, de-

lay, and noise due to the removal of digital switching. Advancements in analog

storage might also support the removal of costly analog-to-digital conversion

between neurons by providing intermediate analog storage that serves to re-

scale or buffer values between computation layers. In this case, inaccuracies

in analog storage would replace the inaccuracies introduced by signal quanti-

zation between neurons.

The ANU design described in this section would also benefit from in-

creased gain in the differential amplification stage. As compared to the single-

stage differential amplifier implemented in the ANU circuit design, a two-stage

amplifier design could possibly enable the implementation of a sigmoid func-

tion with increased activation steepness (though this comes at the cost of

increased delay).

Though other various analog sigmoid blocks have been proposed, the

integration of such circuits is a challenge (due to signal range input and out-

put requirements) that is implementation and goal dependent. For example,

regression poses a greater challenge than classification due to the increased pre-

cision requirements. Transistor-level circuit simulations of several analog sig-

moid circuits previously proposed in the literature [56] did not show increased

73

accuracy or reduced range pressure as compared to the signal amplification and

non-linear ADC conversion technique chosen for the ANU design. Though new

analog device characteristics might exhibit favorable non-linear function be-

havior, similar challenges will likely exist, at least in the context of targeting

regression tasks, due to the limited input and output signal ranges. Even with

improved sigmoid implementations, software techniques that maintain poten-

tial network accuracy, while limiting the requirements of the hardware, will

likely be required.

Analog-digital boundaries. As mentioned in Chapter 3, the placement

of analog-digital boundaries can ease the drawbacks of an analog approach

(e.g., inaccurate replication of currents, increased capacitive loads with multi-

ple signal consumers, and increased susceptibility to noise when routing small

signals over large distances). As such, we set the analog-digital boundaries at

the ANU level to mitigate the effects of analog non-idealities in signal routing,

while providing the flexibility to compute a range of network topologies with

varying connectivity, as it has been shown that the network topology that

best minimizes error with respect to the target outputs varies with applica-

tion [37, 90, 112]. Converting neuron outputs to the digital domain allows

for the accurate routing of neuron outputs of one layer to the inputs of the

next layer in a flexible (as opposed to fixed) fashion. This flexibility in spec-

ifying the network connectivity increases generality, such that a larger scope

of approximation-tolerant programs can utilize the neural acceleration. The

74

Column'Selector

8"Wide
Analog-
Neuron

W
ei
gh
t'B

uff
er 8"Wide

Analog-
Neuron

W
ei
gh
t'B

uff
er 8"Wide

Analog-
Neuron

W
ei
gh
t'B

uff
er 8"Wide

Analog-
Neuron

W
ei
gh
t'B

uff
er

Row'Selector

Output'FIFO

Config'FIFO
Input'FIFO

…

Figure 5.4: Mixed-signal, neural accelerator (A-NPU). Only four ANUs are
shown. Each ANU processes eight inputs [4].

following section describes a mixed-signal, reconfigurable A-NPU design, that

enables the flexible scheduling of computation on analog neurons.

5.2.2 Reconfigurable A-NPU

Figure 5.4 illustrates the design a reconfigurable, mixed-signal A-NPU

that can compute a wide variety of neural topologies. The A-NPU is a time-

multiplexed architecture where the algorithmic neurons are mapped to the

ANUs based on a static scheduling algorithm, which is loaded to the A-NPU

before invocation. For simplicity, the figure shows four ANUs; however, the

actual design evaluated in Section 5.4 allows eight algorithmic neurons to be

computed in parallel. Due to analog range limitations, we restrict the total

75

number of inputs to an analog neuron to eight. Section 5.3 discusses the impact

of this topology connectivity restriction on network accuracy.

Architectural Interface. We adopt the same FIFO-based architectural in-

terface through which a digital NPU communicates with the processor [37].

Like prior work, the A-NPU is tightly integrated to the processor pipeline,

and the processor communicates with the ANUs through the Input, Output,

and Config FIFOs shown in Figure 5.4. The processor ISA is extended with

special instructions that can enqueue and dequeue data from these FIFOs.

Although the Input, Output, and Config interface FIFOs mirror those

in the digital NPU [37], differences between analog and digital computation

warrant variations in the organization of internal computation and storage

structures. Where a digital neuron computes a neuron output in a time-

multiplexed manner (e.g. the dot-product computation is implemented with

multiply-accumulate operations over multiple time steps), an analog neuron

achieves efficiency through parallel computation. For example, an analog cir-

cuit can quickly sum currents, though those currents must be available at the

same moment time. As such, the organization of internal computation and

storage differs from that of a digital implementation.

Computing a Multilayer-Perceptron Network. A multilayer-perceptron

network consists of layers of neurons, where the outputs of one layer serve as

inputs to the next. The A-NPU starts computation at the input layer and pro-

76

ceeds with the computations of the neurons layer by layer. The Input Buffer

always contains the inputs to the neurons, either coming from the processor or

from the previous layer’s computation. The Row Selector determines which

entry of the input buffer will be fed to the ANUs.

As depicted in Figure 5.4, each ANU is augmented with a dedicated

Weight Buffer that stores the weight values. The Input Buffer and Weight

Buffers synchronously provide the inputs and weights for ANU computation

based on a pre-loaded A-NPU configuration order.

The ANUs write their outputs to a single-entry Output Buffer, where

the Column Selector determines which column of the Output Buffer will

be written by the ANUs. After all columns have completed computation, the

neuron results are pushed back to the Input Buffer to enable calculation of

the next layer. If the neuron results correspond to final network outputs, the

results are pushed to the Output FIFO for communication back to the CPU.

The Row Selector and Column Selector are FIFO buffers whose values are

part of the pre-loaded A-NPU configuration. All buffers are digital SRAM

structures.

Generating the A-NPU Configuration. During code generation, the

compiler produces an A-NPU configuration that constitutes the weights and

the schedule. The static A-NPU scheduling algorithm first assigns an order to

the neurons in the chosen neural network topology. This neuron order deter-

mines the order in which the neurons will be computed on the ANUs. Then,

77

the scheduler takes the following steps for each layer of the neural network:

(1) Assign each neuron to one of the ANUs. (2) Assign an order to neurons.

(3) Assign an order to the weights. (4) Generate the order for inputs to be fed

to the ANUs. (5) Generate the order in which the outputs will be written to

the Output Buffer. As in prior work [37], the scheduler also assigns a unique

order to the inputs and outputs of the neural network in which the processor

will communicate data with the A-NPU.

5.3 Compilation to Address Analog-Imposed Challenges

As mentioned in Section 5.1, compilation for A-NPU acceleration con-

sists of three stages: (1) profile-driven training data collection, (2) neural

network topology selection and training, and (3) code generation. This sec-

tion describes neural topology selection and training, which is specific to en-

abling an analog implementation. As described in Chapter 3, analog circuits

exhibit challenges in maintaining computation accuracy due to design-time

signal range limitations, manufacture-time non-idealities, such as process vari-

ation, and run-time noise. This section presents compile-time techniques to

compensate for analog limitations known at design time.

For neural network computation, design-time signal range limitations

place restrictions on the scope of implementable network topologies, the ac-

tivation function behavior, and the effective bit widths of values used in the

computations. Specifically, exposing the following A-NPU characteristics to

the compiler can allow for improvements in network accuracy: (1) number of

78

inputs per neuron, (2) the behavior of the activation function (sigmoid), and

(3) bit widths for input, output, and weight encodings. The compiler incorpo-

rates these exposed circuit characteristics during the neural topology search

and training with the goal of limiting the impact of inaccuracies due to an

analog implementation.

Section 5.3.1 describes the topology selection process that addresses

limitations on the scope of feasible network topologies. For a given network

topology, the compiler utilizes a two-phase, network-training algorithm that

compensates for the analog-imposed limitations known at design time. A pri-

mary training phase (RPROP), described in Section 5.3.2, trains the network

using full-precision values; this baseline training is well-suited to mitigate the

impact of analog limitations on the steepness of the non-linear activation func-

tion. A secondary training phase (CDLM), described in Section 5.3.3 makes

adjustments to the trained network to compensate for errors due to limited-

precision value representation.

5.3.1 Addressing Topology Restrictions

Conventional multilayer-perceptron networks are fully connected, i.e.

the output of each neuron in one layer is routed to the input of each neuron in

the following layer. However, analog range limitations restrict the number of

inputs that can accurately be computed in a neuron (to eight in our design).

Consequently, network connections must be limited, and in many cases, the

network can not be fully connected.

79

Topology selection. Given the analog-imposed restrictions, the compiler

searches the space of possible topologies to find an optimal network for a given

approximation-tolerant code region. A simple algorithm guided by the mean-

squared error of the network determines the best topology given the exposed

restriction when tested on an unseen subset of the profiling data. The error

evaluation uses a typical cross-validation approach; the compiler partitions the

data collected during profiling into a training set, 70% of the data, and a test

set, the remaining 30%. The topology search algorithm trains many different

neural-network topologies using the training set and chooses the one with the

highest accuracy on the test set.

The number of neurons in the input and output layers are predeter-

mined based on the number of inputs and outputs in the candidate function.

As in prior work [37], to bound compilation time because the space of possi-

ble topologies is large, we restrict the search to neural networks with at most

two hidden layers, and we limit the number of neurons per hidden layer to

powers of two up to 32. Additionally, we impose the circuit restriction on the

connectivity between neurons in a sequential, wrapping manner (though the

hardware would support a more complex mapping scheme that also adheres

to the specified number inputs per neuron). For example, if the number of

input neurons is 64, and the number of neurons in following hidden layer is 32,

the first 8 network inputs map to the first hidden-layer neuron, the second 8

inputs to the second hidden-layer neuron, and so on, where the ninth hidden-

layer neuron would also receive the first 8 inputs to the network. The topology

80

search space is further limited by the hardware-specified number of inputs per

neuron because some topology configurations can not be fully utilized. For

example, if a network has 1 output (as defined by the candidate function),

and the number of neuron inputs is restricted to 8, networks with more than 8

hidden-layer neurons in the proceeding layer are pruned from the search space,

as any additional hidden-layer neuron outputs could not be utilized.

Effect of restricted topologies. To show the effect of topology restric-

tions on network accuracy, Figure 5.5 plots the mean-squared error (MSE) for

various topology configurations (both restricted and fully connected) for two

approximation-tolerant benchmarks: blacksholes and kmeans. This figure

illustrates that a reconfigurable topology, where neurons are limited to eight

inputs, can produce comparable results to fully connected networks with a sim-

ilar number of neurons. For reference, the figure also highlights the accuracy

of a fully connected network that also adheres to the analog restriction on the

number of neuron inputs. As shown, adding the capacity for reconfiguration

allows for improved result quality as compared to a fixed implementation.

5.3.2 Addressing Activation-Function Restrictions: RPROP

Traditional training algorithms for MLP networks use a gradient de-

scent approach to minimize the average network error, over a set of training

input-output pairs, by backpropagating the output error information through

the network and iteratively adjusting the weight values to minimize that er-

81

0	

0.0005	

0.001	

0.0015	

0.002	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	

M
SE
	

Number	
 of	
 Hidden	
 Neurons	

blacksholes	

Reconfigurable	
 	
 	
 	
 	
 	
 	
 	
 	
 	

(8	
 inputs	
 /	
 neuron)	

Fully	
 Connected	

6	
 è32è	
 8è1	
 	
 	
 	

6	
 è8è	
 8è1	
 	
 	
 	

(a)

0	

0.002	

0.004	

0.006	

0.008	

0.01	

0.012	

0.014	

0.016	

0.018	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	

M
SE
	

Number	
 of	
 Hidden	
 Neurons	

kmeans	

Reconfigurable	
 	
 	
 	

(8	
 inputs	
 /	
 neuron)	

Fully	
 Connected	

6	
 è32è	
 4è1	
 	
 	
 	
 6	
 è16è	
 8è1	
 	
 	
 	

6	
 è8è	
 8è1	
 	
 	
 	

(b)

Figure 5.5: Network accuracies for limited (eight inputs per neuron), but
reconfigurable, network topologies and fully connected topologies.

82

foreach (training epoch)do
{

foreach (input-output training data pair)do
{

feed forward()

// compute network outputs with given inputs

calculate error()

// calculate error based on target outputs

backpropagate error()

// backpropagate error through the network

update error gradients()

// update error gradient for each weight

}
end
update weights()

}
end

Algorithm 1: Gradient-descent approach to training multilayered
perceptron networks.

ror. The pseudo-code in Algorithm 1 illustrates a batch-mode, gradient descent

training approach.

Standard backpropagation [105] is the most popular gradient descent

algorithm for training MLP networks; we found, however, that the resilient

propagation (RPROP [57]) algorithm was more robust than standard back-

propagation at mitigating the effect of limitations in the behavior of the sig-

moid activation function.

RPROP differs from standard backpropagation in the weight update

task (update weights in Algorithm 1). Backpropagation updates weights as:

83

4wi(t) = −ε δE(t)
δwi

where ε is the learning rate, t is the training iteration (the

current epoch), and δE(t)
δwi

denotes the summed error gradient information for

each weight over all input-output pairs in the training set. That is, back-

propagation determines the size of a weight update based on the size of the

partial derivative of the error function with respect to the weight, as well as

a training parameter referred to as the learning rate. Alternatively, RPROP

adjusts the size of the weight update based on the sign of the partial deriva-

tive, regardless of its magnitude, and without the need for the learning rate

parameter. The RPROP algorithm utilizes the following weight update rule,

where a weight-specific update value, 4i, determines the size of the weight

update [103]:

4wi(t) =





−4i (t), if δE(t)
δwi

> 0

+4i (t), if δE(t)
δwi

< 0

0, otherwise

where

4i(t) =





η+ ∗ 4i(t− 1), if δE(t−1)
δwi

∗ δE(t)
δwi

> 0

η− ∗ 4i(t− 1), if δE(t−1)
δwi

∗ δE(t)
δwi

< 0

4i(t− 1), otherwise

and 0 < η− < 1 < η+.

Each time the partial derivative of the error with respect to a weight

changes sign, which signifies that the previous weight update was too large and

the algorithm jumped over a local minimum, the update value is decreased by

the factor η−. Similarly, if the partial derivative does not change its sign, the

update value is increased by the factor η+ to speed convergence. To update a

weight, if the partial derivative of the error is positive (increasing error), the

84

weight is reduced. Similarly, if the partial derivative is negative, the weight

is increased. Though RPROP contains constant parameters that specify the

size of weight updates, RPROP has been shown to perform well with fixed

values for these parameters, specifically, η− = 0.5 and η+ = 1.2 [103, 57]. Our

experiments confirm that adjusting these parameters did not affect network

accuracy on the benchmarks investigated.

Sensitivity to Activation Function Steepness: The non-linear activa-

tion function utilized in the neurons is often the sigmoid function, given by:

f(x) = 1
1+e−xα

, where α, the activation steepness, defines the slope of the

near-linear portion of the function (between output saturation regions). In-

creasing the value of α increases the slope of this region of interest. Increasing

the slope, however, decreases the range of input values that translate to out-

put levels between the saturation levels. As such, to reduce range pressure,

an analog implementation favors a low activation steepness. Decreasing acti-

vation steepness, however, can decrease the capacity of the network to learn

and produce high-quality network outputs, as the non-linearity in the network

is essential for approximating complex functions. Our experiments show that

the effect of this activation steepness restriction varies depending on training

algorithm.

Figure 5.6 compares backpropagation-trained and RPROP-trained net-

work accuracy, reported as mean-squared error (MSE), over a range of ac-

tivation steepnesses for two sample applications: blacksholes and sobel.

85

0	

0.01	

0.02	

0.03	

0.04	

0.05	

0.06	

0.07	

0.08	

0.09	

0	
 0.2	
 0.4	
 0.6	
 0.8	
 1	
 1.2	
 1.4	
 1.6	

M
SE
	

Ac'va'on	
 Steepness	

blacksholes	
 	

Backpropaga5on	

RPROP	

Circuit-­‐
Supported	

Steepness	

Tradi5onal	

Steepness	
 Range	

(a)

0	

0.01	

0.02	

0.03	

0.04	

0.05	

0.06	

0.07	

0.08	

0.09	

0	
 0.2	
 0.4	
 0.6	
 0.8	
 1	
 1.2	
 1.4	
 1.6	

M
SE
	

Ac'va'on	
 Steepness	

sobel	

Backpropaga5on	

RPROP	

Tradi5onal	

Steepness	
 Range	

Circuit-­‐
Supported	

Steepness	

(b)

Figure 5.6: Backpropagation and resilient propagation (RPROP) sensitivity
to activation-function steepness.

86

The results shown in Figure 5.6 correspond to three-layer networks with 8

hidden-layer neurons and the best-performing learning rate for backpropaga-

tion training; however, these results held for larger networks. Typical acti-

vation steepnesses quoted in the literature (and utilized in prior work on a

digital NPU [37]) range from 0.5 to 1. As shown in Figure 5.6, for an acti-

vation steepness of 1, RPROP and backpropagation achieve similar accuracy.

However, an analog implementation might limit activation steepness by several

orders of magnitude, requiring an activation steepness value of 0.05 or 0.005,

for example. As shown, RPROP significantly outperforms backpropagation

for networks utilizing low activation steepnesses, making it a better choice for

training a network that will be implemented with analog hardware.

Effect on compilation time. In addition to achieving better accuracy

under analog-imposed limitations, RPROP requires less training time when

compared to backpropagation and was developed specifically to speed conver-

gence [103, 57]. Our experiments showed 2x difference in the required training

time for a given network topology. Additionally, the use of RPROP decreases

training time by decreasing the compile-time network search space, as it re-

moves accuracy-dependent parameters, such as the learning rate in backprop-

agation, which limits the number of networks trained and evaluated for the

neural transformation step.

87

5.3.3 Addressing Limited Bit Widths: CDLM

In addition to restrictions on network topology and sigmoid activa-

tion steepness, an analog implementation imposes bit-width restrictions due

to limited signal ranges. Traditional training algorithms that do not consider

limited-precision inputs, weights, and outputs perform poorly when these val-

ues are saturated to adhere to the bit-width requirements that are feasible in

an analog implementation. (Simply limiting weight values during training is

also detrimental to achieving quality outputs because the algorithm does not

have sufficient precision to converge to a quality solution.)

To incorporate bit-width limitations into the training algorithm, a sec-

ond training phase utilizes a customized, continuous-discrete learning method

(CDLM) [23].This approach takes advantage of the availability of full-precision

computation at training time to adjust the network weights to compensate

for errors due to limited-precision value representations. The original CDLM

training algorithm was developed to mitigate the impact of limited-precision

weights on network accuracy. We customize this algorithm by incorporating

the input/output bit-width limitation in addition to limited weight values.

After the initial, full-precision RPROP training phase, the CDLM-

based training phase attempts to compensate for limited-precision value rep-

resentations. The CDLM training pass proceeds in a manner similar to the

initial, RPROP training pass except that a discretized version of the network

is used during the feed forward network calculation. That is, the CDLM-

based training pass discretizes the input, weight, and output values according

88

the the exposed analog specification. The algorithm calculates the new error

and backpropagates that error through the fully precise network using full-

precision computation and updates the weight values according to the RPROP

algorithm also used in phase 1. This process repeats, backpropagating the dis-

crete errors through a precise network until the specified maximum number of

epochs is reached.

The pseudo-code in Algorithm 2 illustrates the two-phase training al-

gorithm. The iBW , oBW , and wBW arguments refer to the analog-imposed

bit widths of the network inputs, outputs, and weights, respectively. We found

that running the second training phase for 10% of the number of epochs of

the initial training phase was sufficient for producing quality outputs. That

is, network accuracy did not increase with additional training epochs beyond

10% of the original training time.

89

train epoch(phase : rprop‖cdlm, iBW, oBW,wBW)
{

foreach (input-output training data pair)do
{

if (phase == rprop)
{

// compute network using full-precision values

feed forward()

}
else
{

// compute network using discrete values

feed forward discrete(iBW, oBW,wBW)

}
calculate error()

backpropagate error()

update error gradients()

}
end

update weights rprop() // update weights according to rprop

}

input : Hardware-supported bit widths for network inputs (iBW),
outputs (oBW), and weights (wBW)

train(iBW, oBW,wBW , numEpochs)
{

// Phase 1 baseline training

for (numEpochs)
{

train epoch(rprop, null, null, null)
}

// Phase 2 corrective training

for (numEpochs*0.1)
{

train epoch(cdlm, iBW, oBW, wBW)

}
}

Algorithm 2: Two-phase network training algorithm.

90

0	

0.01	

0.02	

0.03	

0.04	

0.05	

0.06	

0.07	

0.08	

0.09	

2	
 4	
 6	
 8	
 10	
 12	
 14	

M
SE
	

Number	
 of	
 Weight	
 Bits	

sobel	

Full	
 Precision	

Topology-­‐Restricted	
 Full	
 Precision	

5b	
 in/out	

6b	
 in/out	

7b	
 in/out	

8b	
 in/out	

5b	
 in/out	
 CDLM	

6b	
 in/out	
 CDLM	

7b	
 in/out	
 CDLM	

8b	
 in/out	
 CDLM	

(a)

0.00E+00	

1.00E-­‐05	

2.00E-­‐05	

3.00E-­‐05	

4.00E-­‐05	

5.00E-­‐05	

6.00E-­‐05	

7.00E-­‐05	

8.00E-­‐05	

9.00E-­‐05	

5	
 5.5	
 6	
 6.5	
 7	
 7.5	
 8	

M
SE
	

Number	
 of	
 Weight	
 Bits	

jpeg	

	
 Full	
 precision	

	
 Topology-­‐restricted	
 full	
 precision	

5b	
 in/out	

6b	
 in/out	

7b	
 in/out	

8b	
 in/out	

5b	
 in/out	
 CDLM	

6b	
 in/out	
 CDLM	

7b	
 in/out	
 CDLM	

8b	
 in/out	
 CDLM	

(b)

Figure 5.7: Continuous-discrete learning method (CDLM) compensates for
limited bit widths. Results show accuracy for three-layer networks with 8
hidden neurons and a traditional activation steepness of 0.5. The number of
network inputs for sobel and jpeg exceed the analog-imposed connectivity
restriction. 91

0.00E+00	

5.00E-­‐03	

1.00E-­‐02	

1.50E-­‐02	

2.00E-­‐02	

2.50E-­‐02	

3.00E-­‐02	

3.50E-­‐02	

6	
 7	
 8	
 9	
 10	

M
SE
	

Number	
 of	
 Weight	
 Bits	

4	

Full	
 Precision	

Topology-­‐Restricted	
 Full	
 Precision	

5b	
 in/out	

6b	
 in/out	

7b	
 in/out	

8b	
 in/out	

5b	
 in/out	
 CDLM	

6b	
 in/out	
 CDLM	

7b	
 in/out	
 CDLM	

8b	
 in/out	
 CDLM	

Figure 5.8: Continuous-discrete learning method (CDLM) compensates for
limited bit widths. Results show accuracy for a three-layer network with 8
hidden neurons and a traditional activation steepness of 0.5.

