Copyright
by
Renee Marie St Amant
2014

The Dissertation Committee for Renee Marie St Amant
certifies that this is the approved version of the following dissertation:

Enabling High-Performance, Mixed-Signal Approximate
Computing

Committee:

Calvin Lin, Supervisor

Doug Burger, Co-Supervisor

Daniel A. Jiménez

Lizy K. John

Donald Fussell

Enabling High-Performance, Mixed-Signal Approximate
Computing

by

Renee Marie St Amant, B.S.E.E.; M.S.C.S.

DISSERTATION
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN
May 2014

To my godchild, Cameron.

Acknowledgments

I would like to thank and acknowledge technical collaborators Doug
Burger, Daniel A. Jiménez, Hadi Esmaeilzadeh, Amir Yazdanbakhsh, and Ar-
jang Hassibi who have contributed to the body of work presented in this doc-
ument. [wish to thank Doug Burger for his sustained support and invaluable
guidance. I feel extremely privileged to have had access to his deep tech-
nical knowledge, experience, and vision of computing. I also wish to thank
Calvin Lin for his support and always-enthusiastic willingness to be of service.
Thank you to my committee members, conference reviewers, fellow students,
and friends for your valuable feedback and suggestions for improving this work.
Specifically, thank you to Lizy K. John who suggested that I revisit the history
of analog computing. That investigation served as the foundation and driving

inspiration for the composition of this document.

To my parents — thank you for consistently supporting me in receiving
the best education possible. And to my father — thank you for the countless
hours spent with me in perfecting every sentence of my high-school writing
assignments. I'm sure that you will find your writing style present throughout

this document.

I wish to thank Travis M. Grigsby for his years of support and encour-

agement. His copious enthusiasm and belief in the abilities of others has been

a gift to me and to the world. I wish to thank Elizabeth Frances Wellman for
all of her time, her uncompromising support, and her commitment to being
a good friend, which has served as a valuable example to me. She is truly
skilled in her work, and I have been blessed to benefit from it so often. Also, I
wish to thank Hadi Esmaeilzadeh for his ‘get it done’ support during critical
moments of this journey. Thank you to those that I now consider family. Your

nourishing love and support have helped me to complete this process.

vi

Enabling High-Performance, Mixed-Signal Approximate
Computing

Renee Marie St Amant, Ph.D.
The University of Texas at Austin, 2014

Supervisors: Calvin Lin
Doug Burger

For decades, the semiconductor industry enjoyed exponential improve-
ments in microprocessor power and performance with the device scaling of
successive technology generations. Scaling limitations at sub-micron technolo-
gies, however, have ceased to provide these historical performance improve-
ments within a limited power budget. While device scaling provides a larger
number of transistors per chip, for the same chip area, a growing percentage of
the chip will have to be powered off at any given time due to power constraints.
As such, the architecture community has focused on energy-efficient designs

and is looking to specialized hardware to provide gains in performance.

A focus on energy efficiency, along with increasingly less reliable tran-
sistors due to device scaling, has led to research in the area of approzimate
computing, where accuracy is traded for energy efficiency when precise com-

putation is not required. There is a growing body of approximation-tolerant

vil

applications that, for example, compute on noisy or incomplete data, such as
real-world sensor inputs, or make approximations to decrease the computation
load in the analysis of cumbersome data sets. These approximation-tolerant
applications span application domains, such as machine learning, image pro-

cessing, robotics, and financial analysis, among others.

Since the advent of the modern processor, computing models have
largely presumed the attribute of accuracy. A willingness to relax accuracy
requirements, however, with goal of gaining energy efficiency, warrants the
re-investigation of the potential of analog computing. Analog hardware of-
fers the opportunity for fast and low-power computation; however, it presents
challenges in the form of accuracy. Where analog compute blocks have been
applied to solve fixed-function problems, general-purpose computing has relied
on digital hardware implementations that provide generality and programma-
bility. The work presented in this thesis aims to answer the following questions:
Can analog circuits be successfully integrated into general-purpose computing
to provide performance and energy savings? And, what is required to address
the historical analog challenges of inaccuracy, programmability, and a lack of

generality to enable such an approach?

This thesis work suggests a neural approach as a means to address
the historical analog challenges in accuracy, programmability, and generality
and to enable the use of analog circuits in high-performance, general-purpose
computing. The first piece of this thesis work investigates the use of analog

circuits at the microarchitecture level in the form of an analog neural branch

viil

predictor. The task of branch prediction can tolerate imprecision, as roll-back
mechanisms correct for branch mispredictions, and application-level accuracy
remains unaffected. We show that analog circuits enable the implementation of
a highly-accurate, neural-prediction algorithm that is infeasible to implement
in the digital domain. The second piece of this thesis work presents a neural
accelerator that targets approximation-tolerant code. Analog neural acceler-
ation provides application speedup of 3.3x and energy savings of 12.1x with
a quality loss less than 10% for all except one approximation-tolerant bench-
mark. These results show that, through a neural approach, analog circuits can
be applied to provide performance and energy efficiency in high-performance,

general-purpose computing.

1X

Table of Contents

Acknowledgments
Abstract

List of Tables
List of Figures

Chapter 1. Introduction

1.1 Problem
1.2 Opportunity
1.3 Solutions and Contributions

Chapter 2. Context

2.1 A Brief History of Analog Computing
2.2 Neural Networks for Computing
2.3 Approximate Computing

Chapter 3. Challenges of an Analog Approach to Neural Com-

putation

3.1 Review of Neural Network Computation
3.2 Challenges of an Analog Approach
3.2.1 Design-Time Signal-Range Restrictions
3.2.2 Manufacture-Time Non-Idealities
3.2.3 Run-Time Noise
3.2.4 Analog-Digital Boundaries
3.3 Analog Challenges in Classification and Regression

vil

xiii

Xiv

B~ W~

Chapter 4. Analog Neural Prediction 27

4.1 Background on Neural Predictors 28
4.1.1 The Perceptron Predictor 29
4.1.2 Improvements to the Perceptron Predictor 30

4.2 Analog-Enabled Neural Prediction Algorithm 30

4.3 Scaled Neural Analog Predictor 35

4.4 Addressing Analog Challenges 41

4.5 Evaluation Lo 43
4.5.1 Methodology 43
4.5.2 Analog Power, Speed, and Accuracy 45
4.5.3 Analog vs. Digital Comparison 48
4.5.4 State-of-the-Art Predictors 50

4.6 Conclusions and Implications 52
4.6.1 Contributions00 53

Chapter 5. Analog Neural Acceleration 55

5.1 Background and Overview o8
5.1.1 Programming 59
5.1.2 Design 60
5.1.3 Compilation 61
5.1.4 Execution 63

5.2 Mixed-Signal, Neural Accelerator (A-NPU) Design 63
5.2.1 Analog Neural Unit (ANU) Circuit Design. 64
5.2.2 Reconfigurable A-NPU 75

5.3 Compilation to Address Analog-Imposed Challenges 78
5.3.1 Addressing Topology Restrictions 79
5.3.2 Addressing Activation-Function Restrictions: RPROP . 81
5.3.3 Addressing Limited Bit Widths: CDLM 88

5.4 Performance and Energy Evaluation 99
5.4.1 Methodology 99
5.4.2 Analog-Digital NPU Comparison 103

5.5 Future Considerations for Addressing Analog Challenges . . . 106

X1

5.5.1 Addressing Manufacture-Time Variability 107

5.5.2 Addressing Run-Time Variability 108

5.6 Conclusions 110
Chapter 6. Related Work 113
6.1 Approximate Computing 113
6.2 Analog and Digital Hardware for Neural Networks 116
6.3 Learning Techniques for Hardware Neural Networks 122
Chapter 7. Conclusions 128
Bibliography 135

xil

4.1

5.1
5.2

2.3

List of Tables

Excerpts from the list of DAC transistor widths [121] 38
Area estimates for the analog neuron (ANU) [4]. 100
The evaluated benchmarks, characterization of each offloaded
function, training data, and the trained neural network [4]. . . 102
Error with a floating point D-NPU, A-NPU with ideal sigmoid,
and A-NPU with non-ideal sigmoid [4]. 105

xiil

1.1
1.2
1.3

2.1

2.2

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1

2.2
2.3
0.4

2.5

List of Figures

Desirable attributes of computation devices.
Neural prediction: addressing analog shortcomings.

Neural acceleration: addressing analog shortcomings.

Neural network design space. As computing tools, neural-network
designs trade off the desirable attributes of a computing device
(shown in Figure 1.1): performance, energy efficiency, result quality
(accuracy), programmability, and generality.

Research areas in approximate computing.

Sigmoid function with varying activation steepness (). Acti-
vation steepness determines the numerical range of input values
that translate to output values between O and 1.

Weight position and branch outcome correlation [121]
Prediction data path [121]
Top-level diagram of a Scaled Neural Analog Predictor

Time required for current differentiation
Prediction errors for sum combinations
Tradeoff between power, speed, and accuracy

Accuracy of digital vs. analog implementations of the Scaled
Neural Predictor

Framework for using analog computation to accelerate code
written in conventional languages [4].

One neuron and its conceptual analog circuit [4].
Circuit design of a single analog neuron (ANU).

Mixed-signal, neural accelerator (A-NPU). Only four ANUs are
shown. Each ANU processes eight inputs [4].

Network accuracies for limited (eight inputs per neuron), but

reconfigurable, network topologies and fully connected topologies.

X1v

12
14

20

31
33
36
45
46
47

48

o8
64
66

5

82

2.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13
5.14

5.15

Backpropagation and resilient propagation (RPROP) sensitiv-
ity to activation-function steepness. 86

Continuous-discrete learning method (CDLM) compensates for
limited bit widths. Results show accuracy for three-layer net-
works with 8 hidden neurons and a traditional activation steep-
ness of 0.5. The number of network inputs for sobel and jpeg
exceed the analog-imposed connectivity restriction. 91

Continuous-discrete learning method (CDLM) compensates for
limited bit widths. Results show accuracy for a three-layer net-
work with 8 hidden neurons and a traditional activation steep-
nessof 0.5. L 92

CDLM and bit-width sensitivity to activation steepness for kmeans
(three-layer network with 8 hidden neurons). The full-precision
baselines correspond to a traditional activation steepness of 0.5. 94

Bit width sensitivity to activation steepness. The full-precision
baselines correspond to a traditional activation steepness of 0.5. 96

Bit width sensitivity to activation steepness. The full-precision
baselines correspond to a traditional activation steepness of 0.5. 97

CDLM accuracy for jpeg (three-layer network with 8 hidden
neurons, 64 inputs, and 64 outputs) for varying activation steep-
ness values. The full-precision baselines correspond to a tradi-

tional activation steepness of 0.5. 98
A-NPU with 8 ANUs vs. D-NPU with 8 PEs [4]. 103
Whole application speedup and energy saving with D-NPU, A-

NPU, and an ideal NPU that consumes zero energy and takes
zero cycles for neural computation [4]. 104

CDF plot of application output error. A point (x,y) indicates
that y% of the output elements see error < x% [4]. 106

XV

Chapter 1

Introduction

1.1 Problem

For decades, the semiconductor industry enjoyed exponential improve-
ments in microprocessor power and performance with the device scaling of suc-
cessive technology generations. This phenomenon was enabled by Dennard’s
scaling principles, proposed in 1974 [27], which state that decreasing circuit
dimensions and voltages by a constant factor, k£, and increasing substrate dop-
ing by k results in decreased delay by k and a decrease in power consumption
by k2. Consequently, since area is also decreased by k2, transistors could be
scaled to provide improved performance without significantly worsening power
density. However, the Dennard scaling approach broke down with sub-micron
technologies, as decreasing threshold voltages and oxide thickness resulted in

large leakage currents and power dissipation.

With the end of Dennard scaling, the architecture community shifted
focus to multicore designs (leveraging application parallelism) with a combi-
nation of less complex or lower-frequency cores to provide performance im-
provements within a limited power budget. As shown [34], however, even with

high levels of parallelism, the multicore approach can not scale to provide the

Result
Quality
(Accuracy)

Power
(Energy Efficiency)

Programmability

Optimized by ,/ Optimized by
Digital Hardware / Analog Hardware

Figure 1.1: Desirable attributes of computation devices.

historical improvements in performance and energy efficiency that have driven
the continued advancements in technology scaling. While device scaling pro-
vides a larger number of transistors per chip, for a fixed-size chip, a growing
percentage of the chip will have to be powered off at any given time due to
power constraints; this percentage of dark silicon is expected to reach over

50% at 8 nm [35].

As the multicore approach wanes in its ability to provide performance
improvements, the architecture community has focused on special-purpose ac-
celerators to translate the growing number of transistors into gains in perfor-
mance, though their scope is limited. Accelerators highlight an ‘iron triangle’

consisting of performance, energy, and generality, where designing for any two

aspects sacrifices the third. Accelerators have been proposed to speed-up spe-
cific applications or to accelerate code in specific domains, sacrificing generality

to reap gains in performance and energy efficiency [21, 83, 101].

Generality, however, is a highly desirable attribute for computer design
that has economically driven the industry since the first modern computing
machines [31]. (See Chapter 2 for further discussion on the history of comput-
ing.) The economic drivers of business determine the desirable attributes of a
computing device shown in Figure 1.1: speed, low energy, generality, quality

results, and programmability.

1.2 Opportunity

Since the advent of modern processing, the attribute of result quality
has largely been assumed to be fixed; however, a new class of approximate ap-
plications have emerged that can tolerate some level of imprecision. Examples
of approximation-tolerant applications include those in the areas of machine
learning, human-computer interaction, financial analysis, 3D gaming, sensor-
data processing, and robotics.For these many applications, accuracy can be
sacrificed to gain energy efficiency, performance, and generality, potentially
providing a workaround to the iron triangle. Though point solutions exist
that express the effect of trading accuracy for those gains [8, 19, 88|, the scope
of that space is still largely unexplored. The work presented in this thesis aims
to investigate this tradeoff space in the context of mixed-signal design, i.e. the

combination of analog and digital circuits.

Analog hardware warrants investigation for its potential in the realm of
approximate computing since analog circuits traditionally trade accuracy for
efficiency. In the analog domain, values are physically represented as voltages
and currents. This physical representation can enable fast and efficient compu-
tation. For example, multiple values, represented as currents, can be quickly
and efficiently summed on a wire. This physical representation, though, also
presents challenges due to limited range, as well as inaccuracy due to non-
linearity and noise. These limitations have made analog circuits difficult to
program and lacking in generality. Figure 1.1 highlights the computing design
attributes that favor analog hardware - performance and energy efficiency - and

those that favor digital hardware - accuracy, programmability, and generality.

1.3 Solutions and Contributions

The work presented in this thesis aims to answer the following ques-

tions:

Can analog circuits be successfully integrated into general-purpose com-
puting to provide performance and energy savings? And, what is required to
address the historical analog challenges of inaccuracy, programmability, and a

lack of generality, to enable such an approach?

This thesis work suggests a neural approach as a path toward address-
ing the historical analog challenges of inaccuracy, programmability, and a lack

of generality.

Generality. Neural networks have been shown to learn complex functions,
generating approximate outputs given a set of inputs. In the case of approxi-
mate computing, neural networks can address challenges in generality as they
can learn arbitrary functions across applications that can tolerate impreci-
sion [37]. Neural networks, therefore, have the opportunity to retain generality,
while providing a fixed-function quality to the computation, which addresses

the analog implementation challenge of limited signal ranges.