Figures 5.7 and 5.8 show the effectiveness of the CDLM training pass at

compensating for limited-precision value representation for three sample appli-

cations: sobel, jpeg, and fft. In essence, the RPROP baseline-training phase

creates a full-precision baseline that is well-suited to an analog implementa-

tion, and the CDLM training pass allows limited-precision values to approach

that baseline. In this figure, CDLM is compared to a training scheme that

simply saturates input, output, and weight values according to the bit-width

restrictions. (Training with limited-precision weights performed poorly due to

a lack of convergence.)

As shown, the CDLM training phase significantly increases accuracy in

the presence of limited-precision value representation. These figures also show

the full-precision accuracy achievable with and without the analog-imposed

92

topology restriction of eight inputs per neuron. The benchmarks in Figure

5.7 represent the sample applications with a number of inputs larger than the

hardware-specified connectivity limit of eight (9 for sobel and 64 for jpeg).

As such, the input layer and first hidden layer can not be fully connected. This

limited connectivity did not decrease the achievable accuracy for sobel, and

in jpeg, the topology connectivity restriction actually increased achievable

accuracy.

Bit-width sensitivity to activation steepness. The benefits of the CDLM

training pass vary with application depending on the learning requirements of

the network to produce high-quality outputs (where learning more complex

functions requires more bits or more non-linearity in the activation function,

e.g.). For example, kmeans reached accuracy levels comparable to a fully pre-

cise version with fewer than 8-bit inputs, outputs, and weights when trained

without the CDLM pass and assuming a typical activation steepness of 0.5.

However, the analog requirement of a low activation steepness can limit the

learning capacity of the network, and, as such, can require higher precision

in the weights to achieve high quality results. Figure 5.9a illustrates network

accuracy for kmeans assuming an activation steepness of 0.05, which is one

order of magnitude more shallow than those typically used during software

simulation of MLP networks. Figure 5.9b further illustrates the bit-width re-

quirements and benefits of CDLM under restrictions to activation steepness.

In this case, CDLM, in addition to RPROP baseline training, enables the use

93

0	

0.02	

0.04	

0.06	

0.08	

0.1	

0.12	

0.14	

0.16	

0.18	

5	
 6	
 7	
 8	
 9	
 10	
 11	

M
SE
	

Number	
 of	
 Weight	
 Bits	

kmeans	

Full	
 Precision	

Topology-­‐Restricted	
 Full	
 Precision	

	
 6b	
 in/out	

7b	
 in/out	

8b	
 in/out	

6b	
 in/out	
 CDLM	

7b	
 in/out	
 CDLM	

8b	
 in/out	
 CDLM	

(a) non-traditional activation steepness of 0.05

0	

0.02	

0.04	

0.06	

0.08	

0.1	

0.12	

0.14	

0.16	

0.18	

0.2	

7	
 8	
 9	
 10	

M
SE
	

Number	
 of	
 Weight	
 Bits	

kmeans	

Full	
 Precision	
 Topology-­‐Restricted	
 Full	
 Precision	
 7b	
 in/out	
 (ActStp	
 =	
 0.05)	

7b	
 in/out	
 (ActStp	
 =	
 0.025)	
 	
 7b	
 in/out	
 (ActStp	
 =	
 0.005)	
 7b	
 in/out	
 CDLM	
 (ActStp	
 =	
 0.05)	

7b	
 in/out	
 CDLM	
 (ActStp	
 =	
 0.025)	
 7b	
 in/out	
 CDLM	
 (ActStp	
 =	
 0.005)	

(b) varying activation steepness values

Figure 5.9: CDLM and bit-width sensitivity to activation steepness for kmeans
(three-layer network with 8 hidden neurons). The full-precision baselines cor-
respond to a traditional activation steepness of 0.5.

94

of lower-precision value representations and achieves accuracy comparable to

a fully precise network with no limitations on activation-function steepness.

Figure 5.10 shows the relationship between bit width and activation

steepness for two additional approximation-tolerant applications: sobel and

blacksholes. For these benchmarks, CDLM significantly outperforms the

simple saturating weight scheme, and that comparison was removed for clar-

ity. Also, this figure reports accuracy for the input/output bit width above

which accuracy did not improve. For sobel (Figure 5.10a), an activation steep-

ness of 0.05 requires 8-bit weights to achieve accuracy comparable to a fully

precise network, and decreasing activation steepness to 0.025 requires an ad-

ditional weight bit to achieve similar accuracy. blacksholes, however, is able

to achieve accuracy comparable to a fully precise network with 8-bit weights

and an activation steepness of 0.025. Figure 5.11 shows similar relationships

between bit width and activation steepness for inversek2j and fft.

For jpeg, shown in Figure 5.12, in addition to the accuracy improve-

ment due to analog-imposed limited connectivity, shallow activation steepness

values do not result in accuracy degradation, and the potential network accu-

racy actually improves over a full-precision network trained using a traditional

activation steepness of 0.5. Figure 5.12 highlights network accuracy for an ac-

tivation steepness of 0.005, which is two orders of magnitude more shallow

than a typical value, but results held for steepness values in between. This

example further illustrates the benefit of the CDLM pass in compensating for

inaccuracies due to limited precision, as it achieves accuracy comparable to

95

0	

0.01	

0.02	

0.03	

0.04	

0.05	

0.06	

7	
 8	
 9	

M
SE
	

Number	
 of	
 Weight	
 Bits	

	

sobel	

Full	
 Precision	

Topology-­‐Restricted	
 Full	
 Precision	

5b	
 in/out	
 CDLM	
 (ActStp	
 =	
 	
 0.005)	

5b	
 in/out	
 CDLM	
 (ActStp	
 =	
 	
 0.025)	

5b	
 in/out	
 CDLM	
 (ActStp	
 =	
 0.05)	

(a)

0	

0.005	

0.01	

0.015	

0.02	

0.025	

0.03	

0.035	

0.04	

0.045	

5	
 6	
 7	
 8	
 9	

M
SE
	

Number	
 of	
 Weight	
 Bits	

blacksholes	

Full	
 Precision	

Topology-­‐Restricted	
 Full	
 Precision	

6b	
 in/out	
 CDLM	
 (ActStp	
 =	
 0.005)	

6b	
 in/out	
 CDLM	
 (ActStp	
 =	
 0.025)	

6b	
 in/out	
 CDLM	
 (ActStp	
 =	
 0.05)	

(b)

Figure 5.10: Bit width sensitivity to activation steepness. The full-precision
baselines correspond to a traditional activation steepness of 0.5.

96

0.00E+00	

1.00E-­‐02	

2.00E-­‐02	

3.00E-­‐02	

4.00E-­‐02	

5.00E-­‐02	

6.00E-­‐02	

7.00E-­‐02	

8.00E-­‐02	

9.00E-­‐02	

1.00E-­‐01	

7	
 8	
 9	
 10	

M
SE
	

Number	
 of	
 Weight	
 Bits	

4	

Full	
 Precision	

Topology-­‐Restricted	
 Full	
 Precision	

8b	
 in/out	
 CDLM	
 (0.5)	

8b	
 in/out	
 CDLM	
 (0.05)	

8b	
 in/out	
 CDLM	
 (0.005)	

(a)

0	

0.05	

0.1	

0.15	

0.2	

0.25	

7	
 8	
 9	

M
SE
	

Number	
 of	
 Weight	
 Bits	

inversek2j	

Full	
 Precision	
 Topology-­‐Restricted	
 Full	
 Precision	

8b	
 in/out	
 (0.5)	
 8b	
 in/out	
 CDLM	
 (0.5)	

8b	
 in/out	
 (0.05)	
 8b	
 in/out	
 CDLM	
 (0.05)	

8b	
 in/out	
 (0.025)	
 8b	
 in/out	
 CDLM	
 (0.025)	

(b)

Figure 5.11: Bit width sensitivity to activation steepness. The full-precision
baselines correspond to a traditional activation steepness of 0.5.

97

0.00E+00	

2.00E-­‐05	

4.00E-­‐05	

6.00E-­‐05	

8.00E-­‐05	

1.00E-­‐04	

1.20E-­‐04	

1.40E-­‐04	

1.60E-­‐04	

1.80E-­‐04	

5	
 5.5	
 6	
 6.5	
 7	
 7.5	
 8	
 8.5	
 9	
 9.5	
 10	

M
SE
	

Number	
 of	
 Weight	
 Bits	

jpeg	

Full	
 Precision	

Topology-­‐Restricted	
 Full	
 Precision	

6b	
 in/out	
 (ActStp	
 =	
 0.005)	

7b	
 in/out	
 (ActStp	
 =	
 0.005)	

8b	
 in/out	
 (ActStp	
 =	
 0.005)	

6b	
 in/out	
 CDLM	
 (ActStp	
 =	
 0.005)	

7b	
 in/out	
 CDLM	
 (ActStp	
 =	
 0.005)	

8b	
 in/out	
 CDLM	
 (ActStp	
 =	
 0.005)	

Figure 5.12: CDLM accuracy for jpeg (three-layer network with 8 hidden
neurons, 64 inputs, and 64 outputs) for varying activation steepness values.
The full-precision baselines correspond to a traditional activation steepness of
0.5.

98

a full-precision network with 6-bit weights, as opposed to 9-bit weights. Al-

though some applications have lower bit width requirements than others, the

performance and energy evaluation presented in Section 5.4 assumes 8-bit in-

put and output values and 8-bit weights to allow for high potential accuracy

over a range of applications, while adhering to the limitations present in analog

hardware.

5.4 Performance and Energy Evaluation

This section describes the application-level performance and energy

benefits of an A-NPU implementation. This performance and energy eval-

uation utilizes the cycle-accurate simulation and energy modeling framework

of prior work [37], with the addition of analog circuit estimations derived from

the transistor-level ANU design and simulations.

5.4.1 Methodology

Cycle-accurate simulation and energy modeling. We use the MARSSx86

x86-64 cycle-accurate simulator [96] to model the performance of the proces-

sor. The processor is modeled after a single-core Intel Nehalem to evaluate

the performance benefits of A-NPU acceleration over an aggressive out-of-

order architecture1. We utilize the simulator extensions from prior work that

1Processor: Fetch/Issue Width: 4/5, INT ALUs/FPUs: 6/6, Load/Store FUs: 1/1,
ROB Entries: 128, Issue Queue Entries: 36, INT/FP Physical Registers: 256/256, Branch
Predictor: Tournament 48 KB, BTB Sets/Ways: 1024/4, RAS Entries: 64, Load/Store
Queue Entries: 48/48, Dependence Predictor: 4096-entry Bloom Filter, ITLB/DTLB En-

99

Table 5.1: Area estimates for the analog neuron (ANU) [4].

Sub-circuit Area

8×8-bit DAC 3,096 T∗

8×Resistor Ladder (8-bit weights) 4,096 T + 1 KΩ (≈ 450T)
8×Differential Pair 48 T
I-to-V Resistors 20 KΩ (≈ 30 T)
Differential Amplifier 244 T
8-bit ADC 2550 T + 1 KΩ (≈ 450 T)
Total ≈ 10,964 T
∗Transistor with width / length = 1

include ISA-level support for NPU queue and dequeue instructions [37]. We

also augmented MARSSx86 with a cycle-accurate simulator for our A-NPU

design and an 8-bit, fixed-point digital-NPU (D-NPU) with eight processing

engines (PEs) as described in [37]. We use GCC v4.7.3 with -o3 to enable

compiler optimizations. The baseline in our experiments is the benchmark

running solely on the processor without the neural transformation. We use

McPAT [76] for processor energy estimations. We model the energy of an 8-bit,

fixed-point D-NPU using results from McPAT, CACTI 6.5 [91], and work by

Galal and Horowitz [46] to estimate its energy. Both the D-NPU and the

processor operate at 3.4 GHz, while the A-NPU is clocked at one third of the

digital clock frequency, 1.1 GHz at 1.2 V, as an estimate of operating frequency

that allows for acceptable accuracy.

tries: 128/256 L1: 32 KB Instruction, 32 KB Data, Line Width: 64 bytes, 8-Way, Latency:
3 cycles L2: 256 KB, Line Width: 64 bytes, 8-Way, Latency: 6 cycles L3: 2 MB, Line
Width 64 bytes, 16-Way, Latency: 27 cycles Memory Latency: 50 ns

100

ANU Circuit Design. We built a detailed transistor-level SPICE model

of the analog neuron, ANU. We designed and simulated and 8-bit, 8-input

ANU in the Cadence Analog Design Environment using predictive technology

models at 45 nm [94]. We ran detailed Spectre SPICE simulations to un-

derstand circuit behavior and measure ANU energy consumption. We used

CACTI to estimate the energy of the A-NPU buffers. Evaluations consider all

A-NPU components, both digital and analog. For the analog parts, we used

direct measurements from the transistor-level SPICE simulations. For SRAM

accesses, we used CACTI. We built an A-NPU cycle-accurate simulator to

evaluate the performance improvements. Similar to McPAT, we combined

simulation statistics with measurements from SPICE and CACTI to calcu-

late A-NPU energy. All energy and performance comparisons are to an 8-bit,

fixed-point D-NPU (8-bit inputs/weights/multiply-adders). For consistency

with the available McPAT model for the baseline processor, we used McPAT

and CACTI to estimate D-NPU energy.

For comparison with a digital neuron, Table 5.1 provides an estimate of

the ANU area in terms of number of transistors, where T denotes a transistor

with width
length

= 1. As shown, each ANU (which performs eight, 8-bit analog

multiply-adds in parallel followed by a sigmoid) requires about 10,964 tran-

sistors. An equivalent digital neuron that performs eight, 8-bit multiply-adds

and a sigmoid would require about 72,456 T (from which 56,000 T are for

the eight, 8-bit multiply-adds and 16,456 T are for the sigmoid lookup). As

such, the analog neuron requires approximately 6.6x fewer transistors than a

101

Table 5.2: The evaluated benchmarks, characterization of each offloaded func-
tion, training data, and the trained neural network [4].

Benchmark*Name Descrip0on Type
#*of*

Func0on*
Calls

#*of*
Loops

#*of*Ifs/
elses

#*of*
x86@64*

Instruc0on
s

Evalua0on*Input*
Set Training*Input*Set Neural*Network*

Topology

Fully*
Digital*NN*

MSE

Analog*NN*
MSE*(8@bit)

Applica0on*Error*
Metric

Fully*
Digital*
Error

Analog*
Error

blackscholes
Mathema'cal*
model*of*a*
financial*market*

Financial*
Analysis 5 0 5 309

4096*Data*Point*
from*PARSEC

16384*Data*Point*
from*PARSEC 6*E>*8*E>*8E>*1 0.000011 0.00228 Avg.*Rela've*Error 6.02% 10.2%

M RadixE2*CooleyE
Tukey*fast*fourier

Signal*
Processing 2 0 0 34

2048*Random*
Floa'ng*Point*
Numbers

32768*Random*
Floa'ng*Point*
Numbers

1*E>*4*E>*4*E>*2 0.00002 0.00194 Avg.*Rela've*Error 2.75% 4.1%

inversek2j Inverse*kinema'cs*
for*2Ejoint*arm Robo'cs 4 0 0 100

10000*(x,*y)*
Random*
Coordinates

10000*(x,*y)*
Random*
Coordinates

2*E>*8*E>*2 0.000341 0.00467 Avg.*Rela've*Error 6.2% 9.4%

jmeint
Triangle*
intersec'on*
detec'on

3D*Gaming 32 0 23 1,079

10000*Random*
Pairs*of*3D*
Triangle*
Coordinates

10000*Random*
Pairs*of*3D*
Triangle*
Coordinate

18*E>*32*E>*8*E>*2 0.05235 0.06729 Miss*Rate 17.68% 19.7%

jpeg JPEG*encoding Compression 3 4 0 1,257 220x200EPixel*
Color*Image

Three*512x512E
Pixel*Color*Images 64*E>*16*E>*8*E>*64 0.0000156 0.0000325 Image*Diff 5.48% 8.4%

kmeans KEmeans*clustering Machine*
Learning 1 0 0 26

220x200EPixel*
Color*Image

50000*Pairs*of*
Random*(r,*g,*b)*
Values

6*E>*8*E>*4*E>*1 0.00752 0.009589 Image*Diff 3.21% 7.3%

sobel Sobel*edge*
detector

Image*
Processing 3 2 1 88 220x200EPixel*

Color*Image
One*512x512E
Pixel*Color*Image 9*E>*8*E>*1 0.000782 0.00405 Image*Diff 3.89% 5.2%

comparable digital implementation.

Benchmarks. We use the benchmarks from prior work on a digital NPU [37]

and add one more, blackscholes. These benchmarks represent a diverse set of

application domains, including financial analysis, signal processing, robotics,

3D gaming, compression, and image processing. Table 5.2 summarizes in-

formation about each benchmark: application domain, target code, neural-

network topology, training/test data and final application error levels for

fully-digital neural networks and analog neural networks using our customized

RPROP-based CDLM training algorithm. The neural networks were trained

using either typical program inputs, such as sample images, or a limited num-

ber of random inputs. Accuracy results are reported using an independent

data set, e.g, an input image that is different than the image used during

training. Each benchmark requires an application-specific error metric, which

is used in the evaluations.

102

Ap
pl

ic
at

io
n

En
er

gy
 R

ed
uc

tio
n

0

2

4

6

8

10

blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean

Core + D-NPU
Core + A-NPU
Core + Ideal NPU

Speedup A-NPU over D-ANPU

Application Topology Speedup (1.1336
GHz)

Speedup (1.7 GHz)

blackscholes 6 -> 8 -> 8 -> 1 2.50 3.75

fft 1 -> 4 -> 4 -> 2 1.89 2.83

inversek2j 2 -> 8 -> 2 2.42 3.63

jmeint 18 -> 32 -> 8 -> 2 3.92 5.88

jpeg 64 -> 16 -> 8 -> 64 15.21 22.81

kmeans 6 -> 8 -> 4 -> 1 2.44 3.67

sobel 9 -> 8 -> 1 2.75 4.13

swaptions 1 -> 16 -> 8 -> 1 2.08 3.13

geomean 3.14 4.71

Energy (nJ)

Application Topology A-NPU - 1/3 Digital
Frequency
(Manual)

A-NPU - 1/2 Digital
Frequency
(Manual)

D-ANPU (Hadi) Improvement

blackscholes 6 -> 8 -> 8 -> 1 0.86 0.96 8.15 9.53

fft 1 -> 4 -> 4 -> 2 0.54 0.61 18.21 33.85

inversek2j 2 -> 8 -> 2 0.51 0.58 2.04 4.00

jmeint 18 -> 32 -> 8 -> 2 1.99 2.21 2.33 1.17

jpeg 64 -> 16 -> 8 -> 64 1.36 1.51 56.26 41.47

kmeans 6 -> 8 -> 4 -> 1 0.67 0.76 111.54 165.46

sobel 9 -> 8 -> 1 0.46 0.53 5.77 12.41

swaptions 1 -> 16 -> 8 -> 1 1.22 1.36 5.49 4.51

geomean 0.79 0.89 11.43 14.40

Application Speedup

Application Topology Core + D-NPU Core + A-NPU Core + Ideal NPU Core + D-NPU Core + A-NPU speedup

blackscholes 6 -> 8 -> 8 -> 1 14.1441013944802 24.5221729784241 48.0035326510468 0.294647093939904 0.510841007404262 0.489158992595738

fft 1 -> 4 -> 4 -> 2 1.12709929506364 1.32327013458615 1.64546022960568 0.68497510592142 0.804194541306698 0.195805458693302

inversek2j 2 -> 8 -> 2 7.98161179269307 10.9938617211157 14.9861613789597 0.53259881505741 0.733600916412848 0.266399083587152

jmeint 18 -> 32 -> 8 -> 2 2.39085372136084 6.26190545947988 14.0755862116774 0.169858198827793 0.444877063399665 0.555122936600335

jpeg 64 -> 16 -> 8 -> 64 1.5617504494923 1.87946485929561 1.90676591975013 0.819057249406344 0.985682007334125 0.014317992665875

kmeans 6 -> 8 -> 4 -> 1 0.590012411780286 0.844832278645737 1.20518169214864 0.489563039020608 0.700999927354972 0.299000072645028

sobel 9 -> 8 -> 1 2.4864550898745 3.10723166292606 3.62429006473114 0.686053004992842 0.857335259438336 0.142664740561664

geomean 2.5478647166383 3.7797513074705 5.42766338726694 0.469422021014693 0.696386462789426 0.189114065410968

Dynamic Insts

Application Topology CPU Other Instructions NPU Queue
Instructions

Less Insts

blackscholes 6 -> 8 -> 8 -> 1 1.0 0.02 0.003 0.972

fft 1 -> 4 -> 4 -> 2 1.0 0.31 0.012 0.674

inversek2j 2 -> 8 -> 2 1.0 0.03 0.008 0.959

jmeint 18 -> 32 -> 8 -> 2 1.0 0.03 0.018 0.951

jpeg 64 -> 16 -> 8 -> 64 1.0 0.43 0.005 0.563

kmeans 6 -> 8 -> 4 -> 1 1.0 0.66 0.048 0.297

sobel 9 -> 8 -> 1 1.0 0.41 0.023 0.571

swaptions 1 -> 16 -> 8 -> 1

geomean

N
or

m
al

iz
ed

 A
pp

lic
at

io
n

Sp
ee

du
p

0

0.2

0.4

0.6

blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean

0.44

0.51
0.470.49

0.17

0.53

0.29

Core + D-NPU
Core + A-NPU

N
or

m
al

iz
ed

 #
 o

f D
yn

am
ic

 In
st

ru
ct

io
ns

0.00

0.25

0.50

0.75

1.00

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Other Instructions
NPU Queue Instructions

8-bit D-NPU vs. A-NPU

8-bit D-NPU 8-bit A-NPU Cycle Improvement Energy Improvement

Application Topology Cycle Energy (nJ) Cycle Energy Cycle
Improvement
(1.1336 GHz)

Cycle
Improvement (1.7
GHz)

Energy
Improvement
(1.1336 GHz)

Energy
Improvement (1.7
GHz)

blackscholes 6 -> 8 -> 8 -> 1 45 8.15 6 0.86 2.50 3.75 9.53 8.48

fft 1 -> 4 -> 4 -> 2 34 2.04 6 0.54 1.89 2.83 3.79 3.33

inversek2j 2 -> 8 -> 2 29 2.33 4 0.51 2.42 3.63 4.57 4.05

jmeint 18 -> 32 -> 8 -> 2 141 56.26 12 1.99 3.92 5.88 28.28 25.50

jpeg 64 -> 16 -> 8 -> 64 365 111.54 8 1.36 15.21 22.81 82.21 73.76

kmeans 6 -> 8 -> 4 -> 1 44 5.77 6 0.67 2.44 3.67 8.56 7.57

sobel 9 -> 8 -> 1 33 5.49 4 0.46 2.75 4.13 11.81 10.45

swaptions 1 -> 16 -> 8 -> 1 50 10.30 8 1.22 2.08 3.13 8.45 7.58

geomean 59.90 9.71 6.35 0.84 3.33 4.71 12.14 10.32

Im
pr

ov
em

en
t

0

1

2

3

4

5

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Energy Saving
Speedup

En
er

gy
 Im

pr
ov

em
en

t

0

2

4

6

8

10

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

10.3

7.6

10.5

7.6

73.825.5

4.1

3.3

8.5

12.14

8.45

11.81

8.56

82.2128.28

4.57

3.79

9.53

1/3 Digital Frequency
1/2 Digital Frequency

Analog Sigmoid

Application Topology Fully Precise
Digital Sigmoid

Fully Precise
Digital Sigmoid

Analog Sigmoid Analog Sigmoid

blackscholes 6 -> 8 -> 8 -> 1 0.0839 8.39 10.21 0.0182

fft 1 -> 4 -> 4 -> 2 0.0303 3.03 4.13 0.011

inversek2j 2 -> 8 -> 2 0.0813 8.13 9.42 0.0129

jmeint 18 -> 32 -> 8 -> 2 0.1841 18.41 19.67 0.0126

jpeg 64 -> 16 -> 8 -> 64 0.0662 6.62 8.35 0.0173

kmeans 6 -> 8 -> 4 -> 1 0.06 6.10 7.28 0.0118

sobel 9 -> 8 -> 1 0.0428 4.28 5.21 0.0093

swaptions 1 -> 16 -> 8 -> 1 0.0261 2.61 3.34 0.0073

geomean 0.06 6.02 7.32 0.01

Ap
pl

ic
at

io
n

Le
ve

l E
rr

or

0%

2%

4%

6%

8%

10%

12%

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Fully Precise Digital Sigmoid
Analog Sigmoid

Table 1

Maximum number of Incoming Synapses to each
Neuron

4 8 16

Application
Level Error
(Image Diff)

14.32% 6.62% 5.76%

Ap
pl

ic
at

io
n

Le
ve

l E
rr

or
 (I

m
ag

e
D

iff
)

0%

3%

6%

9%

12%

15%

Maximum number of Incoming Synapses to each Neuron
4 8 16

Ap
pl

ic
at

io
n

Sp
ee

du
p

0

2

4

6

8

10

blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean

Core + D-NPU
Core + A-NPU
Core + Ideal NPU

Application Level Error

Benchmarks Fully Precise
Digital Sigmoid

Analog
Sigmoid

blackscholes 8.39% 10.21%

fft 3.03% 4.13%

inversek2j 8.13% 9.42%

jmeint 18.41% 19.67%

jpeg 6.62% 8.35%

kmeans 6.1% 7.28%

sobel 4.28% 5.21%

swaptions 2.61% 3.34%

geomean 6.02% 7.32%

blackscholes fft inversek2j jmeint jpeg kmeans sobel

Floating Point
D-NPU

6.0% 2.7% 6.2% 17.6% 5.4% 3.2% 3.8%

A-NPU + Ideal
Sigmoid

8.4% 3.0% 8.1% 18.4% 6.6% 6.1% 4.3%

A-NPU 10.2% 4.1% 9.4% 19.7% 8.4% 7.3% 5.2%

Benchmarks blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Other
Instructions

2.4% 31.4% 3.3% 3.1% 43.3% 65.5% 40.5%

NPU Queue
Instructions

0.3% 1.2% 0.8% 1.8% 0.5% 4.8% 2.3%

42
.5

51
.2

52
.5

1.
6 1.
7

1.
7

25
.8

30
.0

31
.4

7.
3

17
.8

18
.8

2.
2 2.
3

2.
3

1.
1 1.
3

1.
3

2.
7 2.
8

2.
8

14
.1

24
.5

48
.0

1.
1 1.
3 1.

6

7.
9

10
.9

14
.9

2.
3

6.
2

14
.0

1.
5 1.

8
1.

9

0.
5 0.
8 1.

2

2.
4 3.

1 3.
6

9.
5

2.
5

3.
7

1.
8

4.
5

2.
4

28
.2

3.
9

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Percentage
instructions
subsumed

8.4% 3.0% 8.1% 18.4% 6.6% 6.1% 4.3% 2.6% 6.0%

Analog
Sigmoid

10.2% 4.1% 9.4% 19.7% 8.4% 7.3% 5.2% 3.3% 7.3%

blackscholes fft inversek2j jmeint jpeg kmeans sobel
Percentage
Instructions
Subsumed

97.2% 67.4% 95.9% 95.1% 56.3% 29.7% 57.1%

82
.2

15
.2

8.
5

2.
4

11
.8

2.
7

8.
4

2.
0

12
.1

3.
3

2.
5

3.
7

5.
4

5.
1

6.
3 6.
5

Application Energy Reduction

Application Topology Core + D-NPU Core + A-NPU Core + Ideal NPU Core + D-NPU Core + A-NPU

blackscholes 6 -> 8 -> 8 -> 1 42.5954312379609 51.250425520663 52.5015883985599 0.811317000822956 0.976169047145797 0.0238309528542033

fft 1 -> 4 -> 4 -> 2 1.66144638762811 1.70352109148241 1.71911629291664 0.966453749797993 0.990928361566649 0.00907163843335124

inversek2j 2 -> 8 -> 2 25.8726893148605 30.0198258158588 31.432603181923 0.823116340861644 0.955053758739376 0.0449462412606239

jmeint 18 -> 32 -> 8 -> 2 7.32010374044854 17.8930069836166 18.8933415016608 0.387443573165978 0.947053594624526 0.052946405375474

jpeg 64 -> 16 -> 8 -> 64 2.21156760942508 2.39631940662302 2.39878691088084 0.921952508325545 0.998971353292519 0.0010286467074806

kmeans 6 -> 8 -> 4 -> 1 1.15321498752577 1.33727439731608 1.36611738885167 0.844155119418499 0.978886886463078 0.0211131135369225

sobel 9 -> 8 -> 1 2.74676510816413 2.83229403346624 2.84047691805956 0.967008424078502 0.997119186379832 0.00288081362016845

geomean 5.13306978649764 6.37013417935512 6.51636491720012 0.787719817984527 0.977559461493782 0.011817544342672

Im
pr

ov
em

en
t

0

1

2

3

4

5

blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean

Speedup
Energy Saving

8-bit D-NPU vs. A-NPU-1

8-bit D-NPU 8-bit A-NPU Cycle Improvement Energy Improvement

Application Topology Cycle Energy (nJ) Cycle Energy Cycle
Improvement
(1.1336 GHz)

Cycle
Improvement (1.7
GHz)

Energy
Improvement
(1.1336 GHz)

Energy
Improvement (1.7
GHz)

blackscholes 6 -> 8 -> 8 -> 1 45 8.15 6 0.86 2.50 3.75 9.53 8.48

fft 1 -> 4 -> 4 -> 2 34 2.04 6 0.54 1.89 2.83 3.79 3.33

inversek2j 2 -> 8 -> 2 29 2.33 4 0.51 2.42 3.63 4.57 4.05

jmeint 18 -> 32 -> 8 -> 2 141 56.26 12 1.99 3.92 5.88 28.28 25.50

jpeg 64 -> 16 -> 8 -> 64 365 111.54 8 1.36 15.21 22.81 82.21 73.76

kmeans 6 -> 8 -> 4 -> 1 44 5.77 6 0.67 2.44 3.67 8.56 7.57

sobel 9 -> 8 -> 1 33 5.49 4 0.46 2.75 4.13 11.81 10.45

geomean 61.47 9.63 6.15 0.79 3.33 5.00 12.14 10.79

2.
5

9.
5

3.
7

1.
8

2.
4

4.
5

28
.2

3.
9

82
.2

15
.2

8.
5

2.
4 2.

7
11

.8

12
.1

3.
3

Application Speedup-1

Application Topology Core + D-NPU Core + A-NPU Core + Ideal NPU Core + D-NPU Core + A-NPU speedup

blackscholes 6 -> 8 -> 8 -> 1

fft 1 -> 4 -> 4 -> 2

inversek2j 2 -> 8 -> 2

jmeint 18 -> 32 -> 8 -> 2

jpeg 64 -> 16 -> 8 -> 64

kmeans 6 -> 8 -> 4 -> 1

sobel 9 -> 8 -> 1

swaptions 1 -> 16 -> 8 -> 1

geomean

Application Energy Reduction-1

Application Topology Core + D-NPU Core + A-NPU Core + Ideal NPU Core + D-NPU Core + A-NPU

blackscholes 6 -> 8 -> 8 -> 1 42.5954312379609 51.250425520663 52.5015883985599 0.811317000822956 0.976169047145797 0.0238309528542033

fft 1 -> 4 -> 4 -> 2 1.66144638762811 1.70352109148241 1.71911629291664 0.966453749797993 0.990928361566649 0.00907163843335124

inversek2j 2 -> 8 -> 2 25.8726893148605 30.0198258158588 31.432603181923 0.823116340861644 0.955053758739376 0.0449462412606239

jmeint 18 -> 32 -> 8 -> 2 7.32010374044854 17.8930069836166 18.8933415016608 0.387443573165978 0.947053594624526 0.052946405375474

jpeg 64 -> 16 -> 8 -> 64 2.21156760942508 2.39631940662302 2.39878691088084 0.921952508325545 0.998971353292519 0.0010286467074806

kmeans 6 -> 8 -> 4 -> 1 1.15321498752577 1.33727439731608 1.36611738885167 0.844155119418499 0.978886886463078 0.0211131135369225

sobel 9 -> 8 -> 1 2.74676510816413 2.83229403346624 2.84047691805956 0.967008424078502 0.997119186379832 0.00288081362016845

swaptions 1 -> 16 -> 8 -> 1

geomean 5.13306978649764 6.37013417935512 6.51636491720012 0.011817544342672

Figure 5.13: A-NPU with 8 ANUs vs. D-NPU with 8 PEs [4].

5.4.2 Analog-Digital NPU Comparison

A-NPU vs 8-bit D-NPU. Figure 5.13 shows the average energy improve-

ment and speedup for one invocation of an A-NPU over one invocation of an

8-bit D-NPU, where the A-NPU is clocked at one third the frequency of the

D-NPU. On average, the A-NPU is 12.1× more energy efficient and 3.3× faster

than the D-NPU.

Whole Application Speedup and Energy Savings. Figure 5.14 shows

the whole application speedup and energy savings when the processor is aug-

mented with an 8-bit, 8-PE D-NPU, our 8-ANU A-NPU, and an ideal NPU,

which takes zero cycles and consumes zero energy. Figure 5.14c shows the

percentage of dynamic instructions subsumed by the neural transformation

of the candidate code. The results show, following Amdahl’s Law, that the

larger the number of dynamic instructions subsumed, the larger the benefits

103

Ap
pl

ic
at

io
n

En
er

gy
 R

ed
uc

tio
n

0

2

4

6

8

10

blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean

Core + D-NPU
Core + A-NPU
Core + Ideal NPU

Speedup A-NPU over D-ANPU

Application Topology Speedup (1.1336
GHz)

Speedup (1.7 GHz)

blackscholes 6 -> 8 -> 8 -> 1 2.50 3.75

fft 1 -> 4 -> 4 -> 2 1.89 2.83

inversek2j 2 -> 8 -> 2 2.42 3.63

jmeint 18 -> 32 -> 8 -> 2 3.92 5.88

jpeg 64 -> 16 -> 8 -> 64 15.21 22.81

kmeans 6 -> 8 -> 4 -> 1 2.44 3.67

sobel 9 -> 8 -> 1 2.75 4.13

swaptions 1 -> 16 -> 8 -> 1 2.08 3.13

geomean 3.14 4.71

Energy (nJ)

Application Topology A-NPU - 1/3 Digital
Frequency
(Manual)

A-NPU - 1/2 Digital
Frequency
(Manual)

D-ANPU (Hadi) Improvement

blackscholes 6 -> 8 -> 8 -> 1 0.86 0.96 8.15 9.53

fft 1 -> 4 -> 4 -> 2 0.54 0.61 18.21 33.85

inversek2j 2 -> 8 -> 2 0.51 0.58 2.04 4.00

jmeint 18 -> 32 -> 8 -> 2 1.99 2.21 2.33 1.17

jpeg 64 -> 16 -> 8 -> 64 1.36 1.51 56.26 41.47

kmeans 6 -> 8 -> 4 -> 1 0.67 0.76 111.54 165.46

sobel 9 -> 8 -> 1 0.46 0.53 5.77 12.41

swaptions 1 -> 16 -> 8 -> 1 1.22 1.36 5.49 4.51

geomean 0.79 0.89 11.43 14.40

Application Speedup

Application Topology Core + D-NPU Core + A-NPU Core + Ideal NPU Core + D-NPU Core + A-NPU speedup

blackscholes 6 -> 8 -> 8 -> 1 14.1441013944802 24.5221729784241 48.0035326510468 0.294647093939904 0.510841007404262 0.489158992595738

fft 1 -> 4 -> 4 -> 2 1.12709929506364 1.32327013458615 1.64546022960568 0.68497510592142 0.804194541306698 0.195805458693302

inversek2j 2 -> 8 -> 2 7.98161179269307 10.9938617211157 14.9861613789597 0.53259881505741 0.733600916412848 0.266399083587152

jmeint 18 -> 32 -> 8 -> 2 2.39085372136084 6.26190545947988 14.0755862116774 0.169858198827793 0.444877063399665 0.555122936600335

jpeg 64 -> 16 -> 8 -> 64 1.5617504494923 1.87946485929561 1.90676591975013 0.819057249406344 0.985682007334125 0.014317992665875

kmeans 6 -> 8 -> 4 -> 1 0.590012411780286 0.844832278645737 1.20518169214864 0.489563039020608 0.700999927354972 0.299000072645028

sobel 9 -> 8 -> 1 2.4864550898745 3.10723166292606 3.62429006473114 0.686053004992842 0.857335259438336 0.142664740561664

geomean 2.5478647166383 3.7797513074705 5.42766338726694 0.469422021014693 0.696386462789426 0.189114065410968

Dynamic Insts

Application Topology CPU Other Instructions NPU Queue
Instructions

Less Insts

blackscholes 6 -> 8 -> 8 -> 1 1.0 0.02 0.003 0.972

fft 1 -> 4 -> 4 -> 2 1.0 0.31 0.012 0.674

inversek2j 2 -> 8 -> 2 1.0 0.03 0.008 0.959

jmeint 18 -> 32 -> 8 -> 2 1.0 0.03 0.018 0.951

jpeg 64 -> 16 -> 8 -> 64 1.0 0.43 0.005 0.563

kmeans 6 -> 8 -> 4 -> 1 1.0 0.66 0.048 0.297

sobel 9 -> 8 -> 1 1.0 0.41 0.023 0.571

swaptions 1 -> 16 -> 8 -> 1

geomean

N
or

m
al

iz
ed

 A
pp

lic
at

io
n

Sp
ee

du
p

0

0.2

0.4

0.6

blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean

0.44

0.51
0.470.49

0.17

0.53

0.29

Core + D-NPU
Core + A-NPU

N
or

m
al

iz
ed

 #
 o

f D
yn

am
ic

 In
st

ru
ct

io
ns

0.00

0.25

0.50

0.75

1.00

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Other Instructions
NPU Queue Instructions

8-bit D-NPU vs. A-NPU

8-bit D-NPU 8-bit A-NPU Cycle Improvement Energy Improvement

Application Topology Cycle Energy (nJ) Cycle Energy Cycle
Improvement
(1.1336 GHz)

Cycle
Improvement (1.7
GHz)

Energy
Improvement
(1.1336 GHz)

Energy
Improvement (1.7
GHz)

blackscholes 6 -> 8 -> 8 -> 1 45 8.15 6 0.86 2.50 3.75 9.53 8.48

fft 1 -> 4 -> 4 -> 2 34 2.04 6 0.54 1.89 2.83 3.79 3.33

inversek2j 2 -> 8 -> 2 29 2.33 4 0.51 2.42 3.63 4.57 4.05

jmeint 18 -> 32 -> 8 -> 2 141 56.26 12 1.99 3.92 5.88 28.28 25.50

jpeg 64 -> 16 -> 8 -> 64 365 111.54 8 1.36 15.21 22.81 82.21 73.76

kmeans 6 -> 8 -> 4 -> 1 44 5.77 6 0.67 2.44 3.67 8.56 7.57

sobel 9 -> 8 -> 1 33 5.49 4 0.46 2.75 4.13 11.81 10.45

swaptions 1 -> 16 -> 8 -> 1 50 10.30 8 1.22 2.08 3.13 8.45 7.58

geomean 59.90 9.71 6.35 0.84 3.33 4.71 12.14 10.32

Im
pr

ov
em

en
t

0

1

2

3

4

5

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Energy Saving
Speedup

En
er

gy
 Im

pr
ov

em
en

t

0

2

4

6

8

10

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

10.3

7.6

10.5

7.6

73.825.5

4.1

3.3

8.5

12.14

8.45

11.81

8.56

82.2128.28

4.57

3.79

9.53

1/3 Digital Frequency
1/2 Digital Frequency

Analog Sigmoid

Application Topology Fully Precise
Digital Sigmoid

Fully Precise
Digital Sigmoid

Analog Sigmoid Analog Sigmoid

blackscholes 6 -> 8 -> 8 -> 1 0.0839 8.39 10.21 0.0182

fft 1 -> 4 -> 4 -> 2 0.0303 3.03 4.13 0.011

inversek2j 2 -> 8 -> 2 0.0813 8.13 9.42 0.0129

jmeint 18 -> 32 -> 8 -> 2 0.1841 18.41 19.67 0.0126

jpeg 64 -> 16 -> 8 -> 64 0.0662 6.62 8.35 0.0173

kmeans 6 -> 8 -> 4 -> 1 0.06 6.10 7.28 0.0118

sobel 9 -> 8 -> 1 0.0428 4.28 5.21 0.0093

swaptions 1 -> 16 -> 8 -> 1 0.0261 2.61 3.34 0.0073

geomean 0.06 6.02 7.32 0.01

Ap
pl

ic
at

io
n

Le
ve

l E
rr

or

0%

2%

4%

6%

8%

10%

12%

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Fully Precise Digital Sigmoid
Analog Sigmoid

Table 1

Maximum number of Incoming Synapses to each
Neuron

4 8 16

Application
Level Error
(Image Diff)

14.32% 6.62% 5.76%

Ap
pl

ic
at

io
n

Le
ve

l E
rr

or
 (I

m
ag

e
D

iff
)

0%

3%

6%

9%

12%

15%

Maximum number of Incoming Synapses to each Neuron
4 8 16

Ap
pl

ic
at

io
n

Sp
ee

du
p

0

2

4

6

8

10

blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean

Core + D-NPU
Core + A-NPU
Core + Ideal NPU

Application Level Error

Benchmarks Fully Precise
Digital Sigmoid

Analog
Sigmoid

blackscholes 8.39% 10.21%

fft 3.03% 4.13%

inversek2j 8.13% 9.42%

jmeint 18.41% 19.67%

jpeg 6.62% 8.35%

kmeans 6.1% 7.28%

sobel 4.28% 5.21%

swaptions 2.61% 3.34%

geomean 6.02% 7.32%

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions

Floating Point
D-NPU

6.0% 2.7% 6.2% 17.6% 5.4% 3.2% 3.8% 2.3%

A-NPU + Ideal
Sigmoid

8.4% 3.0% 8.1% 18.4% 6.6% 6.1% 4.3% 2.6%

A-NPU 10.2% 4.1% 9.4% 19.7% 8.4% 7.3% 5.2% 3.3%

Benchmarks blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Other
Instructions

2.4% 31.4% 3.3% 3.1% 43.3% 65.5% 40.5%

NPU Queue
Instructions

0.3% 1.2% 0.8% 1.8% 0.5% 4.8% 2.3%

42
.5

51
.2

52
.5

1.
6 1.
7

1.
7

25
.8

30
.0

31
.4

7.
3

17
.8

18
.8

2.
2 2.
3

2.
3

1.
1 1.
3

1.
3

2.
7 2.
8

2.
8

14
.1

24
.5

48
.0

1.
1 1.
3 1.

6

7.
9

10
.9

14
.9

2.
3

6.
2

14
.0

1.
5 1.

8
1.

9

0.
5 0.
8 1.

2

2.
4 3.

1 3.
6

9.
5

2.
5

3.
7

1.
8

4.
5

2.
4

28
.2

3.
9

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Percentage
instructions
subsumed

8.4% 3.0% 8.1% 18.4% 6.6% 6.1% 4.3% 2.6% 6.0%

Analog
Sigmoid

10.2% 4.1% 9.4% 19.7% 8.4% 7.3% 5.2% 3.3% 7.3%

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions
Percentage
Instructions
Subsumed

97.2% 67.4% 95.9% 95.1% 56.3% 29.7% 57.1%

82
.2

15
.2

8.
5

2.
4

11
.8

2.
7

8.
4

2.
0

12
.1

3.
3

2.
5

3.
7

5.
4

5.
1

6.
3 6.
5

Application Energy Reduction

Application Topology Core + D-NPU Core + A-NPU Core + Ideal NPU Core + D-NPU Core + A-NPU

blackscholes 6 -> 8 -> 8 -> 1 42.5954312379609 51.250425520663 52.5015883985599 0.811317000822956 0.976169047145797 0.0238309528542033

fft 1 -> 4 -> 4 -> 2 1.66144638762811 1.70352109148241 1.71911629291664 0.966453749797993 0.990928361566649 0.00907163843335124

inversek2j 2 -> 8 -> 2 25.8726893148605 30.0198258158588 31.432603181923 0.823116340861644 0.955053758739376 0.0449462412606239

jmeint 18 -> 32 -> 8 -> 2 7.32010374044854 17.8930069836166 18.8933415016608 0.387443573165978 0.947053594624526 0.052946405375474

jpeg 64 -> 16 -> 8 -> 64 2.21156760942508 2.39631940662302 2.39878691088084 0.921952508325545 0.998971353292519 0.0010286467074806

kmeans 6 -> 8 -> 4 -> 1 1.15321498752577 1.33727439731608 1.36611738885167 0.844155119418499 0.978886886463078 0.0211131135369225

sobel 9 -> 8 -> 1 2.74676510816413 2.83229403346624 2.84047691805956 0.967008424078502 0.997119186379832 0.00288081362016845

geomean 5.13306978649764 6.37013417935512 6.51636491720012 0.787719817984527 0.977559461493782 0.011817544342672

Im
pr

ov
em

en
t

0

1

2

3

4

5

blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean

Speedup
Energy Saving

8-bit D-NPU vs. A-NPU-1

8-bit D-NPU 8-bit A-NPU Cycle Improvement Energy Improvement

Application Topology Cycle Energy (nJ) Cycle Energy Cycle
Improvement
(1.1336 GHz)

Cycle
Improvement (1.7
GHz)

Energy
Improvement
(1.1336 GHz)

Energy
Improvement (1.7
GHz)

blackscholes 6 -> 8 -> 8 -> 1 45 8.15 6 0.86 2.50 3.75 9.53 8.48

fft 1 -> 4 -> 4 -> 2 34 2.04 6 0.54 1.89 2.83 3.79 3.33

inversek2j 2 -> 8 -> 2 29 2.33 4 0.51 2.42 3.63 4.57 4.05

jmeint 18 -> 32 -> 8 -> 2 141 56.26 12 1.99 3.92 5.88 28.28 25.50

jpeg 64 -> 16 -> 8 -> 64 365 111.54 8 1.36 15.21 22.81 82.21 73.76

kmeans 6 -> 8 -> 4 -> 1 44 5.77 6 0.67 2.44 3.67 8.56 7.57

sobel 9 -> 8 -> 1 33 5.49 4 0.46 2.75 4.13 11.81 10.45

geomean 61.47 9.63 6.15 0.79 3.33 5.00 12.14 10.79

2.
5

9.
5

3.
7

1.
8

2.
4

4.
5

28
.2

3.
9

82
.2

15
.2

8.
5

2.
4 2.