Accuracy. Neural models of computing have been shown to be resilient to
various types of hardware inaccuracies, as they utilize a learning process to

minimize output errors [44, 29, 28|.

Programmability. The analog challenge of programmability is linked with
a general-purpose, von Neumann model of computing. A neural approach
adopts a strategy independent of that model, and the clever application of a
neural approach at various layers in the computing stack can overcome the

analog challenge of programmability.

This thesis work investigates the incorporation of analog neural compu-
tation to provide gains in efficiency and performance in both microarchitecture-
level and application-level approximate computing. Chapter 4 presents an
analog neural branch predictor (SNAP), which applies analog neural compu-
tation at the microarchitecture level [121, 122]. Figure 1.2 illustrates how this

technique addresses the high-level challenges of analog hardware. The branch

Branch Prediction Neural Approach

<z-

corrections
via online
training

applies ~ <)
across apps uArch ">~_

g construct

Figure 1.2: Neural prediction: addressing analog shortcomings.

~ -~

I
’
!
1

rollback ~ ™=~~~
mechanisms

Programmability Quality

(Accuracy)

predictor is a microarchitecture construct, and, as such, does not require any
change to the programming model. Branch prediction applies across appli-
cations, which maintains generality. Additionally, an inaccurate prediction is
tolerated with the use of roll-back mechanisms to ensure correct program be-
havior. A neural approach addresses analog circuit inaccuracy by using online

training to improve prediction accuracy.

An analog predictor implementation enables a highly-accurate predic-
tion algorithm (Scaled Neural Prediction) that is infeasible to implement in
the digital domain as it would require orders of magnitude more power than
the analog implementation. We show that despite analog circuit behaviors,
such as non-linearity, fast, low-power analog computation enables improve-
ments in prediction accuracy over less-feasible, digital neural predictors (5.18
mispredictions per thousand instructions vs. 5.4 MPKI for the piecewise-linear
neural predictor [65]). As compared to a fully-precise, infeasible, digital im-
plementation of the Scaled Neural Prediction algorithm, an analog implemen-

tation results in an increase of only 0.12 MPKI. This analog neural prediction

Neural Transformation Compiler Learning Algorithm
-1

[Esmaeilzadeh et al.] simple =T

]

]

across | TT~o_ annotations =TT Analog-aware !
approximate ! RN IS learning 1
~o - 1

programs i Tl |

1]

Programmability

Figure 1.3: Neural acceleration: addressing analog shortcomings.

work opens the door for further advancements in implementing approximation-
tolerant microarchitecture tasks with efficient analog hardware. For example,
other kinds of predictors, confidence estimators, resource managers, and sched-

ulers that can be mapped to a neural model [84, 60] will benefit from this work.

Chapter 5 presents a mixed-signal, neural accelerator (A-NPU) that
aims to further investigate the potential for incorporating analog circuits into
general-purpose computing by allowing for application-level approximate com-
puting [4]. While an increase in branch prediction accuracy results in applica-
tion performance and energy improvements, these improvements are limited
by the overheads of ensuring precise operation on a von Neumann architec-
ture. The removal of the von Neumann computing model and the addition
of analog computation presents the opportunity for improvements in applica-
tion performance and energy efficiency by orders of magnitude. The A-NPU
leverages prior work that outlines a neural approach to transform general-
purpose, approximate code regions to a neural network computation that can
be accelerated on specialized hardware [38]. As illustrated in Figure 1.3, the

leveraged neural transformation addresses the high-level, analog challenges

of programmability and generality, as it requires only simple annotations to
identify approximate code regions and can be applied across error-tolerant

application domains.

Chapter 5 includes a 45 nm, transistor-level circuit design of the basic
computation unit of the A-NPU- an analog neural unit, or ANU. The ANU
design demonstrates the effects of analog design-time constraints on the neural
model for computation. Specifically, analog range limitations restrict network
connectivity by limiting (and fixing) the number of inputs per neuron, restrict
the bit widths of inputs, outputs, and weights in the network, and restrict
the behavior of the non-linear activation function utilized in the neurons. We
show that exposing these analog-imposed limitations to the compiler allows for
compile-time techniques that specifically address these limitations and enable
the use of analog circuits to improve the performance and energy efficiency of

conventionally-written, approximate code.

As compared to an 8-bit digital NPU, the A-NPU achieves 12.1x more
energy savings and 3.3x speedup on average for each accelerator invocation.
These gains translate to 6.3x energy savings and 3.7x application-level speedup
over the original, conventionally-written application run on an aggressive, out-
of-order architecture. These gains in speed and energy efficiency come at the
expense of accuracy; but, with the proposed compilation support, application

error levels remain below 10% despite analog-signal range limitations.

Chapter 2

Context

This chapter attempts to set the context for this dissertation work by
giving a brief history of analog computing followed by sections on the design
space of neural networks and approximate computing. More details on related

work can be found in Chapter 6.

2.1 A Brief History of Analog Computing

The word analog, which we use today to describe a particular class of
computing, stems from the 15th-century word analogy, meaning a comparison
of two things based on their being alike in some way [16]. As such, the first ana-
log computers were combinations of physical devices designed to model some
physical phenomenon based on their similar behavior. Such mechanical aids
for calculation have a long history, beginning with computation systems for
navigation and astronomy. The Antikythera mechanism, for example, dated
87 B.C., was a system of various-sized gears for predicting astronomical posi-
tions [52]. In 1872, Sir William Thomson developed a tide-predicting machine
that used a system of pulleys and chains to model individual tidal harmonics

and combine them to predict tide levels for easier navigation [127]. Wheel and

disc mechanisms, first used in planimeters to analyze maps for land taxation
and allocation purposes [16, 10], were designed to perform integration and

later formed the basis of mechanical differential analyzers [13].

Advancements in electronic technology, necessitated by World War 1II,
gave rise to electronic analog computers, where mechanical integrators were
replaced with capacitor-based circuits. These electronic analog computers were
important in the fields of science and technology, with their major applications
being differential equation solving, modeling complex systems, and simulating
control systems [16]. Though electronic, these machines were still not general

purpose.

In 1936, Alan Turing demonstrated the computation power of algorithm-
based, discrete value manipulation, engendering a new abstraction for thinking
about the design of computational devices [130]. Turing’s abstraction pre-
sented an opportunity for generality, and the move to digital computation in
the 1940s [12, 31] was linked with a goal of providing flexibility and increasing
application coverage. In the description of the Electronic Numerical Integrator

and Computer (ENIAC), Eckert and Mauchly wrote [31]:

Analogy computing devices vary greatly in flexibility. These machines
are somewhat specialized and restricted in application. A digital machine which
can be directed to carry out any of the common arithmetic operations in any
desired sequence on any given set of numbers has all the generality and flexi-
bility required for any practical purpose. (It cannot compute the exact value of

pt, but it can compute in a finite number of steps any desired approximation of

10

pi.) Therefore, it can, for example, compute to any specified definite approxi-
mation the solutions of non-linear partial differential equations which are not
obtainable from any existing analogy computer. This attainment is one of the

important objects of our invention.

The move away from analogy computing and toward a general-purpose,
computing abstraction favored repeatable, digital design. The ENTAC, a digi-
tal electronic computer with vacuum tubes that acted as switches, still required
significant time in physical re-wiring to run various programs. With contribu-
tions from von Neumann that included the idea of stored-program control, the
ENTAC’s successor, the EDVAC, represents a truly flexible, general-purpose
machine [132]. The von Neumann model, in addition to the development of
transistors [119], made computers assets for business, not just science and
technology endeavors, economically driving the computing industry in the di-

rection of digital, von Neumann designs.

For decades, device scaling enabled exponential gains in performance
within a fixed power budget, while maintaining generality, programmability,
and quality results within a digital, von Neumann model of computing. How-
ever, scaling limitations at sub-micron technologies halted this trend, as power
density increased due to leakage currents. Now the industry must optimize en-
ergy efficiency to deliver increased performance, and, as such, the assumptions
of the modern computing era must be reconsidered — in particular, that of a

digital, von Neumann model of computing.

11

MLP
Analog Software Energy) om

o‘\(Wpe CNN Result Quality
$®“q Spiking

etc.

Stand-Alone Chip

tion
\ntede Neural Network

Design Space

(Performance)

Figure 2.1: Neural network design space. As computing tools, neural-network de-
signs trade off the desirable attributes of a computing device (shown in Figure 1.1):
performance, energy efficiency, result quality (accuracy), programmability, and gen-
erality.

Accelerator on-chip

(Prog rammability

(Generality)

Microarchitectu’.

Y\Ndwafe or Software Off-chip

Limited-precision learning techniques

2.2 Neural Networks for Computing

Artificial neural networks offer an abstraction for computation that de-
viates from the traditional model. These networks can act as arbitrary function
approximators that learn how to solve various problems through observation.
And , as suggested, these networks are inherently approximate. A significant
amount of work in artificial neural networks has resulted in various network
types and learning techniques, which can be realized in hardware or software.
Figure 2.1 illustrates the space of neural network design, and as a computing
tool, the neural network design space trades the attributes shown in Figure 1.1.
The choice of network type or network topology, for example, can affect the
learning ability of the network (result quality) as well as the range of applica-
tions that can utilize it to achieve high quality results (generality). The choice

of implementation can affect result quality as well as performance and energy

12

efficiency.

Hardware implementations vary with these design choices depending on
their overarching goal. Neural network hardware has been designed with the
goals of supporting biological research [62, 45], accelerating specific applica-
tions [41, 18], or solving more general-purpose problems in classification [126]
and regression [37]. For example, the goal of accelerating biological research

may favor a highly-parallel, spiking neuron implementation.

Since the work presented in this thesis aims to achieve improvements
in performance and energy efficiency, we choose analog circuits to perform
computation; storage resides in the digital domain for easy integration, and
both the neural predictor and neural accelerator are mixed-signal designs.
The neural branch predictor presented in Chapter 4 sits on the limb of mi-
croarchitectural integration [67, 84, 60]. Chapter 5 presents a reconfigurable,
mixed-signal, neural accelerator that targets general-purpose regression tasks,
where compile-time learning techniques are utilized to compensate for analog
non-idealities. For the sake of generality, this accelerator implements a multi-
layered perceptron (MLP) network, since MLP networks have been shown to
produce quality results over a variety of tasks [20]. The leveraged prior work on
neural transformation [37] and the mixed-signal microarchitecture presented
in Chapter 5 allow for tight integration with a general-purpose CPU and the

acceleration of approximation-tolerant code, while maintaining programmabil-

ity.

13

2.3

puting, which spans the computing stack, as shown in Figure 2.2. Architecture
support for approximate computing covers both traditional architectures [36]
as well as accelerators, and both digital and analog approximate computa-
tion blocks have been proposed [30, 82, 75]. Analog functional blocks offer
potential performance improvements and energy savings, however, they suf-

fer from difficult integration with high-speed, general-purpose microprocessors

Approximate Applications
[Intel RMS suite, UCI machine learning suite]

Programming Model
[Enerd]

l

Compilation
[NPU, Green, LoopPerforation]

Traditional . . o Accelerators
[Truffle] Architecture [NPU, DianNao]

Microarchitecture
[PerceptronPredictor]

Digital (v 1 Analog
pcmos) ® Circuit [Li2013]

Device, Storage
[Flikker, ReRAM]

Figure 2.2: Research areas in approximate computing.

Approximate Computing

There is a quickly growing body of work in the area of approximate com-

14

due to challenges such as restricted signal ranges, conversion requirements,
and storage technologies. Accelerator architectures for approximate comput-
ing can reduce programmability, as some require the use of new programming
models [9, 98], and generality, depending on which application, or class of

applications is targeted [21, 81].

The analog neural branch predictor presented in Chapter 4 represents
the utilization of analog circuits for microarchitecture-level approximate com-
puting. The mixed-signal, neural accelerator presented in Chapter 5 targets
an application-level opportunity for approximate computing; it builds on the
prior work of a compile-time approximation transformation [37] but addition-
ally adds approximation at the circuit level through the use of analog hardware.
We show that exposing analog circuit limitations to the compiler allows for
further compile-time optimizations that compensate for inaccuracies due to an

analog approach.

15

Chapter 3

Challenges of an Analog Approach to Neural
Computation

This chapter gives a review of neural network computation and high-
lights the potential of an analog implementation. It outlines the challenges of
computing in the analog domain, as well as the effects of those limitations on
neural computation, and discusses high-level solutions. Additionally, it differ-
entiates between two classes of tasks typically targeted by neural networks,
classification and regression, and describes the implications of the two classes

on analog neural hardware.

3.1 Review of Neural Network Computation

The neural predictor in Chapter 4 and neural accelerator in Chapter 5
both utilize a perceptron-based neural network model. The perceptron was
developed as a binary classifier, which takes in a set of rational-valued inputs,
x;, and produces a binary output that is a function of those inputs, f(z;).
The perceptron learns a set of weights, w;, through training. To produce an
output, the perceptron, or neuron, acts as a computation unit that performs

a weighted sum of the input values,). z;w;. After the summation stage, the

16

neuron applies an activation function, such as a threshold function, where, if
the resulting weighted sum is positive, the neuron output is 1, otherwise the

neuron output is 0.

These neurons can be connected together to form a multilayer-perceptron
(MLP) network, where the neuron outputs in one layer feed into neuron in-
puts in the following layer. These networks have been shown to solve regres-
sion problems (producing a rational-valued output) in addition to classification
problems [55]. MLP networks typically utilize, differentiable, non-linear acti-
vation functions, such as the sigmoid function, rather than the more simplistic

threshold function utilized in a single perceptron.

Classification vs. Regression Tasks. The MLP neural model has been
applied to two different types of learning tasks: (1) classification and (2) re-
gression (function approximation). Classification aims to answer the question
— to which set of categories does a new observation (input) belong? Examples
of classification tasks include character recognition based on a set pixel val-
ues or predicting the presence of cancer based on a set of patient diagnostics.
Regression, which is also referred to as function approximation, on the other
hand, aims to map inputs to a continuous target function. One simple exam-
ple of a regression problem is the task of producing the output of the sine

function given an input value between 0 and 2.

17

Potential of Analog Computation. The neuron computation is charac-
terized by a potentially expensive dot-product operation as well as an acti-
vation function. Analog circuits present the opportunity for efficient parallel
computation. For example, current-steering techniques can efficiently perform
highly-parallel summation by simply steering multiple analog currents to a
single wire in accordance with Kirchhoff’s current law [71, 114]. Addition-
ally, transistor physics support the possibility of efficiently implementing a
non-linear activation function [85], though limited signal ranges in the analog

domain present some practical challenges.

3.2 Challenges of an Analog Approach

The three major challenges of an analog approach are limited signal
ranges, non-idealities (such as process variation), and noise. These challenges
can also be categorized by timeline — design time for limited ranges, manufac-
ture time for non-idealities, and run time for noise. In addition to a discussion
of the major challenges of analog hardware and their effect on neural com-
putation, this section discusses the placement of the analog-digital boundary,

which is relevant for mixed-signal, neural implementations.