7
11

.8

12
.1

3.
3

Application Speedup-1

Application Topology Core + D-NPU Core + A-NPU Core + Ideal NPU Core + D-NPU Core + A-NPU speedup

blackscholes 6 -> 8 -> 8 -> 1

fft 1 -> 4 -> 4 -> 2

inversek2j 2 -> 8 -> 2

jmeint 18 -> 32 -> 8 -> 2

jpeg 64 -> 16 -> 8 -> 64

kmeans 6 -> 8 -> 4 -> 1

sobel 9 -> 8 -> 1

swaptions 1 -> 16 -> 8 -> 1

geomean

Application Energy Reduction-1

Application Topology Core + D-NPU Core + A-NPU Core + Ideal NPU Core + D-NPU Core + A-NPU

blackscholes 6 -> 8 -> 8 -> 1 42.5954312379609 51.250425520663 52.5015883985599 0.811317000822956 0.976169047145797 0.0238309528542033

fft 1 -> 4 -> 4 -> 2 1.66144638762811 1.70352109148241 1.71911629291664 0.966453749797993 0.990928361566649 0.00907163843335124

inversek2j 2 -> 8 -> 2 25.8726893148605 30.0198258158588 31.432603181923 0.823116340861644 0.955053758739376 0.0449462412606239

jmeint 18 -> 32 -> 8 -> 2 7.32010374044854 17.8930069836166 18.8933415016608 0.387443573165978 0.947053594624526 0.052946405375474

jpeg 64 -> 16 -> 8 -> 64 2.21156760942508 2.39631940662302 2.39878691088084 0.921952508325545 0.998971353292519 0.0010286467074806

kmeans 6 -> 8 -> 4 -> 1 1.15321498752577 1.33727439731608 1.36611738885167 0.844155119418499 0.978886886463078 0.0211131135369225

sobel 9 -> 8 -> 1 2.74676510816413 2.83229403346624 2.84047691805956 0.967008424078502 0.997119186379832 0.00288081362016845

swaptions 1 -> 16 -> 8 -> 1

geomean 5.13306978649764 6.37013417935512 6.51636491720012 0.011817544342672

(a) Whole application speedup.

Ap
pl

ic
at

io
n

En
er

gy
 R

ed
uc

tio
n

0

2

4

6

8

10

blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean

Core + D-NPU
Core + A-NPU
Core + Ideal NPU

Speedup A-NPU over D-ANPU

Application Topology Speedup (1.1336
GHz)

Speedup (1.7 GHz)

blackscholes 6 -> 8 -> 8 -> 1 2.50 3.75

fft 1 -> 4 -> 4 -> 2 1.89 2.83

inversek2j 2 -> 8 -> 2 2.42 3.63

jmeint 18 -> 32 -> 8 -> 2 3.92 5.88

jpeg 64 -> 16 -> 8 -> 64 15.21 22.81

kmeans 6 -> 8 -> 4 -> 1 2.44 3.67

sobel 9 -> 8 -> 1 2.75 4.13

swaptions 1 -> 16 -> 8 -> 1 2.08 3.13

geomean 3.14 4.71

Energy (nJ)

Application Topology A-NPU - 1/3 Digital
Frequency
(Manual)

A-NPU - 1/2 Digital
Frequency
(Manual)

D-ANPU (Hadi) Improvement

blackscholes 6 -> 8 -> 8 -> 1 0.86 0.96 8.15 9.53

fft 1 -> 4 -> 4 -> 2 0.54 0.61 18.21 33.85

inversek2j 2 -> 8 -> 2 0.51 0.58 2.04 4.00

jmeint 18 -> 32 -> 8 -> 2 1.99 2.21 2.33 1.17

jpeg 64 -> 16 -> 8 -> 64 1.36 1.51 56.26 41.47

kmeans 6 -> 8 -> 4 -> 1 0.67 0.76 111.54 165.46

sobel 9 -> 8 -> 1 0.46 0.53 5.77 12.41

swaptions 1 -> 16 -> 8 -> 1 1.22 1.36 5.49 4.51

geomean 0.79 0.89 11.43 14.40

Application Speedup

Application Topology Core + D-NPU Core + A-NPU Core + Ideal NPU Core + D-NPU Core + A-NPU speedup

blackscholes 6 -> 8 -> 8 -> 1 14.1441013944802 24.5221729784241 48.0035326510468 0.294647093939904 0.510841007404262 0.489158992595738

fft 1 -> 4 -> 4 -> 2 1.12709929506364 1.32327013458615 1.64546022960568 0.68497510592142 0.804194541306698 0.195805458693302

inversek2j 2 -> 8 -> 2 7.98161179269307 10.9938617211157 14.9861613789597 0.53259881505741 0.733600916412848 0.266399083587152

jmeint 18 -> 32 -> 8 -> 2 2.39085372136084 6.26190545947988 14.0755862116774 0.169858198827793 0.444877063399665 0.555122936600335

jpeg 64 -> 16 -> 8 -> 64 1.5617504494923 1.87946485929561 1.90676591975013 0.819057249406344 0.985682007334125 0.014317992665875

kmeans 6 -> 8 -> 4 -> 1 0.590012411780286 0.844832278645737 1.20518169214864 0.489563039020608 0.700999927354972 0.299000072645028

sobel 9 -> 8 -> 1 2.4864550898745 3.10723166292606 3.62429006473114 0.686053004992842 0.857335259438336 0.142664740561664

geomean 2.5478647166383 3.7797513074705 5.42766338726694 0.469422021014693 0.696386462789426 0.189114065410968

Dynamic Insts

Application Topology CPU Other Instructions NPU Queue
Instructions

Less Insts

blackscholes 6 -> 8 -> 8 -> 1 1.0 0.02 0.003 0.972

fft 1 -> 4 -> 4 -> 2 1.0 0.31 0.012 0.674

inversek2j 2 -> 8 -> 2 1.0 0.03 0.008 0.959

jmeint 18 -> 32 -> 8 -> 2 1.0 0.03 0.018 0.951

jpeg 64 -> 16 -> 8 -> 64 1.0 0.43 0.005 0.563

kmeans 6 -> 8 -> 4 -> 1 1.0 0.66 0.048 0.297

sobel 9 -> 8 -> 1 1.0 0.41 0.023 0.571

swaptions 1 -> 16 -> 8 -> 1

geomean

N
or

m
al

iz
ed

 A
pp

lic
at

io
n

Sp
ee

du
p

0

0.2

0.4

0.6

blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean

0.44

0.51
0.470.49

0.17

0.53

0.29

Core + D-NPU
Core + A-NPU

N
or

m
al

iz
ed

 #
 o

f D
yn

am
ic

 In
st

ru
ct

io
ns

0.00

0.25

0.50

0.75

1.00

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Other Instructions
NPU Queue Instructions

8-bit D-NPU vs. A-NPU

8-bit D-NPU 8-bit A-NPU Cycle Improvement Energy Improvement

Application Topology Cycle Energy (nJ) Cycle Energy Cycle
Improvement
(1.1336 GHz)

Cycle
Improvement (1.7
GHz)

Energy
Improvement
(1.1336 GHz)

Energy
Improvement (1.7
GHz)

blackscholes 6 -> 8 -> 8 -> 1 45 8.15 6 0.86 2.50 3.75 9.53 8.48

fft 1 -> 4 -> 4 -> 2 34 2.04 6 0.54 1.89 2.83 3.79 3.33

inversek2j 2 -> 8 -> 2 29 2.33 4 0.51 2.42 3.63 4.57 4.05

jmeint 18 -> 32 -> 8 -> 2 141 56.26 12 1.99 3.92 5.88 28.28 25.50

jpeg 64 -> 16 -> 8 -> 64 365 111.54 8 1.36 15.21 22.81 82.21 73.76

kmeans 6 -> 8 -> 4 -> 1 44 5.77 6 0.67 2.44 3.67 8.56 7.57

sobel 9 -> 8 -> 1 33 5.49 4 0.46 2.75 4.13 11.81 10.45

swaptions 1 -> 16 -> 8 -> 1 50 10.30 8 1.22 2.08 3.13 8.45 7.58

geomean 59.90 9.71 6.35 0.84 3.33 4.71 12.14 10.32

Im
pr

ov
em

en
t

0

1

2

3

4

5

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Energy Saving
Speedup

En
er

gy
 Im

pr
ov

em
en

t

0

2

4

6

8

10

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

10.3

7.6

10.5

7.6

73.825.5

4.1

3.3

8.5

12.14

8.45

11.81

8.56

82.2128.28

4.57

3.79

9.53

1/3 Digital Frequency
1/2 Digital Frequency

Analog Sigmoid

Application Topology Fully Precise
Digital Sigmoid

Fully Precise
Digital Sigmoid

Analog Sigmoid Analog Sigmoid

blackscholes 6 -> 8 -> 8 -> 1 0.0839 8.39 10.21 0.0182

fft 1 -> 4 -> 4 -> 2 0.0303 3.03 4.13 0.011

inversek2j 2 -> 8 -> 2 0.0813 8.13 9.42 0.0129

jmeint 18 -> 32 -> 8 -> 2 0.1841 18.41 19.67 0.0126

jpeg 64 -> 16 -> 8 -> 64 0.0662 6.62 8.35 0.0173

kmeans 6 -> 8 -> 4 -> 1 0.06 6.10 7.28 0.0118

sobel 9 -> 8 -> 1 0.0428 4.28 5.21 0.0093

swaptions 1 -> 16 -> 8 -> 1 0.0261 2.61 3.34 0.0073

geomean 0.06 6.02 7.32 0.01

Ap
pl

ic
at

io
n

Le
ve

l E
rr

or

0%

2%

4%

6%

8%

10%

12%

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Fully Precise Digital Sigmoid
Analog Sigmoid

Table 1

Maximum number of Incoming Synapses to each
Neuron

4 8 16

Application
Level Error
(Image Diff)

14.32% 6.62% 5.76%

Ap
pl

ic
at

io
n

Le
ve

l E
rr

or
 (I

m
ag

e
D

iff
)

0%

3%

6%

9%

12%

15%

Maximum number of Incoming Synapses to each Neuron
4 8 16

Ap
pl

ic
at

io
n

Sp
ee

du
p

0

2

4

6

8

10

blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean

Core + D-NPU
Core + A-NPU
Core + Ideal NPU

Application Level Error

Benchmarks Fully Precise
Digital Sigmoid

Analog
Sigmoid

blackscholes 8.39% 10.21%

fft 3.03% 4.13%

inversek2j 8.13% 9.42%

jmeint 18.41% 19.67%

jpeg 6.62% 8.35%

kmeans 6.1% 7.28%

sobel 4.28% 5.21%

swaptions 2.61% 3.34%

geomean 6.02% 7.32%

blackscholes fft inversek2j jmeint jpeg kmeans sobel

Floating Point
D-NPU

6.0% 2.7% 6.2% 17.6% 5.4% 3.2% 3.8%

A-NPU + Ideal
Sigmoid

8.4% 3.0% 8.1% 18.4% 6.6% 6.1% 4.3%

A-NPU 10.2% 4.1% 9.4% 19.7% 8.4% 7.3% 5.2%

Benchmarks blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Other
Instructions

2.4% 31.4% 3.3% 3.1% 43.3% 65.5% 40.5%

NPU Queue
Instructions

0.3% 1.2% 0.8% 1.8% 0.5% 4.8% 2.3%

42
.5

51
.2

52
.5

1.
6 1.
7

1.
7

25
.8

30
.0

31
.4

7.
3

17
.8

18
.8

2.
2 2.
3

2.
3

1.
1 1.
3

1.
3

2.
7 2.
8

2.
8

14
.1

24
.5

48
.0

1.
1 1.
3 1.

6

7.
9

10
.9

14
.9

2.
3

6.
2

14
.0

1.
5 1.

8
1.

9

0.
5 0.
8 1.

2

2.
4 3.

1 3.
6

9.
5

2.
5

3.
7

1.
8

4.
5

2.
4

28
.2

3.
9

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Percentage
instructions
subsumed

8.4% 3.0% 8.1% 18.4% 6.6% 6.1% 4.3% 2.6% 6.0%

Analog
Sigmoid

10.2% 4.1% 9.4% 19.7% 8.4% 7.3% 5.2% 3.3% 7.3%

blackscholes fft inversek2j jmeint jpeg kmeans sobel
Percentage
Instructions
Subsumed

97.2% 67.4% 95.9% 95.1% 56.3% 29.7% 57.1%

82
.2

15
.2

8.
5

2.
4

11
.8

2.
7

8.
4

2.
0

12
.1

3.
3

2.
5

3.
7

5.
4

5.
1

6.
3 6.
5

Application Energy Reduction

Application Topology Core + D-NPU Core + A-NPU Core + Ideal NPU Core + D-NPU Core + A-NPU

blackscholes 6 -> 8 -> 8 -> 1 42.5954312379609 51.250425520663 52.5015883985599 0.811317000822956 0.976169047145797 0.0238309528542033

fft 1 -> 4 -> 4 -> 2 1.66144638762811 1.70352109148241 1.71911629291664 0.966453749797993 0.990928361566649 0.00907163843335124

inversek2j 2 -> 8 -> 2 25.8726893148605 30.0198258158588 31.432603181923 0.823116340861644 0.955053758739376 0.0449462412606239

jmeint 18 -> 32 -> 8 -> 2 7.32010374044854 17.8930069836166 18.8933415016608 0.387443573165978 0.947053594624526 0.052946405375474

jpeg 64 -> 16 -> 8 -> 64 2.21156760942508 2.39631940662302 2.39878691088084 0.921952508325545 0.998971353292519 0.0010286467074806

kmeans 6 -> 8 -> 4 -> 1 1.15321498752577 1.33727439731608 1.36611738885167 0.844155119418499 0.978886886463078 0.0211131135369225

sobel 9 -> 8 -> 1 2.74676510816413 2.83229403346624 2.84047691805956 0.967008424078502 0.997119186379832 0.00288081362016845

geomean 5.13306978649764 6.37013417935512 6.51636491720012 0.787719817984527 0.977559461493782 0.011817544342672

Im
pr

ov
em

en
t

0

1

2

3

4

5

blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean

Speedup
Energy Saving

8-bit D-NPU vs. A-NPU-1

8-bit D-NPU 8-bit A-NPU Cycle Improvement Energy Improvement

Application Topology Cycle Energy (nJ) Cycle Energy Cycle
Improvement
(1.1336 GHz)

Cycle
Improvement (1.7
GHz)

Energy
Improvement
(1.1336 GHz)

Energy
Improvement (1.7
GHz)

blackscholes 6 -> 8 -> 8 -> 1 45 8.15 6 0.86 2.50 3.75 9.53 8.48

fft 1 -> 4 -> 4 -> 2 34 2.04 6 0.54 1.89 2.83 3.79 3.33

inversek2j 2 -> 8 -> 2 29 2.33 4 0.51 2.42 3.63 4.57 4.05

jmeint 18 -> 32 -> 8 -> 2 141 56.26 12 1.99 3.92 5.88 28.28 25.50

jpeg 64 -> 16 -> 8 -> 64 365 111.54 8 1.36 15.21 22.81 82.21 73.76

kmeans 6 -> 8 -> 4 -> 1 44 5.77 6 0.67 2.44 3.67 8.56 7.57

sobel 9 -> 8 -> 1 33 5.49 4 0.46 2.75 4.13 11.81 10.45

geomean 61.47 9.63 6.15 0.79 3.33 5.00 12.14 10.79

2.
5

9.
5

3.
7

1.
8

2.
4

4.
5

28
.2

3.
9

82
.2

15
.2

8.
5

2.
4 2.

7
11

.8

12
.1

3.
3

Application Speedup-1

Application Topology Core + D-NPU Core + A-NPU Core + Ideal NPU Core + D-NPU Core + A-NPU speedup

blackscholes 6 -> 8 -> 8 -> 1

fft 1 -> 4 -> 4 -> 2

inversek2j 2 -> 8 -> 2

jmeint 18 -> 32 -> 8 -> 2

jpeg 64 -> 16 -> 8 -> 64

kmeans 6 -> 8 -> 4 -> 1

sobel 9 -> 8 -> 1

swaptions 1 -> 16 -> 8 -> 1

geomean

Application Energy Reduction-1

Application Topology Core + D-NPU Core + A-NPU Core + Ideal NPU Core + D-NPU Core + A-NPU

blackscholes 6 -> 8 -> 8 -> 1 42.5954312379609 51.250425520663 52.5015883985599 0.811317000822956 0.976169047145797 0.0238309528542033

fft 1 -> 4 -> 4 -> 2 1.66144638762811 1.70352109148241 1.71911629291664 0.966453749797993 0.990928361566649 0.00907163843335124

inversek2j 2 -> 8 -> 2 25.8726893148605 30.0198258158588 31.432603181923 0.823116340861644 0.955053758739376 0.0449462412606239

jmeint 18 -> 32 -> 8 -> 2 7.32010374044854 17.8930069836166 18.8933415016608 0.387443573165978 0.947053594624526 0.052946405375474

jpeg 64 -> 16 -> 8 -> 64 2.21156760942508 2.39631940662302 2.39878691088084 0.921952508325545 0.998971353292519 0.0010286467074806

kmeans 6 -> 8 -> 4 -> 1 1.15321498752577 1.33727439731608 1.36611738885167 0.844155119418499 0.978886886463078 0.0211131135369225

sobel 9 -> 8 -> 1 2.74676510816413 2.83229403346624 2.84047691805956 0.967008424078502 0.997119186379832 0.00288081362016845

swaptions 1 -> 16 -> 8 -> 1

geomean 5.13306978649764 6.37013417935512 6.51636491720012 0.011817544342672

(b) Whole application energy savings.

Ap
pl

ic
at

io
n

En
er

gy
 R

ed
uc

tio
n

0

2

4

6

8

10

blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean

Core + D-NPU
Core + A-NPU
Core + Ideal NPU

Speedup A-NPU over D-ANPU

Application Topology Speedup (1.1336
GHz)

Speedup (1.7 GHz)

blackscholes 6 -> 8 -> 8 -> 1 2.50 3.75

fft 1 -> 4 -> 4 -> 2 1.89 2.83

inversek2j 2 -> 8 -> 2 2.42 3.63

jmeint 18 -> 32 -> 8 -> 2 3.92 5.88

jpeg 64 -> 16 -> 8 -> 64 15.21 22.81

kmeans 6 -> 8 -> 4 -> 1 2.44 3.67

sobel 9 -> 8 -> 1 2.75 4.13

swaptions 1 -> 16 -> 8 -> 1 2.08 3.13

geomean 3.14 4.71

Energy (nJ)

Application Topology A-NPU - 1/3 Digital
Frequency
(Manual)

A-NPU - 1/2 Digital
Frequency
(Manual)

D-ANPU (Hadi) Improvement

blackscholes 6 -> 8 -> 8 -> 1 0.86 0.96 8.15 9.53

fft 1 -> 4 -> 4 -> 2 0.54 0.61 18.21 33.85

inversek2j 2 -> 8 -> 2 0.51 0.58 2.04 4.00

jmeint 18 -> 32 -> 8 -> 2 1.99 2.21 2.33 1.17

jpeg 64 -> 16 -> 8 -> 64 1.36 1.51 56.26 41.47

kmeans 6 -> 8 -> 4 -> 1 0.67 0.76 111.54 165.46

sobel 9 -> 8 -> 1 0.46 0.53 5.77 12.41

swaptions 1 -> 16 -> 8 -> 1 1.22 1.36 5.49 4.51

geomean 0.79 0.89 11.43 14.40

Application Speedup

Application Topology Core + D-NPU Core + A-NPU Core + Ideal NPU Core + D-NPU Core + A-NPU speedup

blackscholes 6 -> 8 -> 8 -> 1 14.1441013944802 24.5221729784241 48.0035326510468 0.294647093939904 0.510841007404262 0.489158992595738

fft 1 -> 4 -> 4 -> 2 1.12709929506364 1.32327013458615 1.64546022960568 0.68497510592142 0.804194541306698 0.195805458693302

inversek2j 2 -> 8 -> 2 7.98161179269307 10.9938617211157 14.9861613789597 0.53259881505741 0.733600916412848 0.266399083587152

jmeint 18 -> 32 -> 8 -> 2 2.39085372136084 6.26190545947988 14.0755862116774 0.169858198827793 0.444877063399665 0.555122936600335

jpeg 64 -> 16 -> 8 -> 64 1.5617504494923 1.87946485929561 1.90676591975013 0.819057249406344 0.985682007334125 0.014317992665875

kmeans 6 -> 8 -> 4 -> 1 0.590012411780286 0.844832278645737 1.20518169214864 0.489563039020608 0.700999927354972 0.299000072645028

sobel 9 -> 8 -> 1 2.4864550898745 3.10723166292606 3.62429006473114 0.686053004992842 0.857335259438336 0.142664740561664

geomean 2.5478647166383 3.7797513074705 5.42766338726694 0.469422021014693 0.696386462789426 0.189114065410968

Dynamic Insts

Application Topology CPU Other Instructions NPU Queue
Instructions

Less Insts

blackscholes 6 -> 8 -> 8 -> 1 1.0 0.02 0.003 0.972

fft 1 -> 4 -> 4 -> 2 1.0 0.31 0.012 0.674

inversek2j 2 -> 8 -> 2 1.0 0.03 0.008 0.959

jmeint 18 -> 32 -> 8 -> 2 1.0 0.03 0.018 0.951

jpeg 64 -> 16 -> 8 -> 64 1.0 0.43 0.005 0.563

kmeans 6 -> 8 -> 4 -> 1 1.0 0.66 0.048 0.297

sobel 9 -> 8 -> 1 1.0 0.41 0.023 0.571

swaptions 1 -> 16 -> 8 -> 1

geomean

N
or

m
al

iz
ed

 A
pp

lic
at

io
n

Sp
ee

du
p

0

0.2

0.4

0.6

blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean

0.44

0.51
0.470.49

0.17

0.53

0.29

Core + D-NPU
Core + A-NPU

N
or

m
al

iz
ed

 #
 o

f D
yn

am
ic

 In
st

ru
ct

io
ns

0.00

0.25

0.50

0.75

1.00

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Other Instructions
NPU Queue Instructions

8-bit D-NPU vs. A-NPU

8-bit D-NPU 8-bit A-NPU Cycle Improvement Energy Improvement

Application Topology Cycle Energy (nJ) Cycle Energy Cycle
Improvement
(1.1336 GHz)

Cycle
Improvement (1.7
GHz)

Energy
Improvement
(1.1336 GHz)