3.2.1 Design-Time Signal-Range Restrictions

In the analog domain, values are represented physically as voltages or
currents on one or more wires, and the form of physical value representation

affects the power, performance, and accuracy of the various computation oper-

18

ations. For example, addition can be performed extremely fast using currents,
where as a multiply operation executes more efficiently using voltages [1].
Similarly, some analog circuit blocks can only realize efficient computation by
restricting the range of the input values. For example, an analog circuit might
be able to efficiently compute a sigmoid function by utilizing the physics of
transistor behavior, however, the input to that function must be within a spec-
ified range and of a specific representation type to produce the desired output.
Additionally, such a computation block will produce an output voltage or cur-
rent within a restricted range. Conversion between representation types and

signal scaling are unique challenges in the analog domain.

Data density is another challenge that stems from a physical represen-
tation. For example, the range of any voltage signal is fixed by the supply volt-
age. As such, the same fixed signal range can represent a small (low-precision)
or large (high-precision) amount of information. Packing high-precision infor-

mation within a fixed range exacerbates challenges due to range restrictions.

For neural computation, analog range restrictions can affect the ideal
network topology, activation function, and practical bit width of computa-
tion, all of which can decrease the learning and approximation capacity of the

network.

Effect on topology. Limited signal ranges affect the flexibility of the topol-
ogy connections as well as the degree of parallelism. Since analog circuits are

designed to operate well within a certain range, and that range typically must

19

Activation function output

vl

-600 -400 -200 0 200 400 600

Weighted sum activation function input

Figure 3.1: Sigmoid function with varying activation steepness («). Activation
steepness determines the numerical range of input values that translate to
output values between 0 and 1.

be fully utilized to maintain accuracy, an analog implementation favors a pre-
determined number of inputs to a neuron for accurate computation. Data
density limits this number of inputs, and therefore, the size of the network

and its connectivity.

Effect on activation function. In the analog domain, limited signal ranges
and data density pose challenges for implementing non-trivial activation func-
tions, such as the sigmoid function. The sigmoid function can be described
by f(x) = m+m7 where o, the activation steepness, defines the slope of
the near-linear portion of the function. Figure 3.1 shows a sigmoid function
with various activation steepnesses. As shown, as activation steepness in-

creases, the numerical input range (on the x-axis) that maps to output values

20

(y-axis) between saturation levels decreases. As such, increasing activation
steepness increases pressure on the fixed analog range, as a smaller physical
signal range must be translated to a non-saturated output. An analog im-
plementation, therefore, favors shallow activation functions; neural networks,
however, require the non-linear activation function for learning, and decreas-
ing the activation steepness can result in a decreased capacity of the network
to learn and produce high-quality outputs. Although prior work has shown
the implementation of sigmoid functions with analog circuits [56], there is a

challenge in scaling the input signal to match a specified sigmoid steepness.

Effect on bit width. For a neural network that requires integration with a
high-performance microprocessor, the network inputs and outputs must reside
in the digital domain. Just as limited signal ranges restrict the number of
inputs per neuron, they also limit the bit width of input values and weight
values, as increasing the number of bits increases data density. Additionally,
analog-to-digital converters (ADCs) can not distinguish between small varia-
tions in signal level, and, as such, they place requirements on the minimum
size of the signal range between quantization levels. This restriction plus a
limited signal range at the input to the ADC restricts the number of out-
put bits. Like topology and activation function restrictions, limited bit-width
value representations can limit the ability of the network to learn and produce

useful outputs.

21

3.2.2 Manufacture-Time Non-Idealities

Analog circuits suffer from process variation and mismatch between
device components on a single die, as well as across dies, and these non-
idealities can lead to inaccuracies in computation. For example, a current
signal representing a particular input value might be slightly larger on one die
than on another due to process variation. Additionally, analog circuits often
present a challenge of non-linearity. For example, a digital-to-analog converter
(DAC) converts a digital value to an analog one, however, this conversion is

not exactly linear.

Training to address manufacture-time non-idealities. Because neural
networks learn to generate quality results through a training process that
minimizes error, the use of chip-in-the-loop training, in which a portion of
the training takes place on real hardware, can train around manufacture time

non-idealities, such as non-linearity and process variation [44, 29, 28].

3.2.3 Run-Time Noise

In addition to device mismatch, analog circuits are subject to run-time
noise. Noise refers to inaccuracy due to stochastic events such as nearby
digital switching and temperature fluctuations. Noise results in decreased

result quality.

22

Circuit design to mitigate the effects of noise. Traditional techniques,
such as guard rings, can be used to mitigate the effects of substrate noise due to
digital switching [123]. A guard ring separates analog and digital circuits and
creates a large capacitance that provides noise currents with a low-impedance
path to ground. General design practices leave margins to allow for some
amount of noise, such as quantization margins for analog-to-digital conversion.
Also, certain circuit design blocks are less susceptible to noise than others.
Differential circuit designs mitigate non-ideal, analog-signal behavior due to
noise by computing with a differential between two nearby signals that change

similarly in the presence of noise.

3.2.4 Analog-Digital Boundaries

A mixed-signal approach, with conversions to the digital domain, can
ease the challenges of an analog approach, though the placement of analog-
digital boundaries exhibit tradeoffs in power, performance, and accuracy. One
challenge with a mixed-signal approach is to determine the optimal placement
of these boundaries to achieve the computational goals of the network. Neu-
ral hardware designed for biological research, for example, might input data
directly into the analog domain based on sensor data. Alternatively, a neu-
ral network designed for integration with a high-performance microprocessor
would require digital inputs and outputs to the network. Internal values could

reside in either the digital or the analog domain.

A completely analog implementation with fixed-wire connections be-

23

tween neurons maximizes performance and energy efficiency; however, fixed
connections effectively fix the network topology and limit the generality of the
neural network. Storing intermediate values can increase generality, however,
analog storage does not lend itself to satisfying high-performance requirements.
Additionally, the analog domain suffers from challenges in accurately replicat-
ing and buffering signals for routing signals between neurons. Conversion to
the digital domain can increase network flexibility and limit signal susceptibil-
ity to noise; however, conversions between the analog and digital domains are
expensive in terms of energy and introduce inaccuracy due to quantization.

As such, frequent conversions limit the benefit of analog computation.

3.3 Analog Challenges in Classification and Regression

Classification tasks, as compared to regression tasks, place different
requirements on a multilayer-perceptron network. One example of a classi-
fication task is determining the presence or absence of cancer, and one of
regression (or function approximation) is that of approximating the output of
the sine function. Classification tasks target binary outputs, where regression
tasks target multi-bit (and ideally continuous) outputs. Additionally, even for
hidden-layer neurons, a trained classification network is typically character-
ized by extreme neuron outputs (saturated to 0 or 1), where a network trained
to perform a regression task often utilizes hidden-layer neuron outputs in the

linear portion of the activation function (values between 0 and 1).

Saturated hidden-layer outputs and the requirement of only single-bit

24

network outputs (which can simply be determined by a threshold function im-
plemented as a single comparator) make classification tasks more robust in the
presence of inaccuracies and the challenges of an analog implementation [32].
For example, if the learned network weights are saturated to fit within a spec-
ified number of bits, this modification is less likely to result in a change in
a neuron output, as the output likely resides in one of the extremes of the
activation function. However, for regression tasks that utilize neuron outputs
between the extremes, modifying weight values to fit within a specified number
of bits is more likely to change the output value of a neuron. Manufacture-time
non-idealities and noise result in similar behavior, where small variations in
the neuron inputs and weights are less likely to result in changes at a neuron
output in the case of classification. As the number of output bits required to
perform a regression task increases (which is problem dependent), the chal-
lenges and resulting inaccuracies due to an analog implementation become

more pronounced and can result in detrimental decreases in network accuracy.

Though multilayer perceptrons have been successfully applied to prob-
lems in function approximation [55], this work often assumes full-precision
computation. The literature related to hardware neural network implementa-
tions almost exclusively evaluates classification tasks, which are more robust
in the presence of analog implementation challenges [32, 79, 90, 124, 112]. The
ability to solve regression problems, however, is highly desirable for uphold-
ing generality, as it increases the scope of approximation-tolerant applications

that can utilize the hardware.

25

The neural predictor in Chapter 4 addresses the simpler task of clas-
sification; it classifies a branch as taken or not taken. The neural accelerator
presented in Chapter 5, however, targets the more challenging task of regres-
sion to increase the scope of applications that can benefit from the neural
acceleration. The techniques presented in Chapter 5 are necessary steps to-
ward enabling a mixed-signal, neural accelerator capable of solving problems

in regression.

26

Chapter 4

Analog Neural Prediction

Certain microarchitecture-level tasks provide the opportunity to ex-
ploit approximate computing and trade precise and /or repeatable computation
for more energy-efficient computation. These microarchitectural tasks include
those that aim to improve processor energy efficiency or performance, for ex-
ample, but do not impact program correctness. Examples include speculation
constructs for increasing instruction-level parallelism, such as control flow and
data-dependence prediction, thread scheduling in throughput architectures,
and the allocation of shared resources, including power, caches, and memory
bandwidth in heterogenous and multicore architectures. In particular, those
soft microarchitecture tasks that can be mapped to a neural model can benefit
from efficient, mixed-signal computing [84, 60, 73]. This chapter investigates
the use of approximate, mixed-signal computation in the microarchitectural

task of branch prediction.

Branch prediction offers a unique opportunity for the application of
analog circuits to general-purpose computing, as it addresses the historical
analog shortcomings of programmability, generality, and accuracy. Branch

predictors predict program control flow based on a program’s branch history.

27

As a microarchitectural construct, branch prediction requires no change in the
programming model. This same construct applies across applications, which
maintains general applicability. Additionally, roll-back mechanisms allow for
the correction of mispredicted branches, which produces accurate program
execution in the presence of mispredictions, and, in the case of approximate

computing, in the presence of inaccuracies in generating a prediction.

In particular, neural branch prediction offers further opportunities for
the successful integration of analog circuits. Neural branch prediction is char-
acterized by an expensive dot-product operation, which can be performed ef-
ficiently in the analog domain. Additionally, online training has the potential
to correct for analog non-idealities, such as process variation, as the training

continually adjusts a weights vector toward producing better predictions.

This chapter presents the design of an analog neural branch predictor,
called the Scaled Neural Analog Predictor (SNAP). This efficient analog imple-
mentation allows for two improvements over previous digital neural predictors,
which results in higher prediction accuracy, despite approximate analog com-

putation.

4.1 Background on Neural Predictors

This background section describes the computation and training of the
first neural predictor, the perceptron predictor [67, 68]. It also highlights the
path-based improvements to the original perceptron predictor that improve

neural predictor accuracy.

28

4.1.1 The Perceptron Predictor

Computation and Prediction: The basic perceptron predictor [67, 68]
consists of a single perceptron, or neuron. This neuron takes as input a binary
global history vector that contains the directions of the most recent program
branches. Each branch history value acts as a neuron input. A hash of the
branch PC selects the appropriate signed weights vector from a table of weights
vectors. The neuron computes a dot-product of the inputs and weights and
utilizes a threshold activation function that classifies the current branch as
taken or not taken. If the weighted sum is greater than 0, the neuron predicts

a taken branch, and if it is less than 0, the neuron predicts a not taken branch.

Training: The branch history can be interpreted as a vector of —1s and 1s,
where —1 corresponds to a not taken branch, and 1 corresponds to a taken
branch. The sign of each weight indicates a positive or negative correlation
between the corresponding bit in the history register and the branch to be
predicted; For example, if a bit in the history register contains a —1, or a not
taken branch, a positive weight value signifies a positive correlation between
the nottaken branch, and the direction of the current branch, which suggests
that the current branch will also be not taken. The magnitude indicates the

strength of the correlation.

The perceptron is trained during program execution when there is a
misprediction or when the magnitude of the perceptron output is below some

threshold value. Upon training, each weight is incremented if the predicted

29

branch has the same outcome as the corresponding history bit (a positive

correlation) and decremented otherwise (a negative correlation).

4.1.2 Improvements to the Perceptron Predictor

Path-based neural predictors improved upon the original perceptron
predictor by using path information with ahead-pipelining to reduce latency
and increase accuracy [64, 65]. With path-based predictors, the weighted
sum is performed in steps ahead of time such that to make a prediction, the
neuron only requires a final addition operation. This ahead-pipelining scheme,
however, does not fully capitalize on the potential prediction accuracy that
could result from efficient parallel computation, since the weights used in the

computation were not indexed with the PC of the actual predicting branch.

4.2 Analog-Enabled Neural Prediction Algorithm

The analog-enabled Scaled Neural Prediction (SNP) algorithm incorpo-
rates two major improvements over previous neural predictors, made feasible
by the power and latency reductions of an analog implementation: (1) the
elimination of ahead pipelining and (2) the scaling of individual weights by
predetermined coefficients, based on their history position, both of which im-

prove predictor accuracy.

Removal of Ahead Pipelining: The original path-based neural predictor

is ahead-pipelined, i.e., it begins computing the prediction for a branch well

30

1.0+

0.8 1

0.6 —— Fitted Inverse Linear Curve

Correlation Coefficients

History Position

Figure 4.1: Weight position and branch outcome correlation [121]

before that branch is fetched by using path information to index the table of
weights. This scheme reduces the effective latency of a prediction. However,
some accuracy is lost because, without knowing which branch it is predict-
ing, the predictor may use the same weight to compute predictions for many
different branches. That is, the weights used in the computation were not in-
dexed with the PC of the actual predicting branch. Because an analog design
can sum all of the weights quickly when the actual branch is being predicted,
ahead-pipelining is unnecessary and the predictor can use the branch PC when

choosing the weights to sum. Thus, accuracy is improved.

31

Scaling Weights by Coefficients: The weights in a perceptron vector rep-
resent the contribution of each branch in a given history to predictability, but
each branch does not contribute equally; more recent weights tend to have
a stronger correlation with branch outcomes [121]. Figure 4.1 quantifies this
non-uniform correlation for a neural predictor with a history length of 128. The
x-axis represents the position of a weight in the history (z = 0 represents the
bias weight). The y-axis gives the average correlation coefficient (Pearson’s r)
between actual branch outcome and the prediction obtained by using only the
weight in position z. The first weights have a much stronger correlation with
branch outcome than the later weights. The function f(i), fitted to the corre-
lation coefficients, is used to generate scaling coefficients for the various weight
positions; By multiplying weights with coefficients proportional to their corre-
lation, the predictor achieves higher accuracy. The analog design achieves the
weight scaling efficiently by varying transistor sizes, whereas a digital imple-
mentation would need to perform a number of power- and latency-prohibitive

multiplications for each prediction.

Figure 4.2 shows a high-level diagram of the prediction algorithm and

data path.

Predictor Parameters: The two key parameters of the predictor are h,
the length of the vector with which the dot product is computed, and r, the
number of rows in each weights table. In this design, h = 128 and r = 256, 512,

or 2048. Other inputs to the predictor are A, a vector of the low-order bit

32

| HashofA[0.7] | | HashofA[8.15] | -+ [Hashof A[n-8..h—1]

512 or 256 rows,
8 7-bit weights
per row)

Branch PC[8:0] —= XOR XOR XOR L
Tables of []
correlating L
weights L Column of 2048
(16 tables L bias weights

N ! i

| Selected weights vector |

!

| Multiply by f(i) |
!

| Dot product |—’| Add bias weight |
T

| Expanded branch history shift register (h =128 bits) |

| Branch history shift register (H = 40 bits) |

Figure 4.2: Prediction data path [121]

of each of the past h branch addresses (A is effectively a path vector), and
H, the global branch history register. This design uses a history register H
of 40 bits. The history vector of h = 128 bits is expanded from the 40 bits
of H, as the use of redundant history has been shown to improve prediction

accuracy [115]. Weights are stored as 7-bit signed integers.

Computation and Prediction: The computation required to produce a
prediction includes multiplying the selected weights vector by f(i) and then
computing the dot-product between the resulting scaled weights vector and

the expanded history vector. The size of h, 128 in this case, determines the

33

number of multiply and add operations required to compute a prediction. 0
signifies a taken prediction, and a dot-product result less than 0 signifies a not

taken prediction.

Predictor Updates and Training: Updating the predictor consists of

three phases, some of which can occur in parallel.

e Updating histories. When the outcome of a branch becomes known, it
is shifted into H. The lowest-order bit of the branch’s address is shifted
into A. A high-accuracy implementation must keep speculative versions

of H and A that are restored on a misprediction.

e Training the predictor. At commit, if the prediction was incorrect,
or if the magnitude of the predictor output was under a set threshold,
then the predictor invokes its training algorithm. As in previous neural
predictors, the weights responsible for the output are incremented if the
corresponding history outcome matches the current branch outcome, and

decremented otherwise. The weights use saturating arithmetic.

e Updating the training threshold. An adaptive threshold training
algorithm dynamically adjusts the threshold at which training will be
invoked for a correct prediction. This algorithm is the same as the one
used for O-GEHL [116]: the threshold is increased after a certain number
of incorrect predictions, and decreased after a certain number of correct

predictions whose outputs were not as large as the current threshold.

34

More details on the prediction algorithm and predictor tuning param-
eters can be found in the original publication [121]. When evaluated with the
Championship Branch Prediction competition (CBP-2) infrastructure and a
32KB hardware budget for predictor state [66], the SNP predictor achieves
5.06 mispredictions per kilo-instruction (MPKI) as compared to 5.40 MPKI
for the piecewise linear (PWL) predictor [65], a high-accuracy neural predic-
tor that also has a high implementation cost. Although highly accurate, the
SNP predictor is not feasible to implement due to the large number (128) of
multiply-add operations. At 3GHz and 45nm, a digital implementation would
consume over 2 watts of power in the computation step, where an analog
implementation can perform the same computation while consuming under
10 milliwatts (demonstrating potential power savings over 200x for an analog

approach) [46].

4.3 Scaled Neural Analog Predictor

The goal of the Scaled Neural Analog Predictor (SNAP) circuit, shown
in Figure 4.3, is to classify a branch as taken or not taken. The circuit acts as a
neural computation unit, where the inputs are a binary history vector of length
128 and the weights are a selected vector (of comparable length) of signed in-
tegers with 6-bit magnitudes. In addition to the traditional dot-product com-
putation between the inputs and weights, this computation unit first scales the
weights vector by a predetermined vector of coefficients, which allows for more

accurate branch predictions as described in Section 4.2. A simple threshold

35

Expanded branch history register SRAM SRAM SRAM
i Weight Tabl Bias
Weight Table| 000 eight Tablej Weight Table
Weight127 h bit (XX] Weight0 h bit
Weight127:Weight120 (56 bits) Weight7:Weight0 (56 bits) * BiasWeight (7 bits)
Weight127 (7 bits) M [TTTTTT4weighto 7 bits
E’LWSIU E’LW4IH E’LWSIU [szlu ,WIIU I{‘Wﬂlu
akilanulukiluRifaRit
magnitude line %
b, XORh
negative line positive line
output output
I
[[
Weight 127 000 Weight0 Bias Weight Threshold Threshold
Current Steering DAC Current Steering DAC| ~ [Current Steering DAC| ~ |Current Steering DAC| - [Current Steering DAC|
| J Negative Line|
Positive Line
vdd vdd
Eee ey uﬁ
Prediction
T
>m
Train (Taken)

gl

Train (Not Taken)

Figure 4.3: Top-level diagram of a Scaled Neural Analog Predictor

36

activation function produces a one-bit, taken or not taken, prediction. Addi-
tionally, the circuit produces two signals to identify whether training should
occur, which depends on the result of the weighted sum in comparison to a
threshold value. The SNAP circuit uses analog current-steering and summa-
tion techniques to perform efficient parallel computation, since currents can

be summed quickly on a wire by Kirchhoff’s current law (KCL) [71, 114].

Analog-Digital Boundaries: This design places input and weight storage
in the digital domain and computation in the analog domain; the final pre-
diction and training outputs of the circuit are also latched as binary, digital

values.

Converting Weights to the Analog Domain: Simple, high-speed current
steering digital-to-analog converters (DACs) are used to convert digital weights
to analog signals (currents) that can be combined efficiently [1, 69]. Each DAC
uses one transistor per bit, sizing the width of the transistor to account for the
magnitude represented by the corresponding bit position. In the DAC shown in
Figure 4.3, W0 through W5 represent these transistor widths. The transistors
are configured as a current mirror, where a unit current, [,, is “mirrored”
through each transistor approximately proportional to W. For example, for a
4-bit, base-2 digital magnitude, the DAC transistor widths would be set to 1,

2, 4, and 8 and draw currents [, 21, 41,,, and 81,, respectively.

This approach supports near-linear digital-to-analog conversion. A

37

Table 4.1: Excerpts from the list of DAC transistor widths [121]

’ Col. # | Transistor Widths ‘
Bit 0 | Bit 1 | Bit 2 | Bit 3 | Bit 4 | Bit 5
0 (bias) 1 2 4 8 16 32
1 1 2 4 8 15 30
2 1 2 3 7 13 26
3 1 1 3 5 11 21
10 - 1 2 3 7 14
20 - 1 1 2 5 9
128 - 1 1 2 4 8

switch is used to steer each transistor current according to its correspond-
ing weight bit, where a weight bit of 1 steers the current to the magnitude line
and a weight bit of 0 steers it to ground. In the example above, if the digital
magnitude to be converted is 5, or 0101, currents [, and 41, would be steered
to the magnitude line, where 27, and 87, would be steered to ground. By the
properties of Kirchhoff’s current law (KCL), the magnitude line contains the
sum of the currents whose weights bits are 1 (57, in the example) and thus

approximates the digitally stored weight.

Scaling Weights by Coefficients: To achieve the effect of multiplying
weights by coefficients, non-traditional DAC transistor widths are chosen based
on the fitted inverse linear curve, f(7), mentioned in Section 4.2. As weight
position increases and correlation with current branch outcome decreases, DAC
transistor widths are scaled down, reducing the amount of current that a weight
contributes to the magnitude line. For example, rather than using traditional

DAC widths to convert a digital base-2 value to an analog value (1, 2, 4, 8,

38

16, and 32), a weight in position 3 has DAC transistor widths of 1, 1, 3, 5,
11 and 21, while a weight in position 128 has widths 0, 1, 1, 2, 4, and 8.
Table 4.1 shows excerpts of selected DAC transistor widths. Transistor widths
are limited to 32, and this technique actually reduces power consumption by
drawing less current than would be drawn by traditionally-sized DACs. Where
the multiplication operation would increase power in a digital design, it serves

to decrease power in an analog one.

Computing the Dot-Product of Inputs and Scaled Weights: The
scaled magnitude value is then steered to a positive line or negative line based
on the XOR of the sign bit for that weight and the appropriate history bit,
effectively multiplying the signed weight value by the history bit. The positive
and negative lines are shared across all weights, and again by KCL, all positive

values are added, and all negative values are added.

The currents on the positive line and the negative line are split roughly
equally by three transistors to allow for three circuit outputs: a one-bit predic-
tion and two bits that are used to determine whether training should occur.
Splitting the current, rather than duplicating it through additional current
mirrors, maintains the relative relationship of positive and negative weights
without increasing total current draw, thereby avoiding an increase in power
consumption. The currents from the splitters pass through resistors, creating

voltage signals that are used as comparator inputs.

39

Threshold Activation Function: A comparator performs the threshold
activation function by comparing a voltage associated with the magnitude of
the positive weights to one associated with the magnitude of the negative
weights. It outputs a 1, or a taken prediction, if the voltage corresponding to
the positive line outweighs the negative line and a 0, or not-taken prediction,

otherwise.

The comparator also functions as a one-bit, analog-to-digital converter
(ADC) that uses positive feedback to regenerate the analog signal into a digital
one. A track-and-latch comparator design [1, 69] was chosen based on its high

speed and simplicity.

Training: Training should occur if the prediction was incorrect or if the
magnitude of the predictor output is less than the threshold value. Rather
than actually computing the difference between the positive and negative lines
to determine the magnitude of the predictor output (which would require
more complex circuitry), and then comparing that magnitude to the threshold
value,the circuit instead latches two additional signals, based on comparisons,
that will be used when the branch is resolved to indicate whether training
should occur (7" and N in Figure 4.3). If C'is the direction of the branch on
commit, and P is the prediction, the following logic formula indicates training:

(C® P)+ PT + PN

C @ P indicates an incorrect prediction. To determine if the absolute

difference between the positive and negative lines is less than the threshold

40

value, the absolute value comparison is split into two separate cases: one case
for the positive weights being larger than the negative weights (PT) and the
other for the negative weights being larger than the positive ones (PN). T
is the relevant training bit if the prediction is taken (P = 1), and N is the

relevant training bit if the prediction is not taken (P = 0).

If the prediction is taken, then the positive line outweighs the negative
line. To determine whether this occurs by an amount less than or greater
than the threshold value, the threshold value is added to the negative line to
produce the comparison output 7'. If the prediction Pis 1 (taken) and T'is 0,
which means the negative line with the threshold value added is larger than
the positive line, then the difference between the positive and negative weights
is less than the threshold value and the predictor should train. Similarly, to
produce N, the threshold value is added to the current on the positive line. If
the prediction Pis 0 (not taken) and N is 1, which means the positive line with
the threshold value added is larger than the negative line, then the difference
between the negative and positive weights is less than the threshold value and
the predictor should train. Instead of waiting for the prediction output P to be
produced, which would increase the total circuit delay, all three comparisons

are done in parallel.

4.4 Addressing Analog Challenges

This section describes how the SNAP predictor design addresses the

challenges of an analog approach to neural computation (discussed in Chap-

41

ter 3).

Design-Time Signal-Range Restrictions. Although the neural branch
predictor structure applies generally across applications, it aims to solve a
single problem; that is, it aims to predict the outcome of a branch based on
branch history information. This shared goal (across applications) allows for
a fixed neural topology that can be easily implemented in the analog domain,
while maintaining the computing goal of generality. Predetermined scaling
coefficients and a predetermined history length allow for known analog signal
ranges. Because the predictor uses a mathematically simplistic threshold ac-
tivation function that simply requires a comparison, data density and limited
signal range at the activation function input do not significantly affect predic-
tion accuracy. As branch prediction is a classification task that requires only
a single-bit output, output bit width is not affected by limited analog signal

ranges.

Manufacture-Time Non-Idealities and Run-Time Noise. As the neu-
ral predictor described in this chapter contains only a single perceptron with
a one-bit activation-function output, it is resilient to both manufacture-time
analog non-idealities, such as process variation, and noise, since small changes

in signal value often do not affect the result of the comparison.

Furthermore, online training allows for the correction of manufacture

time non-idealities, as the predictor continues to adjust the weights vector

42

to produce correct predictions. Also, a differential design helps mitigate the
impact of environmental noise, as a spike in signal value on the positive line
would also occur on the negative line, with little change in the differential

between them.

Analog-Digital Boundaries. The placement of analog-digital boundaries,
with storage and weight indexing in the digital domain and fixed computation
in the analog domain, allows for similar integration as previous, all-digital

neural branch predictors.

4.5 FEvaluation
4.5.1 Methodology

Circuit Evaluation: We composed a transistor-level implementation of the
analog SNAP circuit in the Cadence Analog Design Environment using the
Predictive Technology Models at 45nm [94]. These models are the standard
for academic research and circuit design, and they take into account numerous
non-idealities that become important as transistor sizes shrink. They include
basic effects such as drain-induced barrier lowering, non-uniform doping, and
short and narrow channel length effects on threshold voltage, as well as various
leakage currents including subthreshold leakage. All transistors in the design
utilize 45nm bulk CMOS model cards that can be found on the PTM web-
site [94]; a description of the model parameters can be found in the BSIM4
User’s Guide [11].

43

Spectre transient analyses were used for all analog circuit simulations.
A 1V power supply and a 10% rise/fall time were assumed for each clock
speed. Analog power is measured by multiplying the supply voltage by the
average current drawn from the power supply. We use CACTI 4.2 [125] with
45nm technology files to measure the dynamic power of the digital table reads.
Analog accuracy numbers were generated by characterizing the analog circuit
behavior as a statistical error model and mapping it back to our CBP-2 sim-

ulation infrastructure.

Simulation Infrastructure: We report accuracy results for both an ideal
Scaled Neural Predictor (SNP) that assumes perfectly accurate operation, as
well as the Scaled Neural Analog Predictor (SNAP). Accuracy was measured
using a trace-driven simulator, derived from the 2nd Championship Branch
Prediction competition (CBP-2) infrastructure [66]. The SNP and SNAP de-
signs were restricted to 32KB of state, consistent with the implementable
CBP-2 predictors. As is common practice, the predictor was tuned using
a set of training traces provided in the CBP-2 infrastructure, and accuracy
experiments were run on a different set of traces, which includes the SPEC
CPU2006 integer benchmarks. Accuracy is reported as mispredictions per

kilo-instruction, or MPKI.

We compare against two other predictors: the piecewise linear (PWL)
predictor [65] and L-TAGE [117]. The PWL predictor is a neural predictor

with high accuracy, but high implementation cost. L-TAGE is a table-based

44

200

o
.
.
o

150

100 H

Current (uA)

v
)

Pttt e e e

L ST
oooooo Negative

-50

Time (ns)

Figure 4.4: Time required for current differentiation

predictor that utilizes partial matching and represented the most accurate im-
plementable predictor in the literature at the time of publication [121]. All
designs evaluated include a 256-entry loop predictor, included in the hardware
budget, and the PWL predictor was updated from its original design to also
utilize the adaptive threshold training algorithm [116] to further improve ac-
curacy (and provide a better comparison that reflects state-of-the-art accuracy

optimization techniques).

4.5.2 Analog Power, Speed, and Accuracy

The analog circuit design presents the traditional trade-off between
power, speed, and accuracy. The principal factor determining circuit delay is
the size of the currents produced in the DACs. Larger currents drive outputs to
stabilize sooner, thereby decreasing delay through the circuit; however, large

currents increase power consumption by increasing the total current draw.

45

70 T T

SNP, SNAP agree
disagree o

60

50

40

30

20

Expected Sum of Negative Weights

0 10 20 30 40 50 60 70
Expected Sum of Positive Weights

Figure 4.5: Prediction errors for sum combinations

The relative difference between the positive and negative weights also
determines when the correct output can be latched. Figure 4.4 demonstrates
the current behavior for two different sets of input weights: one where the
positive and negative sums vary greatly in magnitude and one where the sums
are similar. In this example, the weights change at 1ns such that the negative
sum greatly outweighs the positive, and the two currents quickly diverge. At
2ns the weights change such that the negative sum is only slightly larger than
the positive; in this case, the currents require more time to stabilize before a

winner can be determined.