Energy
Improvement (1.7
GHz)

blackscholes 6 -> 8 -> 8 -> 1 45 8.15 6 0.86 2.50 3.75 9.53 8.48

fft 1 -> 4 -> 4 -> 2 34 2.04 6 0.54 1.89 2.83 3.79 3.33

inversek2j 2 -> 8 -> 2 29 2.33 4 0.51 2.42 3.63 4.57 4.05

jmeint 18 -> 32 -> 8 -> 2 141 56.26 12 1.99 3.92 5.88 28.28 25.50

jpeg 64 -> 16 -> 8 -> 64 365 111.54 8 1.36 15.21 22.81 82.21 73.76

kmeans 6 -> 8 -> 4 -> 1 44 5.77 6 0.67 2.44 3.67 8.56 7.57

sobel 9 -> 8 -> 1 33 5.49 4 0.46 2.75 4.13 11.81 10.45

swaptions 1 -> 16 -> 8 -> 1 50 10.30 8 1.22 2.08 3.13 8.45 7.58

geomean 59.90 9.71 6.35 0.84 3.33 4.71 12.14 10.32

Im
pr

ov
em

en
t

0

1

2

3

4

5

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Energy Saving
Speedup

En
er

gy
 Im

pr
ov

em
en

t

0

2

4

6

8

10

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

10.3

7.6

10.5

7.6

73.825.5

4.1

3.3

8.5

12.14

8.45

11.81

8.56

82.2128.28

4.57

3.79

9.53

1/3 Digital Frequency
1/2 Digital Frequency

Analog Sigmoid

Application Topology Fully Precise
Digital Sigmoid

Fully Precise
Digital Sigmoid

Analog Sigmoid Analog Sigmoid

blackscholes 6 -> 8 -> 8 -> 1 0.0839 8.39 10.21 0.0182

fft 1 -> 4 -> 4 -> 2 0.0303 3.03 4.13 0.011

inversek2j 2 -> 8 -> 2 0.0813 8.13 9.42 0.0129

jmeint 18 -> 32 -> 8 -> 2 0.1841 18.41 19.67 0.0126

jpeg 64 -> 16 -> 8 -> 64 0.0662 6.62 8.35 0.0173

kmeans 6 -> 8 -> 4 -> 1 0.06 6.10 7.28 0.0118

sobel 9 -> 8 -> 1 0.0428 4.28 5.21 0.0093

swaptions 1 -> 16 -> 8 -> 1 0.0261 2.61 3.34 0.0073

geomean 0.06 6.02 7.32 0.01

Ap
pl

ic
at

io
n

Le
ve

l E
rr

or
0%

2%

4%

6%

8%

10%

12%

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Fully Precise Digital Sigmoid
Analog Sigmoid

Table 1

Maximum number of Incoming Synapses to each
Neuron

4 8 16

Application
Level Error
(Image Diff)

14.32% 6.62% 5.76%

Ap
pl

ic
at

io
n

Le
ve

l E
rr

or
 (I

m
ag

e
D

iff
)

0%

3%

6%

9%

12%

15%

Maximum number of Incoming Synapses to each Neuron
4 8 16

Ap
pl

ic
at

io
n

Sp
ee

du
p

0

2

4

6

8

10

blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean

Core + D-NPU
Core + A-NPU
Core + Ideal NPU

Application Level Error

Benchmarks Fully Precise
Digital Sigmoid

Analog
Sigmoid

blackscholes 8.39% 10.21%

fft 3.03% 4.13%

inversek2j 8.13% 9.42%

jmeint 18.41% 19.67%

jpeg 6.62% 8.35%

kmeans 6.1% 7.28%

sobel 4.28% 5.21%

swaptions 2.61% 3.34%

geomean 6.02% 7.32%

blackscholes fft inversek2j jmeint jpeg kmeans sobel

Floating Point
D-NPU

6.0% 2.7% 6.2% 17.6% 5.4% 3.2% 3.8%

A-NPU + Ideal
Sigmoid

8.4% 3.0% 8.1% 18.4% 6.6% 6.1% 4.3%

A-NPU 10.2% 4.1% 9.4% 19.7% 8.4% 7.3% 5.2%

Benchmarks blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Other
Instructions

2.4% 31.4% 3.3% 3.1% 43.3% 65.5% 40.5%

NPU Queue
Instructions

0.3% 1.2% 0.8% 1.8% 0.5% 4.8% 2.3%

42
.5

51
.2

52
.5

1.
6 1.
7

1.
7

25
.8

30
.0

31
.4

7.
3

17
.8

18
.8

2.
2 2.
3

2.
3

1.
1 1.
3

1.
3

2.
7 2.
8

2.
8

14
.1

24
.5

48
.0

1.
1 1.
3 1.

6

7.
9

10
.9

14
.9

2.
3

6.
2

14
.0

1.
5 1.

8
1.

9

0.
5 0.
8 1.

2

2.
4 3.

1 3.
6

9.
5

2.
5

3.
7

1.
8

4.
5

2.
4

28
.2

3.
9

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Percentage
instructions
subsumed

8.4% 3.0% 8.1% 18.4% 6.6% 6.1% 4.3% 2.6% 6.0%

Analog
Sigmoid

10.2% 4.1% 9.4% 19.7% 8.4% 7.3% 5.2% 3.3% 7.3%

blackscholes fft inversek2j jmeint jpeg kmeans sobel
Percentage
Instructions
Subsumed

97.2% 67.4% 95.9% 95.1% 56.3% 29.7% 57.1%

82
.2

15
.2

8.
5

2.
4

11
.8

2.
7

8.
4

2.
0

12
.1

3.
3

2.
5

3.
7

5.
4

5.
1

6.
3 6.
5

Application Energy Reduction

Application Topology Core + D-NPU Core + A-NPU Core + Ideal NPU Core + D-NPU Core + A-NPU

blackscholes 6 -> 8 -> 8 -> 1 42.5954312379609 51.250425520663 52.5015883985599 0.811317000822956 0.976169047145797 0.0238309528542033

fft 1 -> 4 -> 4 -> 2 1.66144638762811 1.70352109148241 1.71911629291664 0.966453749797993 0.990928361566649 0.00907163843335124

inversek2j 2 -> 8 -> 2 25.8726893148605 30.0198258158588 31.432603181923 0.823116340861644 0.955053758739376 0.0449462412606239

jmeint 18 -> 32 -> 8 -> 2 7.32010374044854 17.8930069836166 18.8933415016608 0.387443573165978 0.947053594624526 0.052946405375474

jpeg 64 -> 16 -> 8 -> 64 2.21156760942508 2.39631940662302 2.39878691088084 0.921952508325545 0.998971353292519 0.0010286467074806

kmeans 6 -> 8 -> 4 -> 1 1.15321498752577 1.33727439731608 1.36611738885167 0.844155119418499 0.978886886463078 0.0211131135369225

sobel 9 -> 8 -> 1 2.74676510816413 2.83229403346624 2.84047691805956 0.967008424078502 0.997119186379832 0.00288081362016845

geomean 5.13306978649764 6.37013417935512 6.51636491720012 0.787719817984527 0.977559461493782 0.011817544342672

Im
pr

ov
em

en
t

0

1

2

3

4

5

blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean

Speedup
Energy Saving

8-bit D-NPU vs. A-NPU-1

8-bit D-NPU 8-bit A-NPU Cycle Improvement Energy Improvement

Application Topology Cycle Energy (nJ) Cycle Energy Cycle
Improvement
(1.1336 GHz)

Cycle
Improvement (1.7
GHz)

Energy
Improvement
(1.1336 GHz)

Energy
Improvement (1.7
GHz)

blackscholes 6 -> 8 -> 8 -> 1 45 8.15 6 0.86 2.50 3.75 9.53 8.48

fft 1 -> 4 -> 4 -> 2 34 2.04 6 0.54 1.89 2.83 3.79 3.33

inversek2j 2 -> 8 -> 2 29 2.33 4 0.51 2.42 3.63 4.57 4.05

jmeint 18 -> 32 -> 8 -> 2 141 56.26 12 1.99 3.92 5.88 28.28 25.50

jpeg 64 -> 16 -> 8 -> 64 365 111.54 8 1.36 15.21 22.81 82.21 73.76

kmeans 6 -> 8 -> 4 -> 1 44 5.77 6 0.67 2.44 3.67 8.56 7.57

sobel 9 -> 8 -> 1 33 5.49 4 0.46 2.75 4.13 11.81 10.45

geomean 61.47 9.63 6.15 0.79 3.33 5.00 12.14 10.79

2.
5

9.
5

3.
7

1.
8

2.
4

4.
5

28
.2

3.
9

82
.2

15
.2

8.
5

2.
4 2.

7
11

.8

12
.1

3.
3

Application Speedup-1

Application Topology Core + D-NPU Core + A-NPU Core + Ideal NPU Core + D-NPU Core + A-NPU speedup

blackscholes 6 -> 8 -> 8 -> 1

fft 1 -> 4 -> 4 -> 2

inversek2j 2 -> 8 -> 2

jmeint 18 -> 32 -> 8 -> 2

jpeg 64 -> 16 -> 8 -> 64

kmeans 6 -> 8 -> 4 -> 1

sobel 9 -> 8 -> 1

swaptions 1 -> 16 -> 8 -> 1

geomean

Application Energy Reduction-1

Application Topology Core + D-NPU Core + A-NPU Core + Ideal NPU Core + D-NPU Core + A-NPU

blackscholes 6 -> 8 -> 8 -> 1 42.5954312379609 51.250425520663 52.5015883985599 0.811317000822956 0.976169047145797 0.0238309528542033

fft 1 -> 4 -> 4 -> 2 1.66144638762811 1.70352109148241 1.71911629291664 0.966453749797993 0.990928361566649 0.00907163843335124

inversek2j 2 -> 8 -> 2 25.8726893148605 30.0198258158588 31.432603181923 0.823116340861644 0.955053758739376 0.0449462412606239

jmeint 18 -> 32 -> 8 -> 2 7.32010374044854 17.8930069836166 18.8933415016608 0.387443573165978 0.947053594624526 0.052946405375474

jpeg 64 -> 16 -> 8 -> 64 2.21156760942508 2.39631940662302 2.39878691088084 0.921952508325545 0.998971353292519 0.0010286467074806

kmeans 6 -> 8 -> 4 -> 1 1.15321498752577 1.33727439731608 1.36611738885167 0.844155119418499 0.978886886463078 0.0211131135369225

sobel 9 -> 8 -> 1 2.74676510816413 2.83229403346624 2.84047691805956 0.967008424078502 0.997119186379832 0.00288081362016845

swaptions 1 -> 16 -> 8 -> 1

geomean 5.13306978649764 6.37013417935512 6.51636491720012 0.011817544342672

(c) % dynamic instructions subsumed.

Figure 5.14: Whole application speedup and energy saving with D-NPU, A-
NPU, and an ideal NPU that consumes zero energy and takes zero cycles for
neural computation [4].

104

Table 5.3: Error with a floating point D-NPU, A-NPU with ideal sigmoid, and
A-NPU with non-ideal sigmoid [4].

Ap
pl

ic
at

io
n

En
er

gy
 R

ed
uc

tio
n

0

2

4

6

8

10

blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean

Core + D-NPU
Core + A-NPU
Core + Ideal NPU

Speedup A-NPU over D-ANPU

Application Topology Speedup (1.1336
GHz)

Speedup (1.7 GHz)

blackscholes 6 -> 8 -> 8 -> 1 2.50 3.75

fft 1 -> 4 -> 4 -> 2 1.89 2.83

inversek2j 2 -> 8 -> 2 2.42 3.63

jmeint 18 -> 32 -> 8 -> 2 3.92 5.88

jpeg 64 -> 16 -> 8 -> 64 15.21 22.81

kmeans 6 -> 8 -> 4 -> 1 2.44 3.67

sobel 9 -> 8 -> 1 2.75 4.13

swaptions 1 -> 16 -> 8 -> 1 2.08 3.13

geomean 3.14 4.71

Energy (nJ)

Application Topology A-NPU - 1/3 Digital
Frequency
(Manual)

A-NPU - 1/2 Digital
Frequency
(Manual)

D-ANPU (Hadi) Improvement

blackscholes 6 -> 8 -> 8 -> 1 0.86 0.96 8.15 9.53

fft 1 -> 4 -> 4 -> 2 0.54 0.61 18.21 33.85

inversek2j 2 -> 8 -> 2 0.51 0.58 2.04 4.00

jmeint 18 -> 32 -> 8 -> 2 1.99 2.21 2.33 1.17

jpeg 64 -> 16 -> 8 -> 64 1.36 1.51 56.26 41.47

kmeans 6 -> 8 -> 4 -> 1 0.67 0.76 111.54 165.46

sobel 9 -> 8 -> 1 0.46 0.53 5.77 12.41

swaptions 1 -> 16 -> 8 -> 1 1.22 1.36 5.49 4.51

geomean 0.79 0.89 11.43 14.40

Application Speedup

Application Topology Core + D-NPU Core + A-NPU Core + Ideal NPU Core + D-NPU Core + A-NPU speedup

blackscholes 6 -> 8 -> 8 -> 1 14.1441013944802 24.5221729784241 48.0035326510468 0.294647093939904 0.510841007404262 0.489158992595738

fft 1 -> 4 -> 4 -> 2 1.12709929506364 1.32327013458615 1.64546022960568 0.68497510592142 0.804194541306698 0.195805458693302

inversek2j 2 -> 8 -> 2 7.98161179269307 10.9938617211157 14.9861613789597 0.53259881505741 0.733600916412848 0.266399083587152

jmeint 18 -> 32 -> 8 -> 2 2.39085372136084 6.26190545947988 14.0755862116774 0.169858198827793 0.444877063399665 0.555122936600335

jpeg 64 -> 16 -> 8 -> 64 1.5617504494923 1.87946485929561 1.90676591975013 0.819057249406344 0.985682007334125 0.014317992665875

kmeans 6 -> 8 -> 4 -> 1 0.590012411780286 0.844832278645737 1.20518169214864 0.489563039020608 0.700999927354972 0.299000072645028

sobel 9 -> 8 -> 1 2.4864550898745 3.10723166292606 3.62429006473114 0.686053004992842 0.857335259438336 0.142664740561664

geomean 2.5478647166383 3.7797513074705 5.42766338726694 0.469422021014693 0.696386462789426 0.189114065410968

Dynamic Insts

Application Topology CPU Other Instructions NPU Queue
Instructions

Less Insts

blackscholes 6 -> 8 -> 8 -> 1 1.0 0.02 0.003 0.972

fft 1 -> 4 -> 4 -> 2 1.0 0.31 0.012 0.674

inversek2j 2 -> 8 -> 2 1.0 0.03 0.008 0.959

jmeint 18 -> 32 -> 8 -> 2 1.0 0.03 0.018 0.951

jpeg 64 -> 16 -> 8 -> 64 1.0 0.43 0.005 0.563

kmeans 6 -> 8 -> 4 -> 1 1.0 0.66 0.048 0.297

sobel 9 -> 8 -> 1 1.0 0.41 0.023 0.571

swaptions 1 -> 16 -> 8 -> 1

geomean

N
or

m
al

iz
ed

 A
pp

lic
at

io
n

Sp
ee

du
p

0

0.2

0.4

0.6

blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean

0.44

0.51
0.470.49

0.17

0.53

0.29

Core + D-NPU
Core + A-NPU

N
or

m
al

iz
ed

 #
 o

f D
yn

am
ic

 In
st

ru
ct

io
ns

0.00

0.25

0.50

0.75

1.00

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Other Instructions
NPU Queue Instructions

8-bit D-NPU vs. A-NPU

8-bit D-NPU 8-bit A-NPU Cycle Improvement Energy Improvement

Application Topology Cycle Energy (nJ) Cycle Energy Cycle
Improvement
(1.1336 GHz)

Cycle
Improvement (1.7
GHz)

Energy
Improvement
(1.1336 GHz)

Energy
Improvement (1.7
GHz)

blackscholes 6 -> 8 -> 8 -> 1 45 8.15 6 0.86 2.50 3.75 9.53 8.48

fft 1 -> 4 -> 4 -> 2 34 2.04 6 0.54 1.89 2.83 3.79 3.33

inversek2j 2 -> 8 -> 2 29 2.33 4 0.51 2.42 3.63 4.57 4.05

jmeint 18 -> 32 -> 8 -> 2 141 56.26 12 1.99 3.92 5.88 28.28 25.50

jpeg 64 -> 16 -> 8 -> 64 365 111.54 8 1.36 15.21 22.81 82.21 73.76

kmeans 6 -> 8 -> 4 -> 1 44 5.77 6 0.67 2.44 3.67 8.56 7.57

sobel 9 -> 8 -> 1 33 5.49 4 0.46 2.75 4.13 11.81 10.45

swaptions 1 -> 16 -> 8 -> 1 50 10.30 8 1.22 2.08 3.13 8.45 7.58

geomean 59.90 9.71 6.35 0.84 3.33 4.71 12.14 10.32

Im
pr

ov
em

en
t

0

1

2

3

4

5

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Energy Saving
Speedup

En
er

gy
 Im

pr
ov

em
en

t

0

2

4

6

8

10

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

10.3

7.6

10.5

7.6

73.825.5

4.1

3.3

8.5

12.14

8.45

11.81

8.56

82.2128.28

4.57

3.79

9.53

1/3 Digital Frequency
1/2 Digital Frequency

Analog Sigmoid

Application Topology Fully Precise
Digital Sigmoid

Fully Precise
Digital Sigmoid

Analog Sigmoid Analog Sigmoid

blackscholes 6 -> 8 -> 8 -> 1 0.0839 8.39 10.21 0.0182

fft 1 -> 4 -> 4 -> 2 0.0303 3.03 4.13 0.011

inversek2j 2 -> 8 -> 2 0.0813 8.13 9.42 0.0129

jmeint 18 -> 32 -> 8 -> 2 0.1841 18.41 19.67 0.0126

jpeg 64 -> 16 -> 8 -> 64 0.0662 6.62 8.35 0.0173

kmeans 6 -> 8 -> 4 -> 1 0.06 6.10 7.28 0.0118

sobel 9 -> 8 -> 1 0.0428 4.28 5.21 0.0093

swaptions 1 -> 16 -> 8 -> 1 0.0261 2.61 3.34 0.0073

geomean 0.06 6.02 7.32 0.01

Ap
pl

ic
at

io
n

Le
ve

l E
rr

or

0%

2%

4%

6%

8%

10%

12%

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Fully Precise Digital Sigmoid
Analog Sigmoid

Table 1

Maximum number of Incoming Synapses to each
Neuron

4 8 16

Application
Level Error
(Image Diff)

14.32% 6.62% 5.76%

Ap
pl

ic
at

io
n

Le
ve

l E
rr

or
 (I

m
ag

e
D

iff
)

0%

3%

6%

9%

12%

15%

Maximum number of Incoming Synapses to each Neuron
4 8 16

Ap
pl

ic
at

io
n

Sp
ee

du
p

0

2

4

6

8

10

blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean

Core + D-NPU
Core + A-NPU
Core + Ideal NPU

Application Level Error

Benchmarks Fully Precise
Digital Sigmoid

Analog
Sigmoid

blackscholes 8.39% 10.21%

fft 3.03% 4.13%

inversek2j 8.13% 9.42%

jmeint 18.41% 19.67%

jpeg 6.62% 8.35%

kmeans 6.1% 7.28%

sobel 4.28% 5.21%

swaptions 2.61% 3.34%

geomean 6.02% 7.32%

blackscholes fft inversek2j jmeint jpeg kmeans sobel

Floating Point
D-NPU

6.0% 2.7% 6.2% 17.6% 5.4% 3.2% 3.8%

A-NPU + Ideal
Sigmoid

8.4% 3.0% 8.1% 18.4% 6.6% 6.1% 4.3%

A-NPU 10.2% 4.1% 9.4% 19.7% 8.4% 7.3% 5.2%

Benchmarks blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Other
Instructions

2.4% 31.4% 3.3% 3.1% 43.3% 65.5% 40.5%

NPU Queue
Instructions

0.3% 1.2% 0.8% 1.8% 0.5% 4.8% 2.3%

42
.5

51
.2

52
.5

1.
6 1.
7

1.
7

25
.8

30
.0

31
.4

7.
3

17
.8

18
.8

2.
2 2.
3

2.
3

1.
1 1.
3

1.
3

2.
7 2.
8

2.
8

14
.1

24
.5

48
.0

1.
1 1.
3 1.

6

7.
9

10
.9

14
.9

2.
3

6.
2

14
.0

1.
5 1.

8
1.

9

0.
5 0.
8 1.

2

2.
4 3.

1 3.
6

9.
5

2.
5

3.
7

1.
8

4.
5

2.
4

28
.2

3.
9

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Percentage
instructions
subsumed

8.4% 3.0% 8.1% 18.4% 6.6% 6.1% 4.3% 2.6% 6.0%

Analog
Sigmoid

10.2% 4.1% 9.4% 19.7% 8.4% 7.3% 5.2% 3.3% 7.3%

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions
Percentage
Instructions
Subsumed

97.2% 67.4% 95.9% 95.1% 56.3% 29.7% 57.1%

82
.2

15
.2

8.
5

2.
4

11
.8

2.
7

8.
4

2.
0

12
.1

3.
3

2.
5

3.
7

5.
4

5.
1

6.
3 6.
5

Application Energy Reduction

Application Topology Core + D-NPU Core + A-NPU Core + Ideal NPU Core + D-NPU Core + A-NPU

blackscholes 6 -> 8 -> 8 -> 1 42.5954312379609 51.250425520663 52.5015883985599 0.811317000822956 0.976169047145797 0.0238309528542033

fft 1 -> 4 -> 4 -> 2 1.66144638762811 1.70352109148241 1.71911629291664 0.966453749797993 0.990928361566649 0.00907163843335124

inversek2j 2 -> 8 -> 2 25.8726893148605 30.0198258158588 31.432603181923 0.823116340861644 0.955053758739376 0.0449462412606239

jmeint 18 -> 32 -> 8 -> 2 7.32010374044854 17.8930069836166 18.8933415016608 0.387443573165978 0.947053594624526 0.052946405375474

jpeg 64 -> 16 -> 8 -> 64 2.21156760942508 2.39631940662302 2.39878691088084 0.921952508325545 0.998971353292519 0.0010286467074806

kmeans 6 -> 8 -> 4 -> 1 1.15321498752577 1.33727439731608 1.36611738885167 0.844155119418499 0.978886886463078 0.0211131135369225

sobel 9 -> 8 -> 1 2.74676510816413 2.83229403346624 2.84047691805956 0.967008424078502 0.997119186379832 0.00288081362016845

geomean 5.13306978649764 6.37013417935512 6.51636491720012 0.787719817984527 0.977559461493782 0.011817544342672

Im
pr

ov
em

en
t

0

1

2

3

4

5

blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean

Speedup
Energy Saving

8-bit D-NPU vs. A-NPU-1

8-bit D-NPU 8-bit A-NPU Cycle Improvement Energy Improvement

Application Topology Cycle Energy (nJ) Cycle Energy Cycle
Improvement
(1.1336 GHz)

Cycle
Improvement (1.7
GHz)

Energy
Improvement
(1.1336 GHz)

Energy
Improvement (1.7
GHz)

blackscholes 6 -> 8 -> 8 -> 1 45 8.15 6 0.86 2.50 3.75 9.53 8.48

fft 1 -> 4 -> 4 -> 2 34 2.04 6 0.54 1.89 2.83 3.79 3.33

inversek2j 2 -> 8 -> 2 29 2.33 4 0.51 2.42 3.63 4.57 4.05

jmeint 18 -> 32 -> 8 -> 2 141 56.26 12 1.99 3.92 5.88 28.28 25.50

jpeg 64 -> 16 -> 8 -> 64 365 111.54 8 1.36 15.21 22.81 82.21 73.76

kmeans 6 -> 8 -> 4 -> 1 44 5.77 6 0.67 2.44 3.67 8.56 7.57

sobel 9 -> 8 -> 1 33 5.49 4 0.46 2.75 4.13 11.81 10.45

geomean 61.47 9.63 6.15 0.79 3.33 5.00 12.14 10.79

2.
5

9.
5

3.
7

1.
8

2.
4

4.
5

28
.2

3.
9

82
.2

15
.2

8.
5

2.
4 2.