Figure 4.5 shows prediction errors for various positive/negative sum
combinations; unsurprisingly, errors arise when the two sums are closest in

magnitude. These errors occur because the currents were not given sufficient

46

: Leakage current +— SNP (infeasible)
--+-- 1 GHz SNAP
—a— 2 GHz SNAP
Ao o-- 3 GHz SNAP

Accuracy (MPKI)

Power (milliwatts)

Figure 4.6: Tradeoff between power, speed, and accuracy

time to stabilize before the output was latched or because the currents pro-
duced by the DACs resulted in the wrong line having the larger value, since
similar sums allow less room for errors in current values. Incorrect currents
can result from non-linearity in the DACs as well as process variation and

noise.

Similar sums correspond to low prediction confidence, since the dot-
product result is close to zero and does not signify a strongly taken or not-
taken prediction; errors on low-confidence predictions mitigate the impact of
errors on overall prediction accuracy. In addition, this case occurs on a small
percentage of the total number of predictions. The simulations run to gener-
ate Figure 4.5 focused on this small space, even though these points are less

common, to clearly illustrate the diagonal error band.

The width of the error band shown in Figure 4.5 increases as clock

speed increases or power decreases, causing a decrease in predictor accuracy.

47

= Piecewise Linear

s L-TAGE

o Scaled Neural Predictor

| ©Scaled Neural Analog Predictor (3GHz, 7.4mW)

Mispredictions per Kilo-instruction

25,292,292, 754,783, 4,21, %00, 55, P8 723, %03, 19 725 2 4566/@1 0, b«« 00,‘1%

Oz, 0 @r/b 91, 26% '74,,] S O, @r/b ’d/; /5‘[] Utg Scc Parg, NG ey LI ?{0 ?lpf%,,] CYA

Cr 24 o %0]‘ 6 /]7
Benchmark

Figure 4.7: Accuracy of digital vs. analog implementations of the Scaled
Neural Predictor

Figure 4.6 illustrates the trade-off space between power, speed, and accuracy
for a Scaled Neural Analog Predictor. The DAC bias currents were adjusted
to generate the multiple power levels, and the lowest power shown (0.4mW)
corresponds to the DACs running strictly on leakage currents. At 1GHz, high
accuracy is maintained over the range of power levels simulated, where leakage
current alone achieves an MPKI of 5.13. The drop in accuracy from 4.9mW to
7.4mW at 2GHz is a function of inaccuracy in the DAC currents coupled with
the particular behavior of the traces simulated. At 3GHz, increasing power

from 1.9mW to 7.4mW shows an improvement of .32 MPKI.

4.5.3 Analog vs. Digital Comparison

Accuracy: Figure 4.7 shows that, when published [121], the Scaled Neu-

ral Predictor was the most accurate neural predictor measured, though not

48

competitive from a power perspective (requiring several watts to make a pre-
diction). The Scaled Neural Analog Predictor incurs a small loss in potential
prediction accuracy due to the use of non-ideal analog circuits, yet main-
tains higher accuracy than any previous neural predictor. The analog version
achieves an average accuracy of 5.18 MPKI compared to 5.06 for the digital
version; thus, the imprecision of the analog circuit results in only a .12 MPKI
decrease in accuracy. Piecewise linear branch prediction, which is less feasible
than SNAP, results in 5.4 MPKI. As such, the Scaled Neural Analog Predictor
is more accurate than the piecewise linear predictor, despite aggressive tun-
ing and extensions to increase PWL accuracy. L-TAGE achieves an average

accuracy of 4.91 MPKI.

Power: The total power consumed by the prediction step includes both dig-
ital table lookups and the dot-product computation. A precise, digital imple-
mentation of Scaled Neural Prediction is infeasible due to the 128 expensive
multiply operations required for scaling the weights vector by coefficients. At
3GHz and 45nm, a single 8-bit digital multiply-add operation consumes ap-
proximately 32mW [46], which is more than the power required for the total
dot-product computation in the analog domain. Running at 3GHz with a
1V supply voltage, the average analog power required to obtain high predic-
tion accuracy is 7.4mW. At slower clock speeds, however, high accuracy can
be achieved at lower power levels; for example, at 1GHz, the 0.4mW power

configuration achieves high accuracy.

49

The total dynamic read power at maximum frequency is estimated to
be 117mW. For comparison, the power consumed by the various memory struc-
tures of L-TAGE (a table-based predictor that does not require a computation
step) is estimated at 112mW. Thus, the memory components of the two pre-
dictors have comparable dynamic power, and the analog computation of the

dot product is a small fraction of the total power consumed by the predictor.

Training may also require significant amounts of power. For training,
the predictor update requires the use of an array of narrow up/down counters.
On the various benchmarks simulated, including SPEC CPU2006, the weights
need to be adjusted 10% of the time on average; the other 90% of the time
the adders are idle. This observation supports the possibility of multiplexing

fewer up/down counters over time.

Read power and update power could potentially be decreased through
the use of analog storage [107, 133]. In particular, the neural training algorithm
uses simple increment and decrement operations to adjust weight values, which
is more conducive to efficient analog storage updates than arbitrary write

operations.

4.5.4 State-of-the-Art Predictors

The 2011 Championship Branch Prediction Competition (JWAC-2) in-
cluded augmented versions of both the L-TAGE predictor and the SNAP pre-
dictor. The Optimized Scaled Neural Branch Predictor (OH-SNAP) [63] makes

several optimizations to the SNAP predictor; the optimization that produces

50

the largest increase in predictor accuracy is the use of a dynamic vector of co-
efficients (represented as 24-bit fixed-point values) to scale the weights vector
in place of the static coefficients vector utilized in the SNAP predictor. When
evaluated in the JWAC-2 infrastructure, which included a set of 40 traces pro-
vided by Intel and a 64KB budget for predictor state, OH-SNAP results in
3.78 MPKI - a 3.1% improvement over L-TAGE (at 3.90 MPKI) and a 7.6%
improvement over the SNP predictor (at 4.09 MPKI). The dynamic coefficient

improvement alone increased accuracy by 7% over SNP.

Despite the 24-bit multiplication utilized in OH-SNAP, the requirement
of only a single-bit output prediction from a simple, threshold activation func-
tion drastically decreases effects on accuracy due to range pressure in the ana-
log domain. One possible analog implementation of OH-SNAP would scale the
inputs (represented as currents) by variable resistances that are determined by
the scaling coefficients. This design would be similar to that of the neural ac-
celerator discussed in Chapter 5. A prediction accuracy estimate for an analog

implementation of OH-SNAP would require transistor-level simulations.

Two TAGE-based predictors, TAGE-ISL and TAGE-LSC, showed higher
accuracy on average than the OH-SNAP predictor; however, OH-SNAP per-
formed better on the 7 most unpredictable benchmarks [118]. As such, research
in branch prediction will likely continue down both paths. Additionally, push-
ing neural-predictor weight storage into the analog domain has the potential to
enable both power and accuracy advantages over table-based predictors, which

motivates continued exploration of neural prediction in conjunction with ad-

51

vancements in resistive memory technologies.

4.6 Conclusions and Implications

Neural branch predictors occupy an interesting point in the space of
hardware neural-network designs — that of microarchitectural integration. This
analog neural predictor work presents an initial proof of concept for incorpo-
rating analog design techniques at the microarchitecture level to exploit the
benefits of approximate computing, i.e. to trade accuracy for energy efficiency
when 100% accuracy is not required. The context of branch prediction ad-
dresses the historic challenges of analog design — programmability, generality,
and accuracy. Additionally, a neural approach compensates for computation

inaccuracy with online training.

This chapter explores the tradeoff space of a Scaled Neural Analog
Predictor in terms of accuracy, energy efficiency, and performance. The 45nm
analog design can operate over a range of power and clock-speed configura-
tions, and at 3GHz and 7.4mW, shows an increase of only .12 MPKI over an
ideal, digital implementation, while saving orders of magnitude in power con-
sumption over a digital version. At 1GHz, the 0.4mW power configuration,
which runs on leakage currents alone, achieves accuracy close to a precise,
digital implementation. The Scaled Neural Analog Predictor represented the
most accurate, feasible neural predictor in the literature at the time of pub-
lication [121], and subsequent work assuming an analog implementation has

further improved neural predictor accuracy [63]. Future implementations may

52

reduce the lookup and update power by pushing these functions into the ana-
log portion of the design as well, using multi-level memory cells to adjust the
weighted currents directly, rather than performing a digital-to-analog conver-

sion.

4.6.1 Contributions

Previous neural branch predictors implement the dot-product step us-
ing many relatively slow and power-inefficient digital adders and a pipelining
scheme that reduces accuracy. This design uses fast analog circuits for the
dot-product step, greatly improving power and efficiency and eliminating the
need for pipelining, which results in improved accuracy and implementation
feasibility despite inaccurate analog computation. By making more aggressive
computation functions feasible in the prediction loop, analog techniques open

the door for more aggressive neural prediction algorithms.

More broadly, the work presented in this chapter signals a trend to-
ward improving power and latency in microarchitectures by mixing analog and
digital circuitry in situations where 100% precision is not necessary. Microar-
chitecture constructs that utilize prediction and confidence estimation [47], as
well as constructs that perform tasks in resource allocation (caches, memory
bandwidth, and power management, for example) and scheduling (instruc-
tion scheduling, task scheduling, and memory-access scheduling, for exam-
ple) will benefit from the work presented in this chapter. It has been shown,

for example, that a neural model can allow sophisticated resource allocation

53

and scheduling policies that capture complex relationships between monitored
system variables and application execution characteristics [84]. Similarly, a
self-optimizing DRAM controller has been proposed that optimizes the long-
term performance impact of scheduling decisions through reinforcement learn-
ing [60]. Improvements in the feasibility of implementing these dynamic opti-
mization strategies will enable further improvements in energy-efficient com-

puting.

Although the utilization of microarchitecture-level approximate com-
puting enables improvements in application performance and energy efficiency,
these gains are limited by the requirement of precise computation at the appli-
cation level. Chapter 5 relaxes this requirement of application-level accuracy
to explore the potential for higher gains in performance and energy efficiency

with the utilization of analog hardware.

54

Chapter 5

Analog Neural Acceleration

As outlined in Chapter 1, this dissertation aims to answer the questions:
Can analog circuits be successfully integrated into general-purpose computing
to provide performance and energy savings? And, what is required to address
the historical analog challenges of inaccuracy, programmability, and a lack of

generality, to enable such an approach?

The careful application of analog circuits to approrimate computing
tasks, where 100% computation accuracy is not required, can circumvent
the restrictions of analog inaccuracy and enable the use of analog circuits
to provide performance and energy efficiency gains in general-purpose, high-
performance computing. The analog neural predictor described in Chap-
ter 4 integrates approximate analog circuits at the microarchitecture level;
this microarchitecture-level task does not reduce application-level accuracy,
programmability, or generality. This chapter aims to further investigate the
potential gains in the tradeoff between accuracy and performance and energy

efficiency by allowing for application-level inaccuracy.

Error-tolerance has been shown to be a common characteristic among

emerging workloads [25, 40, 77, 134]. For example, these approximation-

55

tolerant applications may compute on noisy data, may inherently use ap-
proximation techniques (e.g. machine learning), or may use approximation

to decrease the computation load of complex operations on large data sets.

This chapter investigates a neural approach to application-level, ap-
proximate computing in the form of a mixed-signal, neural accelerator. It uti-
lizes prior work on a compile-time technique that translates approximation-
tolerant code segments, written in conventional programming languages, to
a neural network computation structure that approximates the desired re-
sults [37]. This code transformation maintains programmability by not re-
quiring significant changes to the programming model. The approximate code
segment is translated to a more fixed-function neural model for computation,

which supports the possibility of an analog implementation.

As illustrated in Figure 1.3, the mixed-signal, neural accelerator de-
scribed in this chapter aims to address the historical challenges of an analog

computing in the following ways:

Generality: Accelerators typically provide benefits in performance and en-
ergy efficiency at the expense of generality through application-specific or
domain-specific designs. To maintain a higher level of generality, we utilize
prior work that translates conventionally written, approximation-tolerant code
segments to a neural model of computation [37]. A neural approach assists in
maintaining generality as neural networks can approximate functions across

application domains [55]. The compilation techniques described in this chap-

56

ter further support generality as they target the enablement of performing
regression tasks with reasonable accuracy in the presence of hardware restric-
tions, which increases the range of applications that can benefit as compared

to those that can be mapped to simple classification tasks.

Programmability: While the analog neural predictor work presented in
Chapter 4 utilizes the microarchitecture abstraction layer to address pro-
grammability, the work presented in this chapter leverages prior work on a
digital neural accelerator that transforms conventionally written, approximate
code to a neural model of computation through the use of simple programmer-
given annotations that label an error-tolerant code segment as approximable [37].

Section 5.1 gives an overview of this prior work.

Accuracy: As described in Chapter 3, analog signal range limitations re-
strict the variety of implementable network topologies, activation functions,
and effective computation bit widths, potentially limiting accuracy and, thus,
the number of applications that can benefit from this approach. Section 5.3
investigates the effect of these analog-imposed restrictions and offers compile-

time solutions to compensate for the analog shortcomings.

Section 5.1 gives a high-level overview of the workflow and framework
for accelerating approximation-tolerant code segments on an Analog - Neu-
ral Processing Unit (A-NPU). Section 5.2 describes the design of the recon-

figurable, mixed-signal, neural accelerator, which includes the analog circuit

57

Profiling Path for
Training Data
Collection

¥ A

w Custom Training
Training Data Algorithm for
Limited-Precision

Analog Accelerator

Trained Neural
Network

Annotated
Source Code

|

Instrumented [H
Binary]

L 1

Y

- A
|
1
1

Acceler?tor A-NPU
Config |
1

Compilation '—Acceleration—

Code
Generation

|

1

i

A-NPU :

|
|

A-NPU |
High-Level Model

Programmer

— Programming Design

Figure 5.1: Framework for using analog computation to accelerate code written
in conventional languages [4].

design of a basic neural computation unit, or ANU (Analog Neural Unit).
Section 5.3 presents compile-time techniques that address inaccuracy due to
restrictions in topology, activation function, and bit widths that manifest due
to design-time challenges of analog range restrictions. The work presented in
this chapter is a first step toward integrating analog circuits into modern micro-
processors to achieve gains in energy efficiency across approximation-tolerant
application domains. Section 5.6 discusses opportunities for future work to ad-
dress the additional challenges described in Chapter 3, i.e. manufacture-time

non-idealities and run-time noise.

5.1 Background and Overview

This section outlines the high-level framework for enabling code exe-
cution on an Analog - Neural Processing Unit, or A-NPU, that accelerates
approximation-tolerant portions of program code despite the restrictions of
analog hardware. The workflow, shown in Figure 5.1, can be partitioned into
four parts: programming, design, compilation, and execution. The work pre-

sented in this thesis deviates from prior work [37] in the areas of design and

58

one aspect of compilation stage. The programming model, compilation stages
of training data collection and code generation, and the accelerator-CPU com-
munication interface do not deviate from prior work [37]. The four workflow
components are briefly described in this section (following the diagram in Fig-
ure 5.1) to set the context and framework for neural acceleration. Section 5.2
describes the details of the mixed-signal neural accelerator design, and Sec-
tion 5.3 describes compilation techniques for enabling the utilization of efficient

but limited analog computation.