7
11

.8

12
.1

3.
3

Application Speedup-1

Application Topology Core + D-NPU Core + A-NPU Core + Ideal NPU Core + D-NPU Core + A-NPU speedup

blackscholes 6 -> 8 -> 8 -> 1

fft 1 -> 4 -> 4 -> 2

inversek2j 2 -> 8 -> 2

jmeint 18 -> 32 -> 8 -> 2

jpeg 64 -> 16 -> 8 -> 64

kmeans 6 -> 8 -> 4 -> 1

sobel 9 -> 8 -> 1

swaptions 1 -> 16 -> 8 -> 1

geomean

Application Energy Reduction-1

Application Topology Core + D-NPU Core + A-NPU Core + Ideal NPU Core + D-NPU Core + A-NPU

blackscholes 6 -> 8 -> 8 -> 1 42.5954312379609 51.250425520663 52.5015883985599 0.811317000822956 0.976169047145797 0.0238309528542033

fft 1 -> 4 -> 4 -> 2 1.66144638762811 1.70352109148241 1.71911629291664 0.966453749797993 0.990928361566649 0.00907163843335124

inversek2j 2 -> 8 -> 2 25.8726893148605 30.0198258158588 31.432603181923 0.823116340861644 0.955053758739376 0.0449462412606239

jmeint 18 -> 32 -> 8 -> 2 7.32010374044854 17.8930069836166 18.8933415016608 0.387443573165978 0.947053594624526 0.052946405375474

jpeg 64 -> 16 -> 8 -> 64 2.21156760942508 2.39631940662302 2.39878691088084 0.921952508325545 0.998971353292519 0.0010286467074806

kmeans 6 -> 8 -> 4 -> 1 1.15321498752577 1.33727439731608 1.36611738885167 0.844155119418499 0.978886886463078 0.0211131135369225

sobel 9 -> 8 -> 1 2.74676510816413 2.83229403346624 2.84047691805956 0.967008424078502 0.997119186379832 0.00288081362016845

swaptions 1 -> 16 -> 8 -> 1

geomean 5.13306978649764 6.37013417935512 6.51636491720012 0.011817544342672

from neural acceleration. Geometric mean speedup and energy savings with

an A-NPU is 3.7× and 6.3× respectively, which is 48% and 24% better than

an 8-bit, 8-PE NPU. Among the benchmarks, kmeans sees slow down with

D-NPU and A-NPU-based acceleration. All benchmarks benefit in terms of

energy. The speedup with A-NPU acceleration ranges from 0.8× to 24.5×.

The energy savings range from 1.3× to 51.2×.

Application Error. Table 5.3 shows the application-level errors with a

floating point D-NPU, A-NPU with ideal sigmoid and our A-NPU which in-

corporates non-idealities of the analog sigmoid. Except for jmeint, which

shows error above 10%, all of the applications show error less than or around

10%. Application average error rates with the A-NPU range from 4.1% to

10.2%. This quality-of-result loss is commensurate with other work on quality

trade-offs [36, 109, 8, 88].

To study the application-level quality loss in more detail, Figure 5.15

illustrates the cumulative distribution function plot of final error for each el-

ement of the application outputs. The output of each benchmark consists

of a collection of elements—an image consists of pixels, a vector consists of

105

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Error

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f O
ut

pu
t E

le
m

en
ts

blackscholes
fft
jmeint
inversek2j
jpeg
kmeans
sobel

Figure 5.15: CDF plot of application output error. A point (x,y) indicates
that y% of the output elements see error ≤ x% [4].

scalars, etc. The error CDF reveals the distribution of output errors among

an application’s output elements and shows that a small fraction of the output

elements see large quality loss with analog acceleration. The majority (80% to

100%) of each application’s output elements have error less than 10% except

for jmeint.

5.5 Future Considerations for Addressing Analog Chal-
lenges

The compile-time learning techniques presented in Section 5.3 compen-

sate for design-time challenges of neural computation in the analog domain;

however, as mentioned in Chapter 3, an analog implementation presents ad-

ditional challenges, such as manufacture-time process variations and run-time

noise, both of which could degrade result quality. As compared to solving clas-

106

sification tasks (like the taken or not taken branch prediction produced by the

analog neural predictor), these non-idealities are particularly significant in the

context of regression tasks, like those targeted by the A-NPU, that produce

multi-bit neuron outputs, rather than binary outputs. Rational-valued out-

puts reduce the margin for undetectable errors, as signal variations within the

design are more likely to produce variations in neuron outputs. This section

briefly mentions possible approaches to future work in the identification and

correction of manufacture-time and run-time variabilities.

5.5.1 Addressing Manufacture-Time Variability

Through training, a neural approach to approximate computing presents

the opportunity to correct for certain types of analog-imposed inaccuracy, such

as process variation, non-linearity, and other forms of non-ideality that are con-

sistent across executions on a particular A-NPU hardware instance for some

period of time. Chip-in-the-loop training has frequently been used to address

such analog non-idealities [44, 79, 124]. Chip-in-the-loop training utilizes the

neural hardware in the feed forward computation of network outputs for a

given set of training inputs. In this way, weights may be adjusted to minimize

the error seen at the network outputs for any particular hardware instance.

To address manufacture-time non-idealities, we suggest a third training

pass, similar to CDLM, where inputs and outputs are shipped to and from the

A-NPU, and full-precision computation is used to backpropagate network error

information and adjust for non-idealities specific to any particular hardware

107

instance. This training phase can utilize the network topology and trained

weight information calculated during the initial compilation phase (which uti-

lized a software model of the hardware restrictions), as it represents a good

starting solution; therefore, the chip-in-the-loop pass would not require addi-

tional search and training over the space of feasible topologies. We expect a

similar overhead as the CDLM training pass in terms of the number of train-

ing epochs required (10% of the initial number of training epochs), with the

additional overhead of sending training data to and from the A-NPU hard-

ware. Similarly, re-compilation with this additional chip-in-the-loop training

phase can adjust for hardware failures that occur over time. For example, a

programmer can recompile an application if the output quality becomes unac-

ceptable.

5.5.2 Addressing Run-Time Variability

In addition to utilizing standard circuit design techniques to minimize

the effects of noise, mechanisms that identify and possibly correct for run-time

variability could improve network accuracy and further enable analog designs

for approximate computation. This section discusses two possible approaches

to identifying run-time variability and inaccuracy in the A-NPU. One approach

relies on run-time event monitoring, and the other on compile-time training

information to detect variation from the expected results.

108

Event Monitoring and Error Prediction. One approach to identifying

run-time variability is through event monitoring. For example, certain circuit-

level events might indicate a high-noise environment or a high likelihood of

inaccurate operation. Examples of noise-indicative events include tempera-

ture swings or extremes measured by temperature sensors, or, at a larger

granularity, a run of extreme outputs at a particular neuron (such as a se-

ries of ‘1’s rather than an output value between 0 and 1), as extreme neuron

outputs might indicate internal analog noise and a detrimental loss in result

quality, especially in the context of regression tasks. Monitored events could

vary in granularity, though the analog-digital boundary at the neuron outputs

allows for easy access to signal values as compared to monitoring internal ana-

log nodes. These monitored events of interest could be used to predict drops

in result quality. Relevant recent work by Chippa et al. attempts to manage

the run-time quality/efficiency tradeoff of approximate computing applications

through the use of table-based quality predictors [22].

Measurement-Based Error Detection. Another approach for identifying

run-time variations is to compare run-time network outputs with a set of

expected outputs determined during compilation (perhaps after a hardware-

specific, chip-in-the-loop training phase). In this approach, a set of sample

inputs and weights can be sent to the A-NPU for computation. The run-time

outputs can then be compared against the expected outputs known at compile

time. Error above a specified value for a particular ANU output, or over the

109

output set as a whole, could signify an unacceptable degradation in result

quality. This error-checking computation overhead can be limited, as this

technique only requires a single, parallel computation over the set of physical

ANUs.

Correction Mechanisms. Possible correction mechanisms for both event-

based and measurement-based error detection include reversion back to the

programmer-written code, or the utilization of redundant hardware. For ex-

ample, if an ANU is deemed unacceptable through event-monitoring or error

measurement techniques, computation could be routed to an alternate ANU

hardware instance.

5.6 Conclusions

To utilize the growing number of transistors per chip and to continue

to provide gains in performance and energy efficiency, the architecture com-

munity has increasingly focused on the design of special-purpose, hardware

accelerators. With performance and energy efficiency as top-priority goals

in the development of new computing hardware, analog circuits warrant re-

investigation for their potential benefits toward that end; however, it is chal-

lenging to utilize analog hardware in a way that is both programmable and

generally useful. The transformation of approximation-tolerant code segments

to a neural model of computing, which can then be accelerated on neural

hardware, provides an avenue for realizing the benefits of analog computation

110

by taking advantage of the fixed-function qualities of a neural network, while

targeting traditionally written, approximation-tolerant code across application

domains. As compared to prior work in neural hardware, the work presented

in this chapter targets the enablement of general-purpose, regression tasks, to

maintain general applicability over a range of approximation-tolerant applica-

tions, which presents increased difficulties due to an analog implementation

over those present in classification tasks.

A transistor-level circuit design for a neuron computation block high-

lights the effects of analog range limitations on a neural model of computing.

Specifically, analog range limitations restrict network connectivity, activation

function behavior, and the bit widths of network inputs, weights, and outputs.

Each of these limitations potentially results in decreased network accuracy.

Exposing those limitations to the compiler, however, provides an op-

portunity for mitigating losses in accuracy and enables the utilization of inac-

curate analog hardware. A mixed-signal design that converts neuron outputs

to the digital domain allows for increased network topology flexibility by allow-

ing connections between neurons to vary across computations. We show that

this flexibility, along with compiler-determined connectivity, compensates for a

limited number of inputs per neuron. Additionally, we show that the RPROP

training algorithm is more resilient than the commonly-used backpropagation

algorithm in the presence of limitations on activation-function steepness that

arise due to analog range limitations. A second, CDLM-based training pass

further increases achievable accuracy by adjusting the network to compensate

111

for errors due to limited-precision value representation. For the applications

investigated, the A-NPU is 12.1x more energy efficient and 3.3x faster than an

8-bit D-NPU on average.

Application-level speedup and energy savings are limited by the amount

of code that can be translated to a neural network for accelerated computa-

tion. Further work in creating more sophisticated compile-time code transfor-

mations, such as the incorporation of genetic algorithms or multiple network

models, could increase application coverage and accuracy. While this chapter

provides solutions for design-time analog non-idealities, future work should

also address the manufacture-time and run-time implications of an analog de-

sign.

112

Chapter 6

Related Work

Related work falls within three main categories: (1) approximate com-

puting, (2) neural-network hardware design, and (3) learning algorithms for

hardware neural networks.

6.1 Approximate Computing

Error-tolerance has been shown to be a common characteristic among

emerging workloads [40, 77, 134, 97]. These applications may compute on

noisy data, may inherently use approximation techniques (e.g. machine learn-

ing), or may use approximation to decrease the computation load of com-

plex operations on large data sets [25]. Decreasing hardware reliability due

to transistor scaling, an increased focus on energy efficiency, and the rise of

error-tolerant applications has produced a quickly growing body of work in

the area of approximate computing, both in hardware and in software, which

aims to decrease energy consumption by relaxing the abstraction of precise

and, sometimes, repeatable computation [49, 135].

113

Software Support for Approximate Computing. Language and compi-

lation support has been developed to leverage applications error tolerance [14,

26, 8, 109, 5, 120]. Ansel et al. provide language extensions and compiler

support for executing variable-accuracy code by applying a genetic-algorithm-

based tuning technique that searches a space of candidate algorithms and ac-

curacies. Green [8] provides a framework to leverage algorithmic-level approx-

imation through early loop termination and approximate functions, while at-

tempting to adhere to programmer-defined quality requirements. EnerJ [109]

allows a programmer to label data as approximate, so that computations with

that data may take advantage of low-power computation and storage [78, 110,

36]. The analog neural accelerator presented in this thesis serves as an imple-

mentation of approximate computation, which supports approximate program-

ming models and could serve to help understand their potential benefits. The

compile-time neural learning techniques presented in this dissertation could

be incorporated into other compilation frameworks for enabling approximate

computing.

Hardware Design for Approximate Computing. Hardware designs for

approximate computing have primarily been digital [74, 51, 19, 95, 82, 36,

111]. Digital approaches often employ supply voltage scaling to decrease en-

ergy/operation. PCMOS [19] compute blocks use less-than-critical supply

voltages for low-order bits and compute correctly with a well-characterized

probability. ANT [51] addresses error correction for soft digital signal pro-

114

cessing applications where errors arise in the most significant bits of compu-

tation values due to increased critical path delays with less-than-critical sup-

ply voltages. Other digital approximate-computation techniques include fuzzy

memoization [3], which approximates floating-point computations with table

look-ups, and bit-width reduction [129], which suggests using lower-precision,

floating-point functional units to save energy when appropriate. Bio-Inspired

Imprecise Computation Blocks [82] utilize digital, integer computations in im-

precise adders and multipliers. Though these various digital approximate-

computing blocks could be utilized for computation in the neural predictor or

neural accelerator, analog hardware offers greater potential for gains in energy

efficiency.

Thus far, however, analog approximate computing blocks have yet to

be successfully integrated with a high-performance CPU for general-purpose,

approximate computing. The work presented in this thesis investigates a neu-

ral approach as an avenue toward the incorporation of analog hardware in

high-performance, general-purpose approximate computation.

Recent work investigates combined hardware-software approaches to

enable a variable level of approximation that meets programmer-defined qual-

ity metrics. Quality programmable processors [131] utilize ISA extensions that

specify quality requirements along with microarchitectural support for en-

abling general-purpose, approximate computing. The microarchitecture design

consists of arrays of processing elements that provide various levels of accuracy,

along with a quality control unit that configures those elements (through bit-

115

width modulation) to provide the required level of precision. The SAGE [108]

framework enables approximate execution on GPUs through compile-time ap-

proximation techniques (selective discarding of atomic operations, data pack-

ing, and thread fusion) that generate a set approximate kernels, along with

run-time management support that selects among the approximate kernels to

provide efficiency gains while meeting target-output quality requirements.

These digital designs occupy a different point in the tradeoff space of

power and energy efficiency, accuracy, generality, and programmability from

the A-NPU work presented in this thesis, though they also present a valid path

toward enabling high-performance, general-purpose approximate computing.

In particular, enabling execution with various levels of approximation is a

promising and worthwhile research direction. Some work in providing quality

control could potentially be applied to the A-NPU, for example, table-based

error prediction based on event monitoring [22]. The A-NPU work presented

in this thesis differs from these designs in that it focuses on enabling compu-

tation with analog circuits, rather than digital ones. As such, the path toward

enabling and managing approximation will likely look different. For example,

an analog neural approach can potentially correct for sources of inaccuracy

through training, which minimizes run-time energy overheads.

6.2 Analog and Digital Hardware for Neural Networks

There has been a significant amount of work in the area of hardware

neural networks. Frank Rosenblatt followed up his development of the per-

116

ceptron algorithm in 1957 [104] with hardware implementations. The Mark I

Perceptron was an electro-mechanical machine that performed simple classi-

fication tasks [50]. Potentiometers supplied variable resistances to represent

weight values, and topology connections could be reconfigured through plug-

board re-wiring.

As illustrated in Figure 2.1, neural hardware designs vary in circuit

implementation, integration with other computing units, supported network

models and their connectivity, as well as training techniques. Design choices

vary depending on the goal of the neural hardware, with each design occupying

a different point in the tradeoff space of performance, energy consumption,

programmability, generality, and result quality (accuracy).

The choice of implementation is often dominated by performance and

energy targets, since dedicated hardware offers the opportunity for orders of

magnitude improvements in performance and energy efficiency over software-

simulated networks [48]. Hardware implementations might utilize analog elec-

tronic signals [29], digital ones [128], or some combination of two (mixed-

signal) [87]. There has also been research in the implementation of neural net-

works with alternative technologies, such as optical neural networks, where val-

ues are represented with light beams. Optical neural networks have been stud-

ied because of their potential for highly parallel computation and speed [42].

Although the mirror and lens technology used to implement these networks

varies significantly from that used in standard high-performance processors,

optical networks share similar challenges with analog and digital electronic im-

117

plementations, such as limitations in the effective bit-width of values, as light

beams can only represent a limited number of values; as such, work in optical

networks may still be relevant for enabling energy-efficient electronic imple-

mentations. For example, the continuous-discrete learning method (CDLM)

leveraged in Chapter 5 was proposed for use in optical neural networks [23].

The goal of neural hardware largely falls into two categories: (1) to fa-

cilitate biological research, or (2) to accelerate a specific application or class of

applications. Designs in either category can utilize analog or digital implemen-

tations or any variety of neural model; however, designs aimed to advance bio-

logical research often utilize analog circuits and spiking neural models, rather

than an MLP model, since analog spiking models more closely resemble the

type of signaling and processing found in the brain [58]. In the commonly

used leaky integrate-and-fire (LIF) spiking model, a neuron integrates input

spikes over time and produces an output spike (fires) when that value crosses

a specified threshold.

Neuromorphic Designs. Hardware designed to emulate certain biological

functions found in real neural systems has been referred to as neuromorphic

computing [59]. Carver Mead’s group pioneered efforts in this area with analog

hardware implementations of the silicon retina [85] and the silicon cochlea [80],

which utilized CMOS transistors operating in the sub-threshold region. Synap-

tics Inc. produced a commercial version of the silicon retina, the I-1000 [99],

which has been used to recognize characters on bank checks. Weights are

118

hard-wired, as the character set is known, and this fixed design operates with

low power consumption.

There has been a recent growth in hardware designed for the accelera-

tion of biological research, both in industry [62] and academia [72]. In 2008,

DARPA announced funding for the Systems of Neuromorphic Adaptive Plas-

tic Scalable Electronics (SyNAPSE) initiative [24], with the goal to develop

electronic neuromorphic machine technology that scales to biological levels.

With support from this program, researchers at Stanford have developed a

synapse model that uses phase change memory to model synaptic plastic-

ity [72]. Also under this program, IBM commenced work on a Cognitive Com-

puting Chip [62], which aims to empower large-scale brain simulations with

computational building blocks of the brain (neurons and spikes). The IBM

neurosynaptic core architecture [6] consists of 256 fully-digital leaky integrate-

and-fire neurons with a 1,024 x 256 SRAM crossbar memory for synapses

(weights), where spike events occurring on the order of milliseconds consume

45pJ/spike at 45nm [106]. Programming a system of neurosynaptic cores is a

challenge, as it requires offline mapping of an application to a spiking model

and setting the parameters of each neuron in a way that results in a useful

function [39].

The SpiNNaker architecture [45] represents another digital approach to

implementing large-scale neural systems. The architecture utilizes a collection

of ARM processors for bio-inspired computing with unreliable spikes, with

the goal of simulating a billion neurons in real time. An array of ARM9

119

cores enable a point-neuron model that communicates asynchronous neuron

spikes and neuron address information between cores via packets on a custom

interconnect fabric.

The BrainScaleS system (formerly FACETS) [113] describes wafer-

scale integration of mixed-signal, spiking neurons with a mean firing rate of

10 Hz. One wafer includes 448 HICANN (High Input Count Analog Neural

Network) chips, where a chip can be configured to maximize the number of

inputs per neuron (resulting in 8 neurons with 16,000 inputs per neuron) or

the number of neurons (resulting in 512 neurons with 256 inputs per neuron).

Systems designed to emulate biological functions can not necessarily be

applied to solve general, approximation-tolerant problems in computation at

high performance. Even if such a mapping can be identified and described,

programmability is a challenge. Performance requirements can also pose chal-

lenges, as signaling in these systems occurs on the order of milliseconds (though

highly parallel signaling potentially increases the computation capacity per

second).

Spiking models are potentially a good match for an analog implementa-

tion [59]. Joubert et al. compared analog and digital spiking models with 8-bit

signed weights at 65 nm and showed that an analog implementation required

5x less area and 20x less energy than a digital design [70]. Assuming optimistic

scaling of the digital design, the authors project that an analog design would

retain energy benefits of 3x over a digital one until at least the 22 nm node.

Though spiking models map well to analog circuits, little work has been done

120

to show their ability to solve general regression problems, like those targeted

by the A-NPU, that require multi-bit outputs. Work in utilizing spiking neu-

rons to implement function approximation tasks could be beneficial for the

enablement of analog implementations for approximate computing.

Domain-Specific Neural Accelerators. Domain-specific neural acceler-

ators have been proposed that aim to speed up specific neuro-inspired algo-

rithms [81, 18, 41, 9]. Chakradhar et al. describe an FPGA co-processor for the

hardware acceleration of convolutional neural networks. It achieves real-time

video stream processing on object detection and recognition tasks [18]. The

neuFlow architecture [98] also aims to accelerate convolution neural networks

for vision tasks.

Recent work by Belhadj et al. presents an interesting application of

spiking neurons to accelerate signal processing applications [9]. The authors

leverage prior work that translates signal processing tasks to a set of oper-

ators that can be implemented with spiking neurons. This work devises a

new programming model that allows programmers to express digital signal

processing applications as a graph of analog neurons and automatically maps

the expressed graph to tiled spiking neural hardware. The accelerator utilizes

analog computational operators, but output spikes are converted to the digital

domain for routing between neurons. The analog neuron at 65 nm is capable

of harnessing inputs between 1 kHz and 1 MHz. Although the programming

model uses application graphs, rather than a familiar instruction-based model,

121

this work is an interesting step toward increasing generality for analog imple-

mentations of approximation-tolerant tasks.

Toward General-Purpose Neural Accelerators. BenchNN [20] aims to

show that the application scope that can be implemented approximately with

neural networks is very broad; the authors translate approximation-tolerant

applications (including 5 PARSEC benchmarks) to neural models for compu-

tation. One thing to note from this work is that 3 of the 4 function approx-

imation tasks are translated to MLP networks, one of which (blacksholes)

is evaluated on the A-NPU in Chapter 5. The BenchNN work supports the

usefulness and direction of the A-NPU work presented in this thesis. Future

work on translating additional computation and applications to MLP networks

would be beneficial. Additionally, compilation and neural hardware support

that enables the acceleration of multiple neural models is a promising direction.