5.1.1 Programming

We leverage the programming model described in prior work [37], which
allows programmers to mark error-tolerant regions of code as candidates for
transformation using a simple keyword, approximable. Explicit annotation
of code for approximation is a common practice in approximate programming
languages [109, 15]. A natural candidate region for acceleration is an error-
tolerant function of any size, which can contain function calls, loops, and
complex control flow. In addition to error tolerance, the candidate function
must have well-defined inputs and outputs (e.g the number of inputs and out-
puts must be known at compile time). Additionally, for this architecture, the
code region must not read any data other than its inputs, nor affect any data
other than its outputs. No major changes are necessary to the programming

language beyond the addition of the approximable keyword.

59

5.1.2 Design

Mixed-signal, neural accelerator design. Mixed-signal, neural hardware
allows for the acceleration of multilayer-perceptron computation. Section 5.2
describes a reconfigurable A-NPU circuit design that utilizes a combination of
digital storage and efficient analog computation blocks (ANUs) that compute
a single neuron. The placement of the analog-digital boundary at each neuron
serves to increase flexibility, or the scope of network topologies that can be
accelerated on the hardware, over a more fixed-function, fully analog design.
The accelerator must support a large enough variety of neural network topolo-
gies, while adhering to the analog-imposed network restrictions, to be useful

over a wide range of applications.

Exposing analog circuits to the compiler. Although the incorporation
of analog computation presents the opportunity for gains in efficiency over a
digital accelerator, analog neural hardware suffers from reduced computation
accuracy and limitations due to physical signal range restrictions. These ana-
log challenges impose limitations on the neural computation that can result in
decreased network approximation capabilities, and, consequently, a decreased
range of applications that can utilize the acceleration. These hardware short-
comings, however, can be exposed as a high-level model to the compiler, which
allows for compensation during the training phase. Specifically, three design-
time, analog hardware characteristics can be exposed: (1) limited precision

for input, output, and weight encodings, (2) the behavior of the activation

60

function (sigmoid), and (3) limitations on the space of feasible neural network

topologies.

5.1.3 Compilation

The compiler aims to mimic approximation-tolerant regions of code
with neural networks that can be executed on the neural accelerator. While
respecting the topological limitations of the analog hardware, the compiler
searches the topology space of feasible neural networks and selects and trains
a neural network to produce outputs comparable to those produced by the
original code segment. Compilation occurs in three phases: (1) training-data
collection, (2) network topology selection and training, and (3) code gener-
ation. Compilation stages (1) and (3), briefly described here, are leveraged
from prior work [37]. Stage (2) deviates from prior work by adding techniques
to compensate for analog hardware limitations known at design time. These

techniques are described in more detail in Section 5.3.

1) Profile-driven training-data collection. During a profiling stage, the
compiler runs the application with representative profiling inputs and collects
the input/output pairs for the candidate code region. This step provides the

training data for the rest of the compilation workflow.

2) Topology selection and training. The compiler uses the collected

training data to train a multilayer perceptron neural network, choosing a net-

61

work topology, i.e. the number of neurons and their connectivity, and tak-
ing a gradient descent approach to find the synaptic weights of the network,
while minimizing the error with respect to the training data. This compila-
tion stage does a neural topology search to find the smallest neural network
that (a) adheres to the organization of the analog circuit and (b) delivers ac-
ceptable accuracy at the application level. The network training algorithm,
which learns favorable synaptic weights, uses a combination of a resilient back-
propagation algorithm, RPROP [57], that we found to outperform traditional
backpropagation for restricted activation function behavior, and a continuous-
discrete learning method, CDLM [23], that attempts to correct for error due
to limited-precision computation. Section 5.3 describes these techniques that
mitigate losses in accuracy due to analog-imposed restrictions on the neural

computation.

3) Code generation for hybrid analog-digital execution. In the code
generation phase, the compiler replaces each instance of the original program
code with code that initiates a computation on the analog neural accelerator.
ISA extensions given in prior work [37] specify the neural network topology,
send input and weight values to the A-NPU, and retrieve computed outputs

from the A-NPU.

62

5.1.4 Execution

As in prior work [37], the core communicates with the A-NPU through
three FIFO queues: one specifying network configuration, one for sending
inputs, and one for retrieving outputs. The queues are accessed using ISA
extensions in the form of enqueue and dequeue instructions. The CPU sets
up the A-NPU by sending configuration queueing instructions that specify the
network topology, the synaptic weights, the number of inputs, and number
of outputs. To invoke a computation on the A-NPU, the CPU issues a set of
input queueing instructions with the input data. When all inputs are received,
the A-NPU begins computation and populates the output queue. The program

executes a set of dequeue instructions to retrieve each output.

5.2 Mixed-Signal, Neural Accelerator (A-NPU) Design

This section describes the design of a mixed-signal, neural accelerator,
or A-NPU (Analog - Neural Processing Unit). The A-NPU accelerates the
computation of a multilayer-perceptron neural network given a set of inputs,

weights, and a network topology.

We define an ANU, or Analog Neural Unit, as the basic unit of compu-
tation that computes the output of a single neuron. The ANU circuit design
is described in Section 5.2.1. To increase network topology flexibility, we set
the analog-digital boundaries at the ANU level. Section 5.2.2 describes a re-
configurable, mixed-signal architecture that can perform the computation of

a variety of network topologies.

63

y = sigmoid(>_ (w;w;)) y ~ sigmoid(D _ (I(z;)R(w;)))
(a) (b)

Figure 5.2: One neuron and its conceptual analog circuit [4].

5.2.1 Analog Neural Unit (ANU) Circuit Design

As Figure 5.2a illustrates, each neuron in a multilayer perceptron takes
in a set of inputs (z;) and performs a weighted sum of those input values
(>, z;w;). The weights (w;) are the result of training the neural network on
training data (compile time) and are constant during the recall phase (execu-
tion time). After the summation stage, which produces a linear combination
of the weighted inputs, the neuron applies a non-linear function (sigmoid) to

the result of the summation.

Figure 5.2b depicts a conceptual analog circuit that performs the three
necessary operations of a neuron: (1) scaling inputs by weights (z;w;), (2)

summing the scaled inputs (>, z;w;), and (3) applying the non-linear func-

64

tion (sigmoid). This conceptual design first encodes the digital inputs (z;)
as analog current levels (I(z;)). Then, these current levels pass through a set
of variable resistances whose values (R(w;)) are set proportional to the cor-
responding weights (w;). The voltage level at the output of each resistance
(I(x;)R(w;)), is proportional to z;w;. These voltages are then converted to cur-
rents that can be summed quickly according to Kirchhoff’s current law (KCL).
Analog circuits only operate linearly within a small range of voltage and cur-
rent levels [100], outside of which the transistors enter saturation mode with
IV characteristics similar in shape to a non-linear sigmoid function. Thus,
at a high level, the non-linearity is naturally applied to the result of sum-
mation when the final voltage reaches the analog-to-digital converter (ADC).
Compared to a digital implementation of a neuron, which requires multipliers,
adder trees, and sigmoid lookup tables, the analog implementation leverages
the physical properties of the circuit elements and can be orders of magnitude

more efficient.

Figure 5.3 illustrates the detailed design of a single analog neuron
(ANU). The analog-digital boundary at the ANU level places computation
in the analog domain and storage in the digital domain. Digital input and
weight values are represented in sign-magnitude form. In the figure, s,, and
Sw,; represent the sign bits of the inputs and weights, and z; and w; repre-
sent the magnitudes. Digital input values are converted to the analog domain
through current-steering DACs that translate digital values to analog currents.

Current-steering DACs are used for their speed and simplicity. In Figure 5.3,

65

I O 2 I I 28

Current
Steering

Current
Steering
DAC

R(|wol) R(|wy|)
V (|woxo|) V(|wpxn))
Diff Diff
Pair Pair
I+ (wo.%'o) I+ (wnxn) I~ (wnxn)
I~ (wo.'li‘()) < Sy
Flash
Diff ADC
Amp Yy

v (Z wz‘xz‘) V- (Z wi$i>

y ~ sigmoid (V (Z wlxl))

Figure 5.3: Circuit design of a single analog neuron (ANU).

I(]z;|) is the analog current that represents the magnitude of the input value,
x;. Digital weight values control resistor-string ladders that create a vari-
able resistance depending on the magnitude of each weight (R(|w;|)) . We
use a standard resistor ladder thats consists of a set of resistors connected
to a tree-structured set of switches. The digital weight bits in w; control
the switches, adjusting the effective resistance (R(|w;|)) seen by the input
current (I(|z;])). These variable resistances scale the input currents by the

digital weight values, effectively multiplying each input magnitude by its cor-

66

responding weight magnitude. The output of the resistor ladder is a voltage:
V(|lwiz;|) = I(|x;|) x R(|w;]). The resistor network requires 2™ resistors and
approximately 2™*! switches, where m is the number of digital weight bits.
This resistor ladder design has been shown to work well for m < 10. Our

circuit simulations show that only minimally sized switches are necessary.

V(Jw;z;]) as well as the XOR of the weight and input sign bits feed
a differential pair that converts voltage values to two differential currents
(I (w;z;), I~ (w;x;)) that capture the sign of the weighted input. These dif-
ferential currents are proportional to the voltage applied to the differential
pair, V (Jw;z;|). If the voltage difference between the two gates is kept small,
the current-voltage relationship is linear, producing It (w;z;) = I*’T“ + AT and
I~ (wx;) = IbT“ — AI. Resistor ladder values are chosen such that the gate
voltage remains in the range that produces linear outputs, and consequently
a more accurate final result. Based on the sign of the computation, a switch
steers either the current associated with a positive value or the current associ-
ated with a negative value to a single wire to be efficiently summed according
to Kirchhoff’s current law. The alternate current is steered to a second wire,
retaining differential operation at later design stages. Differential operation
combats environmental noise and increases gain, the later being particularly

important for mitigating the impact of analog range challenges at later stages.

Resistors convert the resulting pair of differential currents to voltages,
VT2, wiz;) and V— (>, wix;), that represent the weighted sum of the inputs

to the ANU. These voltages are used as input to an additional amplifica-

67

tion stage (implemented as a current-mode differential amplifier with diode-
connected load). The goal of this amplification stage is to significantly magnify
the input voltage range of interest that maps to the linear output region of

the desired sigmoid function.

The amplified voltage is used as input to an analog-to-digital converter
(ADC) that converts the analog voltage to a digital value. We chose a flash
ADC design (named for its speed), which consists of a set of reference voltages
and comparators [1, 69]. The ADC requires 2" comparators, where n is the
number of digital output bits. Flash ADC designs are capable of converting 8
bits at a frequency on the order of gigahertz. We require 2-3 mV between ADC
quantization levels for accurate operation and noise tolerance. Typically, ADC
reference voltages increase linearly; however, we use a non-linearly increasing
set of reference voltages to capture the behavior of a sigmoid function, which
also improves the accuracy of the analog sigmoid, as compared to an analog

sigmoid block implementation.

Analog range limitations. There are two places in this ANU design with
notable range limitations that affect the optimal bit width of the inputs, out-
puts, and weight values, the number of allowable inputs to the neuron (compu-
tation width), and the behavior of the sigmoid activation function. The range
at the gate of the differential pair, V (|w;x;|), which represents the multipli-
cation of an input value and its corresponding weight value, is limited to one

that keeps the current-steering DAC transistors operating in the saturation

68

region.

Similarly, the node voltages under the differential pair transistors,
VT, wiz;) and V= (3, wiz;), must be kept in a range that upholds the
linear relationship between voltage input and current output for the differen-
tial pair. This requirement limits both the computation width of the ANU,
which results in network topology restrictions by limiting the number of inputs
per neuron, as well as the input voltage range at the ADC. A limited voltage
range at the ADC input limits the number of bits that can be used to describe
the output, as the ADC requires 2 - 3 mV between quantization levels for

robustness in the presence of noise.

The node voltage requirements under the differential pair also affect the
behavior of the sigmoid function. A differential amplifier stage attempts to ex-
tend the range of input signals that translate to an output on the linear portion
of the function curve; however, modeling high activation steepness behavior
requires larger amplification, as a smaller signal range must be translated to
the various output values between the extremes. This challenge leads to an
analog implementation favoring shallow activation steepness behavior in the
sigmoid, though this requirement decreases the achievable network accuracy,
in general, as steep non-linear functions have a higher capacity for accurate
learning. Section 5.3 addresses the effects of limited bit-width value represen-
tations, limited computation width (limited network topology connectivity),
and restrictions on activation function steepness on the potential of a neural

network to mimic program code through compile-time training techniques.

69

Critical design point and hardware-software accuracy tradeoff. Where
this ANU design implements the sigmoid function as part of the analog-to-
digital converter (ADC) by setting the ADC reference voltages in a non-linear
fashion, other work has utilized specific analog sigmoid blocks [56]. Though
transistor current-voltage characteristics behave in a manner that resembles
a non-linear sigmoid function, a challenge exists in integrating that behavior
while meeting the input and output range requirements that (mathematically)
support a neural network that can be applied generally and achieve high net-

work accuracy.

For example, to implement neural hardware that is capable of solving
regression tasks with 8-bit outputs, the output range of the sigmoid must al-
low for differentiation between 256 signal levels. Though an analog sigmoid
compute block produces an output that is a non-linear function of the input,
this output range must be large enough for eventual conversion to the dig-
ital domain; furthermore, the front-end circuit design must produce inputs
within the specific operating range of the sigmoid block that also adheres
to the mathematical specifications of the non-linear activation function uti-
lized in the neural network being accelerated. That is, the physical input and
output signals of the non-linear circuit block must coincide with the mathe-
matical neural network requirements for learning and function approximation.
Non-linear functions with traditional values of activation steepness result in a
challenging implementation problem, though they are required for the learning

and approximation capacities of the network, particularly in the case of learn-

70

ing complex functions, such as those present in regression tasks (as opposed

to classification).

The satisfaction of this hardware-software agreement on activation func-
tion behavior must be explicitly addressed, and the data density at the input
to the non-linear function (the input to the differential amplifier in Figure 5.3),
along with the requirement of a multi-bit output, proved to be a critical point
in this design. This point requires the large amplification (for conversion to
an 8-bit output) of a small physical signal range that mathematically corre-
sponds to the numerical input values of the sigmoid function that translate
to output values between saturation levels (between 0 and 1) according to an
activation steepness sufficient for complex function approximation. Increased
bit widths for inputs and weights, an increased number of inputs per neuron,
and increased activation-function steepness requirements all pose challenges
for an analog implementation due to increased data density and range limita-
tions at this circuit point; however, these network attributes are also critical

for supporting high network accuracy over a broad range of applications.

Although some relaxation from a full-precision, fully connected MLP
neural network can be tolerated to utilize a hardware implementation with
specific limitations, this relaxation can only occur to the extent that the neu-
ral network model is still able to learn and produce high quality outputs.
Additionally, pushing the circuit beyond it’s limitations decreases accuracy.
This hardware-software accuracy tradeoff can be addressed by incorporating

the hardware limitations into the software learning process. As such, Sec-

71

tion 5.3 explores software techniques to mitigate the limitations of an analog

implementation on the achievable network accuracy.