6.3 Learning Techniques for Hardware Neural Networks

Prior work has proposed hardware-friendly learning algorithms to ad-

dress the challenges of limited neural hardware [102, 89, 44, 29, 28]. When

reviewing prior work on addressing the hardware limitations of multilayer-

perceptron networks, there are several differences to note to put each piece of

work into context: (1) what implementation type is considered? (e.g. analog

or digital), (2) which type of applications are evaluated? (e.g. classification or

regression), and (3) where does learning occur? (on-chip, off-chip, or chip-in-

122

the-loop). Hardware faults, such as stuck-at faults, for example, potentially

affect analog and digital networks differently. Similarly, if a network is shown

to display good convergence despite the presence of noise, it is important to

note the type of application evaluated. Classification tasks that produce sim-

ple, binary outputs are more robust against noise [32]. Also, on-chip, off-chip,

and chip-in-the-loop learning techniques aim to overcome different problems

that result from limitations in hardware.

Learning can occur ‘on chip’ with dedicated hardware [86, 54, 90, 87],

‘off chip’, or with a ‘chip-in-the-loop’ training approach [124]. With on-chip

learning, the learning calculations, e.g. backpropagating error, are subject to

limitations in the hardware implementation, such as limited precision and in-

accurate computation. These training-time hardware limitations often result

in poor convergence and poor result quality. Off-chip training also results in

poor quality results if the hardware behaves differently than predicted during

training. Chip-in-the-loop training utilizes the neural hardware to compute

the feed-forward pass of the network during training; however, the weight-

update computation occurs in software with reliable, full-precision compu-

tation. Chip-in-the-loop training, therefore, avoids the convergence problems

that are common when the learning computations are limited in precision, and

result quality is improved over a training approach that does not incorporate

real hardware behavior.

There are three approaches in the literature that aim to compensate

for hardware limitations and non-idealities during training: (1) a chip-in-the-

123

loop approach, (2) the utilization of a hardware model during an off-chip,

software training step, and (3) the use of alternate learning algorithms, such

as perturbation algorithms, that were specifically designed to mitigate the

effects of hardware non-idealities.

Chip-in-the-loop Training. Analog designs often utilize a chip-in-the-loop

training approach, and this approach has been shown to compensate for a

large range of analog non-idealities, including threshold-voltage component

variation, limited dynamic range, and weight quantization, among others [44,

79, 124]. Frye et al. show that, of the analog non-idealities considered, limiting

the maximum weight value (due to limited dynamic range in the synaptic

connections) presented the largest challenge [44]. The A-NPU compile-time

learning algorithm addresses this challenge with the CDLM training pass that

compensates for limited-precision values.

Temam developed a defect-tolerant neural accelerator that implements

a limited-precision, digital multilayered-perceptron neural model at 90 nm [126].

He investigates the impact of transistor-level defects (assuming chip-in-the-

loop training with backpropagation learning) on the functionality of the net-

work over a variety of classification tasks from the UCI machine-learning

benchmark suite [7]. The author noted that the effects of transistor-level de-

fects can be significantly different than those of a simplified fault model, such

as stuck-at synapses. As most prior work considers simplified fault models,

additional work in error modeling is a worthwhile step toward the enablement

124

of neural computation at sub-micron technologies.

Hardware Modeling in Off-Chip Training. Edwards and Murray pro-

posed a technique of training with weight noise as a means to improve fault

tolerance [92, 93]. In this way, chip-in-the-loop training could be avoided

by creating a defect-tolerant, robust network by modeling noise in the weights

during training time. Later work [33] investigated this approach on real analog

hardware that exhibited non-ideality in the form of offset in the neuron out-

put due to temperature fluctuations, as well as limited weight dynamic range.

The authors concluded that a restricted weight range decreases the fault toler-

ance benefit of training with weight noise and that a chip-in-the-loop training

pass would still be necessary to overcome the analog non-ideality of limited

dynamic range. As future work, we propose a chip-in-the-loop training pass

to deal with manufacture-time non-idealities in the A-NPU hardware. This

chip-in-the-loop pass could potentially add robustness to noise, as noise would

be present during this training pass; however, the explicit injection of a noise

model during training might also prove additionally beneficial in managing

run-time noise.

Lont and Guggenbühl formalized the backpropagation algorithm to

handle a wider class of synaptic operators [79]. Specifically, the updated train-

ing algorithm handles non-linear multiplication between the neuron inputs and

weights, which is beneficial for analog implementations with limited dynamic

range. Their results show that a description of the multiplication character-

125

istic incorporated into the training phase enables convergence. Additionally,

the authors used a chip-in-the-loop training approach on analog hardware at

3 µm and showed high-quality results on character recognition tasks despite

noise and other analog non-idealities, such as device mismatch. The A-NPU

compile-time training approach could be extended to incorporate information

regarding the synapse multiplication characteristic to further mitigate the ac-

curacy challenges of an analog implementation.

Perturbation Algorithms. Perturbation training algorithms offer a po-

tentially hardware-friendly alternative to a backpropagation-based training

approach. These algorithms were proposed to simplify on-chip training hard-

ware, as backpropagation requires the computation of the derivative of the

non-linear activation function and bi-directional circuitry. Rather than uti-

lizing explicit calculations of the gradients, weight perturbation approximates

the gradients by serially applying small perturbations to the weights in the

network and measuring the network error at the output [61]. This approach

requires many feed forward passes and has high costs in terms of compu-

tation time; however, it has the advantage of not requiring a model of the

non-linear activation function, which can benefit a non-ideal analog imple-

mentation. Improvements in perturbation algorithms have also aimed to re-

duce computational complexity, while maintaining accuracy, through parallel

perturbations [43, 2, 17, 54]. Little work, however, utilizes perturbation algo-

rithms when off-line training is available. Additionally, evaluations of these

126

methods are more commonly reported for classification tasks, which leaves the

effects of these training methods on accuracy unclear, particularly for regres-

sion tasks, such as those targeted by the A-NPU. Moving forward, however,

with improvements in technologies that support non-volatile analog storage,

this class of training algorithm could potentially benefit an all-analog A-NPU

implementation, where weights are stored in resistive memories (ReRAM) that

support easy perturbation (incrementing and decrementing) of the weights

with low energy costs.

In general, when off-chip, full-precision computation is available, back-

propagation is the most widely utilized gradient-descent training algorithm

referenced in the literature for training MLP networks. The suggestion of

utilizing resilient propagation (RPROP), as opposed to backpropagation, for

its benefits in addressing analog hardware limitations is novel. Future work

in further addressing the challenges of an analog approach could incorporate

additional techniques outlined in this section, such as incorporating a more de-

tailed hardware model into the compile-time learning algorithm, for example,

to limit the effects of run-time noise.

127

Chapter 7

Conclusions

Although the first known computing devices were analog, advancements

in electronic technology, along with work by Alan Turing, John von Neumann,

and other computing pioneers forged a computing industry focused on digital

designs. The end of Dennard scaling, however, has limited the advancements

of traditional, general-purpose designs. As such, to continue to provide the

industry with performance improvements and decreased energy consumption,

computer architects are in a position to re-think the assumptions and abstrac-

tions that have guided work in computing until this point.

One such abstraction is that of known precision and repeatable com-

putation. Relaxing this abstraction, when appropriate, allows accuracy to be

traded for potential gains in energy efficiency. Under an approximate comput-

ing paradigm, analog circuits offer high potential and warrant re-investigation

for their potential benefits. The challenges with analog computing, however,

which contributed to the prevalence of digital implementations, must be ad-

dressed.

This thesis work specifically targets the historical analog shortcom-

ings of programmability, generality, and accuracy. Due to inaccuracy, analog,

128

general-purpose computing will likely require some system for accuracy detec-

tion and correction. A neural approach is one avenue of research for solving

this challenge, as neural networks can function as a feedback and correction

system by utilizing training to improve accuracy. One long-term contribution

of this dissertation work is to highlight the potential of a neural approach as

a path toward incorporating inaccurate, analog circuits into general-purpose,

computing hardware, as we exhibit their utilization for approximate comput-

ing at both the microarchitecture-level and application-level.

The analog neural branch predictor work presented in this thesis demon-

strates the successful incorporation of analog circuits for approximate com-

puting tasks at the microarchitecture level. The SNAP predictor enabled a

highly-accurate prediction algorithm that is infeasible to implement in the

digital domain (it would consume several orders of magnitude more power),

while incurring only a 0.12 MPKI decrease in accuracy over a fully-precise

version of the predictor. It is not yet clear whether table-based predictors,

like TAGE [118], or neural predictors will eventually prove the most accurate.

Thus far, neural predictors have performed better than table-based predictors

on hard-to-predict applications [118]; as such, we will likely continue to see re-

search in the area of neural branch prediction, and in particular, analog neural

branch prediction, as we have shown that analog circuits enable more accurate

prediction algorithms through the capacity for fast, low-power computation.

Our successful microarchitectural integration of analog circuits for the task of

branch prediction also opens the door for similar approaches to other predic-

129

tion and resource scheduling tasks that can tolerate imprecision. As such, the

investigation of mapping other approximation-tolerant microarchitecture tasks

to neural models for efficient, analog computation is a promising direction for

future research.

The SNAP predictor would further benefit from the incorporation of

analog storage by reducing the power required for reading and writing digi-

tal tables, by reducing the power required for incrementing and decrementing

weights during training (which occurs 10% of the time on average), and by po-

tentially enabling improved predictor accuracy by increasing storage density

and predictor state. A SNAP digital-table read, for example, consumes 117

mW, where as the dot-product computation consumes only 7.4 mW with the

majority of the computation power attributed to the digital-to-analog conver-

sions. Further work in understanding the implications of various analog storage

technologies on predictor energy and accuracy would be highly beneficial.

Branch prediction offers the opportunity for performance improvements

across applications; however, the overheads associated with executing a pro-

gram with known precision in a repeatable fashion on a von Neumann archi-

tecture limit the opportunity for performance and energy improvements. To

pursue the possibility of even greater performance and energy benefits, for ex-

ample, 200% improvement as opposed to 20%, the second piece of this thesis

work investigates application-level approximate computing. The mixed-signal,

neural accelerator goes beyond a precise, digital implementation in trading

accuracy for efficiency by allowing for approximation in the neural network

130

computations in addition to the approximation present due to the algorithmic

transformation.

Limited signal ranges in the analog domain, however, make the task

of function approximation (regression) challenging. The ANU circuit design

presented in this thesis delineates how design-time range limitations restrict

network connectivity, limit the bit widths of values, and place restrictions on

the activation function steepness, all of which potentially decrease a network’s

capacity to produce high-quality outputs. We show that exposing these limi-

tations to the compiler allows for improved accuracy. We found that topology

restrictions are not detrimental to network accuracy as long as synaptic con-

nections can be reconfigured. Additionally, we show that, even when on-chip

training is not required and full-precision computation is available at train-

ing time, training algorithms vary in their ability to support accuracy in the

analog domain. This thesis work suggests the RPROP training algorithm as

being well-suited to an analog implementation because it shows less sensitivity

to activation-function steepness than the more commonly used backpropaga-

tion algorithm. Additionally, this thesis work suggests CDLM as a successful

training algorithm for the compensation of limited bit widths, which broadens

the scope of applications that can benefit from an analog neural approach to

computation. RPROP, CDLM, and a strategy for reconfiguring synaptic con-

nections all contribute to the enablement of an analog NPU implementation;

without these methods, the number of applications that could benefit from an

analog neural approach to computation would be extremely limited.

131

As compared to an 8-bit digital-NPU, the A-NPU achieves 12.1x more

energy savings and 3.3x speedup on average for each accelerator invocation.

These gains translate to 6.3x energy savings and 3.7x application-level speedup

over the original, conventionally-written code run on an aggressive, out-of-

order architecture. With the proposed compilation support, application error

levels remain below 10% despite design-time, analog-signal range limitations.

Future A-NPU work must address manufacture-time variability, as well

as run-time noise. The addition of a chip-in-the-loop training pass is likely

the best approach to compensate for manufacture-time non-idealities across

A-NPU hardware instances. The explicit injection of a noise model could

potentially produce networks with high tolerance to noise; however, this tech-

nique must be investigated with more accurate noise models, as current work

in the literature assumes simple fault models and focuses evaluations on clas-

sification tasks. Likely, run-time support, such as event sensing and correction

mechanisms, will be required to manage run-time noise and maintain quality

outputs.

The investigation of additional neural models of computation, in addi-

tion to the multilayered perceptron, would complement the work presented in

this thesis. For example, a more sophisticated compilation transformation and

the accompanying neural hardware might support multiple neural models of

computation to increase the scope of applications that benefit from the neural

acceleration approach.

Tailoring analog circuits for use in general-purpose, regression problems

132

that require rational, multi-bit outputs is a difficult problem due to the chal-

lenges of range limitations and noise in the analog domain, which are further

exacerbated by shrinking technology. A neural approach to solving the his-

torical challenges of analog computing is a promising direction, however, the

investigation of additional neural models that might be more robust to noise

or limited-precision, such as models utilizing simple threshold activation func-

tions, would compliment this work. Neural models that utilize neurons with

binary output values, for example, would significantly ease the implementa-

tion challenges present in the analog domain. However, it has not yet been

shown that such neural models can perform complex tasks like function ap-

proximation. Work in translating real-world problems to such neural models is

an interesting avenue for future research. Restated, translating a broad range

of real-world problems to problems in pattern classification could increase the

likely usage of neural models in the near future.

The end of Dennard scaling has created an industry-wide focus on

energy-efficient designs. As such, a trend toward specialized hardware has

emerged in the post-multicore era to achieve gains in energy efficiency at the

expense of generality. The goal of generality, however, will continue to be a

critical force in the industry moving forward. The economics driving tech-

nology scaling thus far has relied on a decreasing cost per transistor between

successive technology generations. However, increasing fabrication costs due

to the nonidealities and sensitivities in devices at small technology nodes (un-

der 20 nm) has halted that trend. As the cost per device no longer scales, the

133

industry will be motivated to minimize the number of devices and increase the

scope targeted by each device, thereby favoring generality over specialization.

Since the industry has focused on specialization to increase energy efficiency,

moving forward, designers will face a tough balance between generality and

specialization.

The previously-proposed neural transformation allows a wide range of

codes to be run on a single specialized design, in some sense using the trans-

formation to improve generality, while retaining the efficiency benefits of spe-

cialization. In addition to that foundation, this thesis work demonstrates the

utilization of analog circuits as a means to achieve energy efficiency, rather

than solely specialization, thereby still maintaining the goal of generality. As

compared to a digital neuron, an analog neuron requires fewer costly tran-

sistors, which is economically advantageous moving forward, particularly in

the mobile domain, which requires increasing functionality on a single device

within fixed area and energy constraints.

The computing industry is in a new age of large data sets and the ubiq-

uitous use of sensors, which motivates work in energy-efficient, approximate

computing, and, consequently, the re-visitation of our assumptions around

the design of computing devices. Advances in 3D stacking technologies and

resistive storage may support completely new models of computing. The in-

tegration of analog circuits in these models could offer significant benefits,

though the historical analog challenges, including that of generality, must be

addressed. The techniques presented in thesis aim to support such a goal.

134

Bibliography

[1] Phillip E. Allen and Douglas R. Holberg. CMOS Analog Circuit Design.

Oxford University Press, second edition, 2002.

[2] J. Alspector, A. Jayakumar, and S. Luma. Experimental evaluation of

learning in a neural microsystem. In In Advances in Neural Information

Processing Systems (NIPS) 5, pages 871–878. Morgan Kaufmann, 1993.

[3] Carlos Alvarez, Jesus Corbal, and Mateo Valero. Fuzzy memoization

for floating-point multimedia applications. IEEE Transactions on Com-

puters, 54(7), 2005.

[4] Renée St. Amant, Amir Yazdanbakhsh, Jongse Park, Bradley Thwaites,

Hadi Esmaeilzadeh, Arjang Hassibi, Luis Ceze, and Doug Burger. General-

Purpose Code Acceleration with Limited-Precision Analog Computa-

tion. In Proceedings of the 41st Annual International Symposium on

Computer Architecture (ISCA), 2014.

[5] Jason Ansel, Yee Lok Wong, Cy Chan, Marek Olszewski, Alan Edel-

man, and Saman Amarasinghe. Language and Compiler Support for

Auto-Tuning Variable-Accuracy Algorithms. In Proceedings of the 9th

Annual IEEE/ACM International Symposium on Code Generation and

Optimization (CGO), pages 85–96, April 2011.

135

[6] John V. Arthur, Paul a. Merolla, Filipp Akopyan, Rodrigo Alvarez, An-

drew Cassidy, Shyamal Chandra, Steven K. Esser, Nabil Imam, William

Risk, Daniel B. D. Rubin, Rajit Manohar, and Dharmendra S. Modha.

Building block of a programmable neuromorphic substrate: A digital

neurosynaptic core. The 2012 International Joint Conference on Neural

Networks (IJCNN), pages 1–8, June 2012.

[7] K. Bache and M. Lichman. UCI machine learning repository, 2013.

[8] Woongki Baek and Trishul M. Chilimbi. Green: A framework for sup-

porting energy-conscious programming using controlled approximation.

In PLDI, 2010.

[9] Bilel Belhadj, Antoine Joubert, Li Zheng, Rodolphe Héliot, and Olivier

Temam. Continuous Real-World Inputs Can Open Up Alternative Ac-

celerator Designs. In Proceedings of the 40th Annual International Sym-

posium on Computer Architecture (ISCA), pages 1–12, 2013.

[10] John Bryant and Chris Sangwin. How Round is your Circle?: Where

Engineering and Mathematics Meet. Princeton University Press, 2007.

[11] Bsim Research Group at UC Berkeley. BSIM4.6.1 mosfet manual

user’s guide, 2007. http://www-device.eecs.berkeley.edu/~bsim3/

BSIM4/BSIM461/doc/.

[12] Arthur W. Burks and Alice R. Burks. Atanasoff-berry computer. In

Encyclopedia of Computer Science, pages 108–109. John Wiley and Sons

136

Ltd., Chichester, UK.

[13] V. Bush and H. Hazen. The differential analyzer: a new machine

for solving differential equations. Journal of the Franklin Institute,

212(4):447–488, 1931.

[14] Michael Carbin, Deokhwan Kim, Sasa Misailovic, and Martin C. Rinard.

Verified Integrity Properties for Safe Approximate Program Transforma-

tions. In Proceedings of the ACM SIGPLAN 2013 Workshop on Par-

tial Evaluation and Program Manipulation (PEPM), pages 63–66. ACM

Press, 2013.

[15] Michael Carbin, Sasa Misailovic, and Martin C. Rinard. Verifying quan-

titative reliability for programs that execute on unreliable hardware.

In Object-Oriented Programming, Systems, Languages & Applications

(OOPSLA), pages 33–52, 2013.

[16] Charles Care. A multi-stranded chronology of analogue computing. In

Technology for Modelling, History of Computing, pages 17–55. Springer

London, 2010.

[17] Gert Cauwenberghs. A fast stochastic error-descent algorithm for super-

vised learning and optimization. In In Advances in Neural Information

Processing Systems (NIPS) 5, pages 244–251. Morgan Kaufmann, 1993.

[18] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi. A dynam-

ically configurable coprocessor for convolutional neural networks. In

137

ACM/IEEE International Symposium on Computer Architecture (ISCA),

June 2010.

[19] Lakshmi N. Chakrapani, Pinar Korkmaz, Bilge E. S. Akgul, and Kr-

ishna V. Palem. Probabilistic system-on-a-chip architectures. ACM

Trans. Des. Autom. Electron. Syst., 12(3):29:1–29:28, May 2008.

[20] Tianshi Chen, Yunji Chen, Marc Duranton, Qi Guo, Atif Hashmi, Mikko

Lipasti, Andrew Nere, Shi Qiu, Michele Sebag, and Olivier Temam.

BenchNN: On the broad potential application scope of hardware neu-

ral network accelerators. In Proceedings of the 2012 IEEE International

Symposium on Workload Characterization (IISWC), pages 36–45. Ieee,

November 2012.

[21] Tianshi Chen, Jia Wang, Yunji Chen, and Olivier Temam. DianNao : A

Small-Footprint High-Throughput Accelerator for Ubiquitous Machine-

Learning. In Proceedings of the 19th International Conference on Ar-

chitectural Support for Programming Languages and Operating Systems

(ASPLOS), pages 269–283, February 2014.

[22] Vinay K Chippa, Kaushik Roy, Srimat T Chakradhar, and Anand Raghu-

nathan. Managing the Quality vs . Efficiency Trade-off Using Dynamic

Effort Scaling. ACM Transactions on Embedded Computing Systems

(TECS) - Special Section on Probabilistic Embedded Computing, 12(2),

2013.

138

[23] Fiesler Choudry, E. Fiesler, A. Choudry, and H. J. Caulfield. A weight

discretization paradigm for optical neural networks. In International

Congress on Optical Science and Engineering (ICOE), pages 164–173,

1990.

[24] DARPA. Systems of Neuromorphic Adaptive Plastic Scalable Electron-

ics (SyNAPSE), April 2014. http://www.darpa.mil/Our_Work/DSO/

Programs/Systems_of_Neuromorphic_Adaptive_Plastic_Scalable_Electronics_

%28SYNAPSE%29.aspx.

[25] M. de Kruijf and K. Sankaralingam. Exploring the synergy of emerging

workloads and silicon reliability trends. In SELSE, 2009.

[26] Marc de Kruijf, Shuou Nomura, and Karthikeyan Sankaralingam. Relax:

An architectural framework for software recovery of hardware faults. In

ISCA, 2010.

[27] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R.

LeBlanc. Design of ion-implanted mosfet’s with very small physical

dimensions. IEEE Journal of Solid-State Circuits, 9, October 1974.

[28] B K Dolenko and H C Card. Tolerance to analog hardware of on-chip

learning in backpropagation networks. IEEE Transactions on Neural

Networks, 6(5):1045–52, September 1995.

[29] Sorin Draghici. Neural Networks in Analog Hardware - Design and Im-

plementation Issues. International Journal of Neural Systems, 10(1):19–

139

42, February 2000.

[30] P. Dudek and P.J. Hicks. A cmos general-purpose sampled-data analog

processing element. Circuits and Systems II: Analog and Digital Signal

Processing, IEEE Transactions on, 47(5):467 –473, may 2000.

[31] J.P. Eckert and J.W. Mauchly. Electronic numerical integrator and

computer. Technical Report 3,120,606, US Patent Application, 1947.

[32] Peter J Edwards and Alan F Murray. Analogue Imprecision in MLP

Training, volume 4 of Progress in Neural Processing. World Scientific

Publishing Co. Pte. Ltd., 1996.

[33] Peter J Edwards and Alan F Murray. Fault Tolerance via Weight Noise

in Analog VLSI Implementations of MLPs - A Case Study with EP-

SILON. IEEE Transactions on Circuits and Systems II: Analog and

Digital Signal Processing, 45(9):1255–1262, 1998.

[34] Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant, Karthikeyan Sankar-

alingam, and Doug Burger. Dark silicon and the end of multicore scal-

ing. IEEE Micro Top picks from the computer architecture conferences,

32:122–134, May/June 2012.

[35] Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant, Karthikeyan Sankar-

alingam, and Doug Burger. Dark silicon and the end of multicore

scaling. In Proceedings of the The 38th International Symposium on

Computer Architecture (ISCA ’12), June 2011.

140

[36] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger.

Architecture support for disciplined approximate programming. In

Proceedings of the 17th International Conference on Architectural Sup-

port for Programming Languages and Operating Systems (ASPLOS ’12),

March 2012.

[37] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger.

Neural Acceleration for General-Purpose Approximate Programs. In

Proceedings of the 45th Annual IEEE/ACM International Symposium

on Microarchitecture, 2012.

[38] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger.

Neural acceleration for general-purpose approximate programs. IEEE

Micro Top Picks from the 2012 Computer Architecture Conferences,

33(3):16–27, May/June 2013.

[39] Steve K Esser, Alexander Andreopoulos, Rathinakumar Appuswamy,

Pallab Datta, Davis Barch, Arnon Amir, John Arthur, Andrew Cassidy,

Myron Flickner, Paul Merolla, Shyamal Chandra, Nicola Basilico, Ste-

fano Carpin, Tom Zimmerman, Frank Zee, Rodrigo Alvarez-icaza, Jef-

frey A Kusnitz, Theodore M Wong, William P Risk, Emmett Mcquinn,

Tapan K Nayak, Raghavendra Singh, and Dharmendra S Modha. Cog-

nitive Computing Systems : Algorithms and Applications for Networks

of Neurosynaptic Cores. The 2013 International Joint Conference on

Neural Networks (IJCNN), August 2013.

141

[40] Yuntan Fang, Huawei Li, and Xiaowei Li. A fault criticality evaluation

framework of digital systems for error tolerant video applications. In

Test Symposium (ATS), 2011 20th Asian, pages 329 –334, nov. 2011.

[41] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and Y. Le-

Cun. Neuflow: A runtime reconfigurable dataflow processor for vision.

In Computer Vision and Pattern Recognition Workshops (CVPRW),

2011 IEEE Computer Society Conference on, pages 109 –116, june 2011.

[42] Emile Fiesler and Russell Beale. Handbook of Neural Computation.

Oxford University Press, 1996.

[43] Barry Flower and Marwan A. Jabri. Summed weight neuron perturba-

tion: An o(n) improvement over weight perturbation. In In Advances in

Neural Information Processing Systems (NIPS) 5, pages 212–219. Mor-

gan Kaufmann, 1993.

[44] R. C. Frye, E. A. Rietman, and C. C. Wong. Back-propagation learning

and nonidealities in analog neural network hardware. IEEE Transac-

tions on Neural Networks Networks, 2(1):110–117, January 1991.

[45] Steve B. Furber, David R. Lester, Luis A. Plana, Jim D. Garside, Eu-

stace Painkras, Steve Temple, and Andrew D. Brown. Overview of

the spinnaker system architecture. IEEE Transactions on Computers,

62(12), December 2013.

142

[46] S Galal and M Horowitz. Energy-efficient floating-point unit design.

IEEE Transactions on Computers, 60(7):913–922, 2011.

[47] Dirk Grunwald, Artur Klauser, Srilatha Manne, and Andrew Pleszkun.

Confidence estimation for speculation control. In ACM SIGARCH Com-

puter Architecture News, volume 26, pages 122–131. IEEE Computer

Society, 1998.

[48] Rehan Hameed, Wajahat Qadeer, Megan Wachs, Omid Azizi, Alex Solo-

matnikov, Benjamin C. Lee, Stephen Richardson, Christos Kozyrakis,

and Mark Horowitz. Understanding sources of inefficiency in general-

purpose chips. In Proceedings of the 37th Annual International Sympo-

sium on Computer Architecture (ISCA), 2010.

[49] Jie Han and Michael Orshansky. Approximate Computing: An Emerg-

ing Paradigm for Energy-Efficient Design. In Proceedings of the 18th

IEEE European Test Symposium (ETS), May 2013.

[50] John C Hay, Albert E Murray, Frank Rosenblatt, Alexander Stieber,

and Robert A. Wolf. Mark I Perceptron Operators’ Manual. Technical

report, Cornell Aeronautical Laboratory, Inc., 1960.

[51] Rajamohana Hegde and Naresh R. Shanbhag. Energy-efficient signal

processing via algorithmic noise-tolerance. In Proceedings of the 1999

International Symposium on Low Power Electronics and Design, pages

30–35, August 1999.

143

[52] Harry Henderson. Encyclopedia of Computer Science and Technology.

Infobase Publishing, revised edition, 2008.

[53] M. Holler, Simon Tam, H. Castro, and R. Benson. An electrically train-

able artificial neural network (etann) with 10240 ’floating gate’ synapses.

In International Joint Conference on Neural Networks (IJCNN), pages

191–196 vol.2, 1989.

[54] P. W. Hollis and J. J. Paulos. A neural network learning algorithm

tailored for VLSI implementation. IEEE Transactions on Neural Net-

works, 5(5):784–91, January 1994.

[55] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer

feedforward networks are universal approximators. Neural networks,

2(5):359–366, 1989.

[56] S Huang, J Lee, H Lee, Golnar Khodabandehloo, Mitra Mirhassani,

and Majid Ahmadi. Analog Implementation of a Novel Resistive-Type

Sigmoidal Neuron. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 20(4):750–754, April 2012.

[57] Christian Igel and Michael Hüsken. Improving the RPROP learning

algorithm. In International ICSC Symposium on Neural Computation

(NC), pages 115–121, 2000.

[58] Giacomo Indiveri and Bernabe Linares-barranco. Integration of nanoscale

144

memristor synapses in neuromorphic computing architectures. Nan-

otechnology, 24, 2013.

[59] Giacomo Indiveri, Bernabé Linares-Barranco, Tara Julia Hamilton, André

van Schaik, Ralph Etienne-Cummings, Tobi Delbruck, Shih-Chii Liu, Pi-

otr Dudek, Philipp Häfliger, Sylvie Renaud, Johannes Schemmel, Gert

Cauwenberghs, John Arthur, Kai Hynna, Fopefolu Folowosele, Sylvain

Saighi, Teresa Serrano-Gotarredona, Jayawan Wijekoon, Yingxue Wang,

and Kwabena Boahen. Neuromorphic silicon neuron circuits. Frontiers

in Neuroscience, 5(73), May 2011.

[60] E. Ipek, O. Mutlu, J.F. Martinez, and R. Caruana. Self-optimizing

memory controllers: A reinforcement learning approach. In Proceedings

of the 35th International Symposium on Computer Architecture (ISCA

’08)., pages 39 –50, June 2008.

[61] Marwan Jabri and Barry Flower. Weight Perturbation: An Optimal

Architecture and Learning Technique for Analog VLSI Feedforward and

Recurrent Multilayer Networks. IEEE Transactions on Neural Net-

works, 3(1):154–157, 1992.

[62] Bryan L. Jackson, Bipin Rajendran, Gregory S. Corrado, Matthew Bre-

itwisch, Geoffrey W. Burr, Roger Cheek, Kailash Gopalakrishnan, Si-

mone Raoux, Charles T. Rettner, Alex G. Schrott, Rohit S. Shenoy,

Bulent N. Kurdi, Chung H. Lam, and Dharmendra S. Modha. Cogni-

tive computing. Communications of the ACM, 54(8), 2011.

145

[63] D.A. Jiménez. An optimized scaled neural branch predictor. In IEEE

29th International Conference on Computer Design (ICCD 2011), pages

113 –118, October 2011.

[64] Daniel A. Jiménez. Fast path-based neural branch prediction. In Pro-

ceedings of the 36th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO-36), pages 243–252. IEEE Computer Soci-

ety, December 2003.

[65] Daniel A. Jiménez. Piecewise linear branch prediction. In Proceedings

of the 32nd Annual International Symposium on Computer Architecture

(ISCA-32), June 2005.

[66] Daniel A. Jiménez. Guest editor’s introduction. Journal of Instruction-

Level Parallelism (JILP) Special Issue: The Second Championship Branch

Prediction Competition (CBP-2), 9, May 2007.

[67] Daniel A. Jiménez and Calvin Lin. Dynamic branch prediction with

perceptrons. In Proceedings of the 7th International Symposium on High

Performance Computer Architecture (HPCA-7), pages 197–206, January

2001.

[68] Daniel A. Jiménez and Calvin Lin. Neural methods for dynamic branch

prediction. ACM Transactions on Computer Systems, 20(4):369–397,

November 2002.

146

[69] David A. Johns and Ken Martin. Analog Integrated Circuit Design.

John Wiley and Sons, Inc., 1997.

[70] Antoine Joubert, Bilel Belhadj, Olivier Temam, and Rodolphe Héliot.

Hardware spiking neurons design: Analog or digital? In IEEE Interna-

tional Joint Conference on Neural Networks (IJCNN), June 2012.

[71] Alan H. Kramer. Array-based analog computation. IEEE Micro,

16(5):20–29, October 1996.

[72] Duygu Kuzum, Rakesh G. D. Jeyasingh, Byoungil Lee, and H. S. Philip

Wong. Nanoelectronic programmable synapses based on phase change

materials for brain-inspired computing. Nano Letters, 12(5), June 2011.

[73] Nagesh B Lakshminarayana, Jaekyu Lee, Hyesoon Kim, and Jinwoo

Shin. Dram scheduling policy for gpgpu architectures based on a poten-

tial function. Computer Architecture Letters, 11(2):33–36, 2012.

[74] Larkhoon Leem, Hyungmin Cho, Jason Bau, Quinn A. Jacobson, and

Subhasish Mitra. ERSA: Error resilient system architecture for proba-

bilistic applications. In DATE, 2010.

[75] Boxun Li, Yi Shan, Miao Hu, Yu Wang, Yiran Chen, and Huazhong

Yang. Memristor-Based Approximated Computation. International

Symposium on Low Power Electronics and Design (ISLPED), pages 242–

247, September 2013.

147

[76] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M.

Tullsen, and Norman P. Jouppi. McPAT: An integrated power, area, and

timing modeling framework for multicore and manycore architectures.

In MICRO, 2009.

[77] Xuanhua Li and Donald Yeung. Application-level correctness and its

impact on fault tolerance. In HPCA, 2007.

[78] Song Liu, Karthik Pattabiraman, Thomas Moscibroda, and Benjamin G.

Zorn. Flikker: Saving dram refresh-power through critical data parti-

tioning. In Proceedings of the Sixteenth International Conference on

Architectural Support for Programming Languages and Operating Sys-

tems, ASPLOS XVI, pages 213–224, New York, NY, USA, 2011. ACM.

[79] J. B. Lont and W. Guggenbühl. Analog cmos implementation of a

multilayer perceptron with nonlinear synapses. IEEE Transactions on

Neural Networks, 3(3):457–465, May 1992.

[80] R.F. Lyon and C. Mead. An analog electronic cochlea. Acoustics,

Speech and Signal Processing, IEEE Transactions on, 36(7):1119–1134,

Jul 1988.

[81] Ahmed Al Maashri, Michael Debole, Matthew Cotter, Nandhini Chan-

dramoorthy, Yang Xiao, Vijaykrishnan Narayanan, and Chaitali Chakrabarti.

Accelerating neuromorphic vision algorithms for recognition. In Pro-

ceedings of the 49th Annual Design Automation Conference (DAC ’12),

page 579, New York, New York, USA, 2012. ACM Press.

148

[82] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas. Bio-inspired

imprecise computational blocks for efficient vlsi implementation of soft-

computing applications. IEEE Transactions on Circuits and Systems,

57(4), april 2010.

[83] Aqeel Mahesri, Daniel Johnson, Neal Crago, and Sanjay J. Patel. Trade-

offs in designing accelerator architectures for visual computing. In Pro-

ceedings of the 41st Annual IEEE/ACM International Symposium on

Microarchitecture, MICRO 41, pages 164–175, Washington, DC, USA,

2008. IEEE Computer Society.

[84] J.F. Martinez and E. Ipek. Dynamic multicore resource management: A

machine learning approach. Micro, IEEE, 29(5):8 –17, sept.-oct. 2009.

[85] Carver Mead. Analog VLSI and Neural Systems. Addison-Wesley

Longman Publishing Co., Inc., 1989.

[86] M. Mirhassani, M. Ahmadi, and W.C. Miller. A mixed-signal VLSI

neural network with on-chip learning. In In Proceedings of the Canadian

Conference on Electrical and Computer Engineering, volume 1, pages

591–594. Ieee, 2003.

[87] Mitra Mirhassani, Majid Ahmadi, and William C. Miller. A Feed-

Forward Time-Multiplexed Neural Network with Mixed-Signal Neuron-

Synapse Arrays. Microelectronic Engineering, 84(2):300–307, February

2007.

149

[88] Sasa Misailovic, Stelios Sidiroglou, Hank Hoffman, and Martin Rinard.

Quality of service profiling. In International Conference on Software

Engineering (ICSE), pages 25–34, 2010.

[89] P.D. Moerland and E. Fiesler. Hardware-friendly learning algorithms

for neural networks: an overview. In Proceedings of Fifth Interna-

tional Conference on Microelectronics for Neural Networks, pages 117–

124. IEEE Comput. Soc. Press, 1996.

[90] A. J. Montalvo, R. S. Gyurcsik, and J. J. Paulos. Toward a general-

purpose analog VLSI neural network with on-chip learning. IEEE

Transactions on Neural Networks, 8(2):413–23, March 1997.

[91] Naveen Muralimanohar, Rajeev Balasubramonian, and Norm Jouppi.

Optimizing NUCA organizations and wiring alternatives for large caches

with CACTI 6.0. In International Symposium on Microarchitecture

(MICRO), pages 3–14, 2007.

[92] Alan F Murray and Peter J Edwards. Synaptic weight noise during mul-

tilayer perceptron training: fault tolerance and training improvements.

IEEE Transactions on Neural Networks, 4(4):722–725, July 1993.

[93] Alan F Murray and Peter J Edwards. Enhanced MLP Performance and

Synaptic Weight Noise During Training. IEEE Transactions on Neural

Networks, 5(5):792 – 802, September 1994.

150

[94] Nanoscale Integration and Modeling Group at ASU. Predictive Technol-

ogy Models (PTMs). http://www.eas.asu.edu/~ptm/.

[95] Sriram Narayanan, John Sartori, Rakesh Kumar, and Douglas L. Jones.

Scalable stochastic processors. In DATE, 2010.

[96] Avadh Patel, Furat Afram, Shunfei Chen, and Kanad Ghose. MARSSx86:

A full system simulator for x86 CPUs. In Design Automation Confer-

ence (DAC), pages 1050–1055, 2011.

[97] P.Dubey. Recognition, mining and synthesis moves computers to the

era of tera. Technology at Intel Magazine, Feb 2005.

[98] Phi-hung Pham, Darko Jelaca, Clement Farabet, Berin Martini, Yann

Lecun, and Eugenio Culurciello. NeuFlow : Dataflow Vision Process-

ing. 2012 IEEE 55th International Midwest Symposium on Circuits and

Systems (MWSCAS), pages 1044 – 1047, August 2012.

[99] John Platt and Tim Allen. A Neural Network Classifier for the I1000

OCR chip. In Proceedings of Advances in Neural Information Processing

Systems 8, pages 938–944, 1996.

[100] Behzad Razavi. Design of analog CMOS integrated circuits. Tata

McGraw-Hill Education, 2002.

[101] B. Reagen, Y.S. Shao, Gu-Yeon Wei, and D. Brooks. Quantifying ac-

celeration: Power/performance trade-offs of application kernels in hard-

151

ware. In Low Power Electronics and Design (ISLPED), 2013 IEEE

International Symposium on, pages 395–400, Sept 2013.

[102] L M Reyneri. Implementation issues of neuro-fuzzy hardware: going

toward HW/SW codesign. IEEE Transactions on Neural Networks,

14(1):176–94, January 2003.

[103] M. Riedmiller and H. Braun. A direct adaptive method for faster back-

propagation learning: the RPROP algorithm. IEEE International Con-

ference on Neural Networks, pages 586–591, 1993.

[104] Frank Rosenblatt. The Perceptron–a perceiving and recognizing au-

tomaton. Technical Report 85-460-1, Cornell Aeronautical Laboratory,

Inc., 1960.

[105] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal

representations by error propagation. In Parallel Distributed Processing:

Explorations in the Microstructure of Cognition, volume 1, pages 318–

362. MIT Press, 1986.

[106] J. s. Seo, B. Brezzo, Y. Liu, B. Parker, S. Esser, R. Montoye, B. Rajen-

dran, J. Tierno, L. Chang, D. Modha, , and Others. 45nm cmos neu-

romorphic chip with a scalable architecture for learning in networks of

spiking neurons. IEEE Custom Integrated Circuits Conference, Septem-

ber 2011.

152

[107] Hebatallah Saadeldeen, Diana Franklin, Guoping Long, Charlotte Hill,

Aisha Browne, Dmitri Strukov, Timothy Sherwood, and Frederic T

Chong. Memristors for Neural Branch Prediction : A Case Study in

Strict Latency and Write Endurance Challenges. In Proceedings of the

ACM International Conference on Computing Frontiers (CF), 2013.

[108] Mehrzad Samadi, Janghaeng Lee, D Anoushe Jamshidi, Amir Hormati,

and Scott Mahlke. SAGE : Self-Tuning Approximation for Graphics

Engines. In Proceedings of the 46th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), 2013.

[109] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapra-

gasam, Luis Ceze, and Dan Grossman. Enerj: Approximate data types

for safe and general low-power computation. In Proceedings of the 32nd

ACM SIGPLAN conference on Programming Language Design and Im-

plementation (PLDI ’11), June 2011.

[110] Adrian Sampson, Jacob Nelson, Karin Strauss, and Luis Ceze. Approx-

imate storage in solid-state memories. In International Symposium on

Microarchitecture (MICRO), 2013.

[111] John Sartori and Rakesh Kumar. Architecting processors to allow volt-

age/reliability tradeoffs. In Proceedings of the 14th International Con-

ference on Compilers, Architectures and Synthesis for Embedded Systems

(CASES), pages 115 – 124. ACM Press, 2011.

153

[112] Srinagesh Satyanarayana, Yannis P. Tsividis, and Hans Peter Graf. A

reconfigurable vlsi neural network. IEEE Journal of Solid-State Cir-

cuits, 27(1):67–81, January 1992.

[113] J. Schemmel, J. Fieres, and K. Meier. Wafer-scale integration of analog

neural networks. In IJCNN, 2008.

[114] Johannes Schemmel, Steffen Hohmann, Karlheinz Meier, and Felix Schürmann.

A mixed-mode analog neural network using current-steering synapses.

Analog Integrated Circuits and Signal Processing, 38(2-3):233–244, February-

March 2004.

[115] André Seznec. Redundant history skewed perceptron predictors: Push-

ing limits on global history branch predictors. Technical Report 1554,

IRISA, September 2003.

[116] André Seznec. Analysis of the o-geometric history length branch pre-

dictor. In Proceedings of the 32nd Annual International Symposium on

Computer Architecture (ISCA’05), June 2005.

[117] André Seznec. A 256 kbits l-tage branch predictor. Journal of Instruction-

Level Parallelism (JILP) Special Issue: The Second Championship Branch

Prediction Competition (CBP-2), 9, May 2007.

[118] André Seznec. A New Case for the TAGE Branch Predictor. In Pro-

ceedings of the 44th Annual IEEE/ACM International Symposium on

Microarchitecture, 2011.

154

[119] William Shockley. The theory of p-n junctions in semiconductors and

p-n junction transistors. Bell System Technical Journal, 28:435–489,

July 1949.

[120] Stelios Sidiroglou, Sasa Misailovic, Henry Hoffmann, and Martin Ri-

nard. Managing performance vs. accuracy trade-offs with loop per-

foration. In Proceedings of the 19th ACM SIGSOFT Symposium and

the 13th European Conference on Foundations of Software Engineering

(SIGSOFT/FSE), pages 124–134. ACM Press, September 2011.

[121] Renée St. Amant, Daniel A. Jiménez, and Doug Burger. Low-power,

high-performance analog neural branch prediction. In Proceedings of the

41st Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO-41), November 2008.

[122] Renée St. Amant, Daniel A. Jiménez, and Doug Burger. Mixed-signal

approximate computation: A neural predictor case study. IEEE MI-

CRO Top picks from the computer architecture conferences, 29(1), Jan-

uary/February 2009.

[123] David K. Su, Mark J. Loinaz, Shoichi Masui, and Bruce A. Wooley.

Experimental results and modeling techniques for substrate noise in

mixed-signal integrated circuits. IEEE Journal of Solid-State Circuits,

28(4):420–430, April 1993.

[124] Simon M Tam, Bhusan Gupta, Hernan A Castro, Santa Clara, and Mark

155

Holler. Learning on an Analog VLSI Neural Network Chip. In Proceed-

ings of the International Conference on Systems, Man and Cybernetics,

pages 701 – 703, November 1990.

[125] David Tarjan, Shyamkumar Thoziyoor, and Norman P. Jouppi. Cacti

4.0. Technical Report HPL-2006-86, HP Laboratories Palo-Alto, June

2006.

[126] Olivier Temam and Inria Saclay. A Defect-Tolerant Accelerator for

Emerging High-Performance Applications. In Proceedings of the 39th

Annual International Symposium on Computer Architecture (ISCA), pages

356–367, 2012.

[127] W Thomson. The tide gauge, tidal harmonic analyser, and tide pre-

dicter. Proceedings of the Institution of Civil Engineers, 65:3–24, 1881.

[128] Jr. Tomlinson, M.S., D.J. Walker, and M.A. Sivilotti. A digital neural

network architecture for vlsi. In Proceedings of the International Joint

Conference on Neural Networks (IJCNN), pages 545–550, June 1990.

[129] Jonathan Ying Fai Tong, David Nagle, and Rob. A. Rutenbar. Reduc-

ing power by optimizing the necessary precision/range of floating-point

arithmetic. IEEE Trans. Very Large Scale Integr. Syst., 8(3):273–285,

June 2000.

[130] Alan Mathison Turing. On computable numbers, with an application

to the entscheidungsproblem. J. of Math, 58:345–363, 1936.

156

[131] Swagath Venkataramani, Vinay K Chippa, Srimat T Chakradhar, Kaushik

Roy, and Anand Raghunathan. Quality Programmable Vector Proces-

sors for Approximate Computing Categories and Subject Descriptors. In

Proceedings of the 46th Annual IEEE/ACM International Symposium on

Microarchitecture, pages 1–12, 2013.

[132] John von Neumann. First Draft of a Report on the EDVAC. Technical

Report W-670-ORD-4926, Moore School of Electrical Engineering, 1945.

[133] Jianxing Wang, Yenni Tim, Weng-Fai Wong, and Hai Helen Li. A prac-

tical low-power memristor-based analog neural branch predictor. Inter-

national Symposium on Low Power Electronics and Design (ISLPED),

pages 175–180, September 2013.

[134] Vicky Wong and Mark Horowitz. Soft error resilience of probabilistic

inference applications. In In Proceedings of the Workshop on System

Effects of Logic Soft Errors, 2006.

[135] Chunbai Yang, Changjiang Jia, W. K. Chan, and Y. T. Yu. On

Accuracy-Performance Tradeoff Frameworks for Energy Saving: Models

and Review. In Proceedings of the 19th Asia-Pacific Software Engineer-

ing Conference (APSEC), pages 58–65. Ieee, December 2012.

157