Alternative circuit designs. Analog neural hardware has typically imple-
mented the multiplication of inputs and weights by scaling currents (which
represent the inputs) by variable resistances (which represent the weights).
Rosenblatt’s first hardware perceptron, the Mark I [50], used potentiometers to
provide variable resistances to represent weight values. Other implementations
utilize slightly different approaches, but all are surprisingly similar [90, 53, 79].
Intel’s ETANN chip, for example, represents inputs as voltages and stores
weight values as electrical charge on floating gates that feed Gilbert multi-
pliers and produce differential output currents for the summation stage [53].
Where the ANU design scales the gate voltage in a differential pair that uses
fixed bias currents, ETANN effectively utilizes the weight value to create cur-
rents of varying sizes and then uses only the input voltages at the gates of the
differential-amplifier components that make up the Gilbert multiplier. The
multiplier cell can be designed with varying complexity, however, all are lim-
ited by challenges in limited signal range and linearity. The goals of the neural
hardware will determine what tradeoffs are made between linear operation,
range, power, speed, noise tolerance, etc., with networks targeting regression
tasks being more sensitive to these design choices due to the increased precision
requirements. However, as show in Section 5.3, software training techniques

can compensate for the limitations due to analog hardware.

72

Advances in analog storage technologies could benefit the ANU design
presented in this chapter. For example, weights stored in resistive memory
cells (ReRAM), which act as variable resistors, could replace the resistor lad-
ders described in this design (potentially requiring only a single device for each
weight). The use of ReRAM weight storage could provide decreased area, de-
lay, and noise due to the removal of digital switching. Advancements in analog
storage might also support the removal of costly analog-to-digital conversion
between neurons by providing intermediate analog storage that serves to re-
scale or buffer values between computation layers. In this case, inaccuracies
in analog storage would replace the inaccuracies introduced by signal quanti-

zation between neurons.

The ANU design described in this section would also benefit from in-
creased gain in the differential amplification stage. As compared to the single-
stage differential amplifier implemented in the ANU circuit design, a two-stage
amplifier design could possibly enable the implementation of a sigmoid func-
tion with increased activation steepness (though this comes at the cost of

increased delay).

Though other various analog sigmoid blocks have been proposed, the
integration of such circuits is a challenge (due to signal range input and out-
put requirements) that is implementation and goal dependent. For example,
regression poses a greater challenge than classification due to the increased pre-
cision requirements. Transistor-level circuit simulations of several analog sig-

moid circuits previously proposed in the literature [56] did not show increased

73

accuracy or reduced range pressure as compared to the signal amplification and
non-linear ADC conversion technique chosen for the ANU design. Though new
analog device characteristics might exhibit favorable non-linear function be-
havior, similar challenges will likely exist, at least in the context of targeting
regression tasks, due to the limited input and output signal ranges. Even with
improved sigmoid implementations, software techniques that maintain poten-
tial network accuracy, while limiting the requirements of the hardware, will

likely be required.

Analog-digital boundaries. As mentioned in Chapter 3, the placement
of analog-digital boundaries can ease the drawbacks of an analog approach
(e.g., inaccurate replication of currents, increased capacitive loads with multi-
ple signal consumers, and increased susceptibility to noise when routing small
signals over large distances). As such, we set the analog-digital boundaries at
the ANU level to mitigate the effects of analog non-idealities in signal routing,
while providing the flexibility to compute a range of network topologies with
varying connectivity, as it has been shown that the network topology that
best minimizes error with respect to the target outputs varies with applica-
tion [37, 90, 112]. Converting neuron outputs to the digital domain allows
for the accurate routing of neuron outputs of one layer to the inputs of the
next layer in a flexible (as opposed to fixed) fashion. This flexibility in spec-
ifying the network connectivity increases generality, such that a larger scope

of approximation-tolerant programs can utilize the neural acceleration. The

74

) 12)
Tl ;3

Row Selector

- — — —
() n U (O] (O]
£ & &
5 | 5 > >
om o o o
)) -)
oy = = =
& I I I
= = = =
Column Selector y

> I I I I I I]

[
T
Output FIFO

Figure 5.4: Mixed-signal, neural accelerator (A-NPU). Only four ANUs are
shown. Each ANU processes eight inputs [4].

following section describes a mixed-signal, reconfigurable A-NPU design, that

enables the flexible scheduling of computation on analog neurons.

5.2.2 Reconfigurable A-NPU

Figure 5.4 illustrates the design a reconfigurable, mixed-signal A-NPU
that can compute a wide variety of neural topologies. The A-NPU is a time-
multiplexed architecture where the algorithmic neurons are mapped to the
ANUs based on a static scheduling algorithm, which is loaded to the A-NPU
before invocation. For simplicity, the figure shows four ANUs; however, the
actual design evaluated in Section 5.4 allows eight algorithmic neurons to be

computed in parallel. Due to analog range limitations, we restrict the total

75

number of inputs to an analog neuron to eight. Section 5.3 discusses the impact

of this topology connectivity restriction on network accuracy.

Architectural Interface. We adopt the same FIFO-based architectural in-
terface through which a digital NPU communicates with the processor [37].
Like prior work, the A-NPU is tightly integrated to the processor pipeline,
and the processor communicates with the ANUs through the Input, Output,
and Config FIFOs shown in Figure 5.4. The processor ISA is extended with

special instructions that can enqueue and dequeue data from these FIFOs.

Although the Input, Output, and Config interface FIFOs mirror those
in the digital NPU [37], differences between analog and digital computation
warrant variations in the organization of internal computation and storage
structures. Where a digital neuron computes a neuron output in a time-
multiplexed manner (e.g. the dot-product computation is implemented with
multiply-accumulate operations over multiple time steps), an analog neuron
achieves efficiency through parallel computation. For example, an analog cir-
cuit can quickly sum currents, though those currents must be available at the
same moment time. As such, the organization of internal computation and

storage differs from that of a digital implementation.

Computing a Multilayer-Perceptron Network. A multilayer-perceptron
network consists of layers of neurons, where the outputs of one layer serve as

inputs to the next. The A-NPU starts computation at the input layer and pro-

76

ceeds with the computations of the neurons layer by layer. The Input Buffer
always contains the inputs to the neurons, either coming from the processor or
from the previous layer’s computation. The Row Selector determines which

entry of the input buffer will be fed to the ANUs.

As depicted in Figure 5.4, each ANU is augmented with a dedicated
Weight Buffer that stores the weight values. The Input Buffer and Weight
Buffers synchronously provide the inputs and weights for ANU computation

based on a pre-loaded A-NPU configuration order.

The ANUs write their outputs to a single-entry Output Buffer, where
the Column Selector determines which column of the Output Buffer will
be written by the ANUs. After all columns have completed computation, the
neuron results are pushed back to the Input Buffer to enable calculation of
the next layer. If the neuron results correspond to final network outputs, the
results are pushed to the Output FIFO for communication back to the CPU.
The Row Selector and Column Selector are FIFO buffers whose values are
part of the pre-loaded A-NPU configuration. All buffers are digital SRAM

structures.

Generating the A-NPU Configuration. During code generation, the
compiler produces an A-NPU configuration that constitutes the weights and
the schedule. The static A-NPU scheduling algorithm first assigns an order to
the neurons in the chosen neural network topology. This neuron order deter-

mines the order in which the neurons will be computed on the ANUs. Then,

7

the scheduler takes the following steps for each layer of the neural network:
(1) Assign each neuron to one of the ANUs. (2) Assign an order to neurons.
(3) Assign an order to the weights. (4) Generate the order for inputs to be fed
to the ANUs. (5) Generate the order in which the outputs will be written to
the Output Buffer. As in prior work [37], the scheduler also assigns a unique
order to the inputs and outputs of the neural network in which the processor

will communicate data with the A-NPU.

5.3 Compilation to Address Analog-Imposed Challenges

As mentioned in Section 5.1, compilation for A-NPU acceleration con-
sists of three stages: (1) profile-driven training data collection, (2) neural
network topology selection and training, and (3) code generation. This sec-
tion describes neural topology selection and training, which is specific to en-
abling an analog implementation. As described in Chapter 3, analog circuits
exhibit challenges in maintaining computation accuracy due to design-time
signal range limitations, manufacture-time non-idealities, such as process vari-
ation, and run-time noise. This section presents compile-time techniques to

compensate for analog limitations known at design time.

For neural network computation, design-time signal range limitations
place restrictions on the scope of implementable network topologies, the ac-
tivation function behavior, and the effective bit widths of values used in the
computations. Specifically, exposing the following A-NPU characteristics to

the compiler can allow for improvements in network accuracy: (1) number of

78

inputs per neuron, (2) the behavior of the activation function (sigmoid), and
(3) bit widths for input, output, and weight encodings. The compiler incorpo-
rates these exposed circuit characteristics during the neural topology search
and training with the goal of limiting the impact of inaccuracies due to an

analog implementation.

Section 5.3.1 describes the topology selection process that addresses
limitations on the scope of feasible network topologies. For a given network
topology, the compiler utilizes a two-phase, network-training algorithm that
compensates for the analog-imposed limitations known at design time. A pri-
mary training phase (RPROP), described in Section 5.3.2, trains the network
using full-precision values; this baseline training is well-suited to mitigate the
impact of analog limitations on the steepness of the non-linear activation func-
tion. A secondary training phase (CDLM), described in Section 5.3.3 makes
adjustments to the trained network to compensate for errors due to limited-

precision value representation.

5.3.1 Addressing Topology Restrictions

Conventional multilayer-perceptron networks are fully connected, i.e.
the output of each neuron in one layer is routed to the input of each neuron in
the following layer. However, analog range limitations restrict the number of
inputs that can accurately be computed in a neuron (to eight in our design).
Consequently, network connections must be limited, and in many cases, the

network can not be fully connected.

79

Topology selection. Given the analog-imposed restrictions, the compiler
searches the space of possible topologies to find an optimal network for a given
approximation-tolerant code region. A simple algorithm guided by the mean-
squared error of the network determines the best topology given the exposed
restriction when tested on an unseen subset of the profiling data. The error
evaluation uses a typical cross-validation approach; the compiler partitions the
data collected during profiling into a training set, 70% of the data, and a test
set, the remaining 30%. The topology search algorithm trains many different
neural-network topologies using the training set and chooses the one with the

highest accuracy on the test set.

The number of neurons in the input and output layers are predeter-
mined based on the number of inputs and outputs in the candidate function.
As in prior work [37], to bound compilation time because the space of possi-
ble topologies is large, we restrict the search to neural networks with at most
two hidden layers, and we limit the number of neurons per hidden layer to
powers of two up to 32. Additionally, we impose the circuit restriction on the
connectivity between neurons in a sequential, wrapping manner (though the
hardware would support a more complex mapping scheme that also adheres
to the specified number inputs per neuron). For example, if the number of
input neurons is 64, and the number of neurons in following hidden layer is 32,
the first 8 network inputs map to the first hidden-layer neuron, the second 8
inputs to the second hidden-layer neuron, and so on, where the ninth hidden-

layer neuron would also receive the first 8 inputs to the network. The topology

80

search space is further limited by the hardware-specified number of inputs per
neuron because some topology configurations can not be fully utilized. For
example, if a network has 1 output (as defined by the candidate function),
and the number of neuron inputs is restricted to 8, networks with more than 8
hidden-layer neurons in the proceeding layer are pruned from the search space,

as any additional hidden-layer neuron outputs could not be utilized.

Effect of restricted topologies. To show the effect of topology restric-
tions on network accuracy, Figure 5.5 plots the mean-squared error (MSE) for
various topology configurations (both restricted and fully connected) for two
approximation-tolerant benchmarks: blacksholes and kmeans. This figure
illustrates that a reconfigurable topology, where neurons are limited to eight
inputs, can produce comparable results to fully connected networks with a sim-
ilar number of neurons. For reference, the figure also highlights the accuracy
of a fully connected network that also adheres to the analog restriction on the
number of neuron inputs. As shown, adding the capacity for reconfiguration

allows for improved result quality as compared to a fixed implementation.

5.3.2 Addressing Activation-Function Restrictions: RPROP

Traditional training algorithms for MLP networks use a gradient de-
scent approach to minimize the average network error, over a set of training
input-output pairs, by backpropagating the output error information through

the network and iteratively adjusting the weight values to minimize that er-

81

blacksholes
0.002
< Reconfigurable
8 inputs / neuron
0.0015 + (8 inputs /) —
o O Fully Connected
7]
g ooo
<
6->8> 8>1
0.0005 O
o g 6>32> 8>1
5] (u]
: 8 8e@ o | |
0 10 20 30 40 50 60 70
Number of Hidden Neurons
(a)
kmeans
0.018
0.016 4] AReconfigurable | ——
0014 (8 inputs / neuron)
O Fully Connected
0.012 E—
w001
2 0008 A O
0,006 [6-)8-)8-)1] Is N \
‘ %\J Le 216> 851 J [632> 451 J
0.004 45 O
0002 0 o ~B@ ©0pe o]
) AN Z
0 T T T T T T 1
0 10 20 30 40 50 60 70
Number of Hidden Neurons
(b)

Figure 5.5: Network accuracies for limited (eight inputs per neuron), but
reconfigurable, network topologies and fully connected topologies.

82

foreach (training epoch)do

{

foreach (input-output training data pair)do

{

feed forward()
// compute network outputs with given inputs

calculate_error()
// calculate error based on target outputs

backpropagate_error ()
// backpropagate error through the network

update_error_gradients()

// update error gradient for each weight
end
update_weights ()

}

end

Algorithm 1: Gradient-descent approach to training multilayered
perceptron networks.

ror. The pseudo-code in Algorithm 1 illustrates a batch-mode, gradient descent

training approach.

Standard backpropagation [105] is the most popular gradient descent
algorithm for training MLP networks; we found, however, that the resilient
propagation (RPROP [57]) algorithm was more robust than standard back-
propagation at mitigating the effect of limitations in the behavior of the sig-

moid activation function.

RPROP differs from standard backpropagation in the weight update

task (update weights in Algorithm 1). Backpropagation updates weights as:

83

Aw;(t) = —G%E—w(f) where € is the learning rate, ¢ is the training iteration (the
current epoch), and %E—ug? denotes the summed error gradient information for
each weight over all input-output pairs in the training set. That is, back-
propagation determines the size of a weight update based on the size of the
partial derivative of the error function with respect to the weight, as well as
a training parameter referred to as the learning rate. Alternatively, RPROP
adjusts the size of the weight update based on the sign of the partial deriva-
tive, regardless of its magnitude, and without the need for the learning rate
parameter. The RPROP algorithm utilizes the following weight update rule,
where a weight-specific update value, /\;, determines the size of the weight
update [103]:
— A (1), if 5Ew >0
Awit) =+ (1), if 2 <0

0, othervvlse
where
ntx N(t—1), if %ﬂ;l) * (S(;E—UE? >0
At = 4~ x Ayt — 1), if EEL 220 g
Ni(t—1), otherwise

and 0 <n~ <1<nt.

Each time the partial derivative of the error with respect to a weight
changes sign, which signifies that the previous weight update was too large and
the algorithm jumped over a local minimum, the update value is decreased by
the factor n~. Similarly, if the partial derivative does not change its sign, the
update value is increased by the factor n* to speed convergence. To update a

weight, if the partial derivative of the error is positive (increasing error), the

84

weight is reduced. Similarly, if the partial derivative is negative, the weight
is increased. Though RPROP contains constant parameters that specify the
size of weight updates, RPROP has been shown to perform well with fixed
values for these parameters, specifically, n~ = 0.5 and n* = 1.2 [103, 57]. Our
experiments confirm that adjusting these parameters did not affect network

accuracy on the benchmarks investigated.

Sensitivity to Activation Function Steepness: The non-linear activa-
tion function utilized in the neurons is often the sigmoid function, given by:
flz) = 1+e+w> where «, the activation steepness, defines the slope of the
near-linear portion of the function (between output saturation regions). In-
creasing the value of « increases the slope of this region of interest. Increasing
the slope, however, decreases the range of input values that translate to out-
put levels between the saturation levels. As such, to reduce range pressure,
an analog implementation favors a low activation steepness. Decreasing acti-
vation steepness, however, can decrease the capacity of the network to learn
and produce high-quality network outputs, as the non-linearity in the network
is essential for approximating complex functions. Our experiments show that
the effect of this activation steepness restriction varies depending on training

algorithm.

Figure 5.6 compares backpropagation-trained and RPROP-trained net-
work accuracy, reported as mean-squared error (MSE), over a range of ac-

tivation steepnesses for two sample applications: blacksholes and sobel.

85

blacksholes

0.09 # * «0 Backpropagation
0.08 == RPROP
»
007 + ~{ Circuit- Traditional
. / Supported Steepness Range
0.06 / Steepness
.

MSE

-
0 02 04 | o6 038 1| 12 14 16
Activation Steepness
(a)
sobel
0.09 * «® ¢ Backpropagation
0.08 ‘ == RPROP
: b /' Circuit-
0.07 § / Supported Traditional —
3 Steepness
006 / P - Steepness Range
W 0,05 ?0! £
wv - |
S 004 1 . -
I \ |
0.03 % I i
0.02 | .‘. ; .
' 0. N I I
0.01 l e 2 - o .._
e feuupua oo
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Activation Steepness

(b)

Figure 5.6: Backpropagation and resilient propagation (RPROP) sensitivity
to activation-function steepness.

86

The results shown in Figure 5.6 correspond to three-layer networks with 8
hidden-layer neurons and the best-performing learning rate for backpropaga-
tion training; however, these results held for larger networks. Typical acti-
vation steepnesses quoted in the literature (and utilized in prior work on a
digital NPU [37]) range from 0.5 to 1. As shown in Figure 5.6, for an acti-
vation steepness of 1, RPROP and backpropagation achieve similar accuracy.
However, an analog implementation might limit activation steepness by several
orders of magnitude, requiring an activation steepness value of 0.05 or 0.005,
for example. As shown, RPROP significantly outperforms backpropagation
for networks utilizing low activation steepnesses, making it a better choice for

training a network that will be implemented with analog hardware.

Effect on compilation time. In addition to achieving better accuracy
under analog-imposed limitations, RPROP requires less training time when
compared to backpropagation and was developed specifically to speed conver-
gence [103, 57]. Our experiments showed 2x difference in the required training
time for a given network topology. Additionally, the use of RPROP decreases
training time by decreasing the compile-time network search space, as it re-
moves accuracy-dependent parameters, such as the learning rate in backprop-
agation, which limits the number of networks trained and evaluated for the

neural transformation step.

87

5.3.3 Addressing Limited Bit Widths: CDLM

In addition to restrictions on network topology and sigmoid activa-
tion steepness, an analog implementation imposes bit-width restrictions due
to limited signal ranges. Traditional training algorithms that do not consider
limited-precision inputs, weights, and outputs perform poorly when these val-
ues are saturated to adhere to the bit-width requirements that are feasible in
an analog implementation. (Simply limiting weight values during training is
also detrimental to achieving quality outputs because the algorithm does not

have sufficient precision to converge to a quality solution.)

To incorporate bit-width limitations into the training algorithm, a sec-
ond training phase utilizes a customized, continuous-discrete learning method
(CDLM) [23].This approach takes advantage of the availability of full-precision
computation at training time to adjust the network weights to compensate
for errors due to limited-precision value representations. The original CDLM
training algorithm was developed to mitigate the impact of limited-precision
weights on network accuracy. We customize this algorithm by incorporating

the input/output bit-width limitation in addition to limited weight values.

After the initial, full-precision RPROP training phase, the CDLM-
based training phase attempts to compensate for limited-precision value rep-
resentations. The CDLM training pass proceeds in a manner similar to the
initial, RPROP training pass except that a discretized version of the network
is used during the feed forward network calculation. That is, the CDLM-

based training pass discretizes the input, weight, and output values according

88

the the exposed analog specification. The algorithm calculates the new error
and backpropagates that error through the fully precise network using full-
precision computation and updates the weight values according to the RPROP
algorithm also used in phase 1. This process repeats, backpropagating the dis-
crete errors through a precise network until the specified maximum number of

epochs is reached.

The pseudo-code in Algorithm 2 illustrates the two-phase training al-
gorithm. The iBW, oBW, and wBW arguments refer to the analog-imposed
bit widths of the network inputs, outputs, and weights, respectively. We found
that running the second training phase for 10% of the number of epochs of
the initial training phase was sufficient for producing quality outputs. That
is, network accuracy did not increase with additional training epochs beyond

10% of the original training time.

89

train_epoch(phase : rprop||cdlm,iBW,0oBW,wBW)

foreach (input-output training data pair)do

{

if (phase == rprop)

// compute network using full-precision values
feed _forward()

}

else

{

// compute network using discrete values

feed forward discrete GUBW,oBW, wBW)

}

calculate_error()
backpropagate_error ()
update_error_gradients()

}

end

update_weights_rprop() // update weights according to rprop

}

input : Hardware-supported bit widths for network inputs (i BW),
outputs (oBW), and weights (wBW')

train(iBW,oBW,wBW , numEpochs)

{

// Phase 1 baseline training
for (numFEpochs)

train_epoch (rprop, null, null, null)

}

// Phase 2 corrective training
for (numFEpochs*0.1)

train_epoch(cdlm, iBW, oBW, wBW)

}

Algorithm 2: Two-phase network training algorithm.
90

sobel
0.09
0.08 8
s E | Precision
s Topology-Restricted Full Precision
0.07 wsiy==5h in/out
= 6b in/out
@=i==7b in/out
0.06
=0==8b in/out
/- 5bin/out CDLM
0.05 &= 6b in/out CDLM
w
g 3 7bin/out CDLM
i CDLM
004 8bin/out
0.03
0.02
0.01
0
2 4 6 8 10 12 14
Number of Weight Bits
(a)
lpeg
9.00E-05 e Full precision I
= Topology-restricted full precision
“=ir==5b infout
8.00E-05 —
= b in/out
li7b infout
7.00E-05 w8 in/out e
A 5bin/out COLM
£ o00E0 '\ 0 6b infout COLM
E-05 —
9 7bin/out CDLM
8b in/out CDLM
5.00E-05
g T
7}
= (W]
4.00E-05 L —d
3.00E-05 /™ -
\ <
B =
2.00E-05 = x L= o
1.00E-05
0.00E+00
55 6 65 7 75 8
Number of Weight Bits

(b)

Figure 5.7: Continuous-discrete learning method (CDLM) compensates for

limited bit

widths.

Results show accuracy for three-layer networks with 8

hidden neurons and a traditional activation steepness of 0.5. The number of
network inputs for sobel and jpeg exceed the analog-imposed connectivity

restriction.

91

3.50E-02 .
. = Eull Precision

Y e===Topology-Restricted Full Precision
3.006-02 /¥
#v=5b in/out

e=Om=6h in/out
2.50E-02

O==7b infout
2.00E-02 O==8b in/out

/= 5b infout CDLM

@

MSE

1.50E-02 @=f= 6b in/out CDLM

= 7b in/out CDLM

1.00E-02 O= 8b in/out CDLM
5.006-03 Qem o — o -
kL b /\
5 = e = = o ey e o B o C T 2 =

Number of Weight Bits

Figure 5.8: Continuous-discrete learning method (CDLM) compensates for
limited bit widths. Results show accuracy for a three-layer network with 8
hidden neurons and a traditional activation steepness of 0.5.

Figures 5.7 and 5.8 show the effectiveness of the CDLM training pass at
compensating for limited-precision value representation for three sample appli-
cations: sobel, jpeg, and fft. In essence, the RPROP baseline-training phase
creates a full-precision baseline that is well-suited to an analog implementa-
tion, and the CDLM training pass allows limited-precision values to approach
that baseline. In this figure, CDLM is compared to a training scheme that
simply saturates input, output, and weight values according to the bit-width
restrictions. (Training with limited-precision weights performed poorly due to

a lack of convergence.)

As shown, the CDLM training phase significantly increases accuracy in
the presence of limited-precision value representation. These figures also show

the full-precision accuracy achievable with and without the analog-imposed

92

topology restriction of eight inputs per neuron. The benchmarks in Figure
5.7 represent the sample applications with a number of inputs larger than the
hardware-specified connectivity limit of eight (9 for sobel and 64 for jpeg).
As such, the input layer and first hidden layer can not be fully connected. This
limited connectivity did not decrease the achievable accuracy for sobel, and
in jpeg, the topology connectivity restriction actually increased achievable

accuracy.

Bit-width sensitivity to activation steepness. The benefits of the CDLM
training pass vary with application depending on the learning requirements of
the network to produce high-quality outputs (where learning more complex
functions requires more bits or more non-linearity in the activation function,
e.g.). For example, kmeans reached accuracy levels comparable to a fully pre-
cise version with fewer than 8-bit inputs, outputs, and weights when trained
without the CDLM pass and assuming a typical activation steepness of 0.5.
However, the analog requirement of a low activation steepness can limit the
learning capacity of the network, and, as such, can require higher precision
in the weights to achieve high quality results. Figure 5.9a illustrates network
accuracy for kmeans assuming an activation steepness of 0.05, which is one
order of magnitude more shallow than those typically used during software
simulation of MLP networks. Figure 5.9b further illustrates the bit-width re-
quirements and benefits of CDLM under restrictions to activation steepness.

In this case, CDLM, in addition to RPROP baseline training, enables the use

93

kmeans
0.18
@ Eull Precision
0.16 —
@ Topology-Restricted Full Precision
0.14 R
@=Om 6 in/out
0.12 = m=7h infout —
@=Ome8h in/out
w 01 —
g 6b in/out CDLM
0.08 —
3 7bin/out CDLM
0.06 8bin/out CDLM
0.04
5!
0.02 "
-
0
5 6 7 8 9 10 11
Number of Weight Bits
(a) non-traditional activation steepness of 0.05
kmeans
0.2
[,L.\ @ Fy|| Precision @ Topology-Restricted Full Precision O==7b in/out (ActStp = 0.05)
0.18 @={J==7b in/out (ActStp = 0.025) 7= 7b in/out (ActStp = 0.005) ‘O= 7b in/out CDLM (ActStp = 0.05)
\ == 7b infout CDLM (ActStp = 0.025) /= 7b in/out CDLM (ActStp = 0.005)
0.16 \
0.14 \
0.12
9 \
0.1 [k
= ‘—‘\
0.08 \
0.06
> \
0.04 7+
“«c|s - \ 1
0.02 SST== S 7 —[75‘-\7
0§ J ‘h--___-, = —_-‘__—_____—_—J_h@
7 8 9 10
Number of Weight Bits

(b) varying activation steepness values

Figure 5.9: CDLM and bit-width sensitivity to activation steepness for kmeans
(three-layer network with 8 hidden neurons). The full-precision baselines cor-
respond to a traditional activation steepness of 0.5.

94

of lower-precision value representations and achieves accuracy comparable to

a fully precise network with no limitations on activation-function steepness.

Figure 5.10 shows the relationship between bit width and activation
steepness for two additional approximation-tolerant applications: sobel and
blacksholes. For these benchmarks, CDLM significantly outperforms the
simple saturating weight scheme, and that comparison was removed for clar-
ity. Also, this figure reports accuracy for the input/output bit width above
which accuracy did not improve. For sobel (Figure 5.10a), an activation steep-
ness of 0.05 requires 8-bit weights to achieve accuracy comparable to a fully
precise network, and decreasing activation steepness to 0.025 requires an ad-
ditional weight bit to achieve similar accuracy. blacksholes, however, is able
to achieve accuracy comparable to a fully precise network with 8-bit weights
and an activation steepness of 0.025. Figure 5.11 shows similar relationships

between bit width and activation steepness for inversek2j and fft.

For jpeg, shown in Figure 5.12, in addition to the accuracy improve-
ment due to analog-imposed limited connectivity, shallow activation steepness
values do not result in accuracy degradation, and the potential network accu-
racy actually improves over a full-precision network trained using a traditional
activation steepness of 0.5. Figure 5.12 highlights network accuracy for an ac-
tivation steepness of 0.005, which is two orders of magnitude more shallow
than a typical value, but results held for steepness values in between. This
example further illustrates the benefit of the CDLM pass in compensating for

inaccuracies due to limited precision, as it achieves accuracy comparable to

95

sobel
0.06 @ Full Precision
‘L @ Topology-Restricted Full Precision
. e Y - o @=/w= Shin/out CDLM (ActStp = 0.005)
. R - @={J= 5b in/out CDLM (ActStp = 0.025)
b=~ - == 5b in/out CDLM (ActStp = 0.05)
S~
0.04 Y S
-
- -
~ “w
w ~ -
(%] S -
S 0.03 [y S
So - Sso
~ *
-
0.02 ~
-~
-~ -
- - -
0.01 S
---—______ ?~-~_
e X ~ -------------ﬂﬂa
0+ . :
7 8 9
Number of Weight Bits
(a)
blacksholes
0.045
s Fyl| Precision
0.04 - : ~a @smmmmTopology-Restricted Full Precision |
0.035 S : S o == 6b in/out CDLM (ActStp = 0.005)
-~ -
S oo - @={J= 6b in/out CDLM (ActStp = 0.025)
0.03 . = -
S e~ @0 6b in/out CDLM (ActStp = 0.05)
- - -
- Sy ~ Sy
w 0.025 - CY
7] SsoUSe
2 0.02 Nk So
N So
N\ ~
0.015 ~ S
\ ~ F'S
\ N ~ r .
001 (i ~ -
- \ e
-~ \ i
0.005 -~ - ~ -~
-‘O-~--__ . ~ ______sg
————— ﬂ‘:ﬁ:ﬂ
0 ; __ ®
5 6 7 8 9
Number of Weight Bits

(b)

Figure 5.10: Bit width sensitivity to activation steepness. The full-precision
baselines correspond to a traditional activation steepness of 0.5.

96

1.00E-01 k
9.00E-02 —

N\ @ Full Precision
\ —
800802 \ e Topology-Restricted Full Precision
L N
7.00E-02 . -
o0Fo \ @=Qm= b in/out CDLM (0.5)

6.00E-02 = -
w ‘\ @=0== 8b in/out CDLM (0.05)
LD 500602 -
s \\ @=/s= 8b in/out CDLM (0.005)

4.00E-02

\
3.00E-02 =
\

S
2.005-02?ﬂ-__--- ‘\
‘%

1.00E-02 ———_ =— ::--L‘P——--_~_
0.00E+00 ;‘-—f- ==L ==
7 8 9 10
Number of Weight Bits

(a)

inversek2j

0.25 e Full Precision == Topology-Restricted Full Precision
T\ =0m=8b in/out (0.5) === 8b in/out COLM (0.5)

02 “=O==8bin/out (0.05) 0= 8b in/out CDLM (0.05)
o\ \D\ “==8b in/out (0.025) == gb in/out CDLM (0.025)

Number of Weight Bits

(b)

Figure 5.11: Bit width sensitivity to activation steepness. The full-precision
baselines correspond to a traditional activation steepness of 0.5.

97

Jpeg
1.80E-04
@ Full Precision
1.60E-04 —
@ Topology-Restricted Full Precision
1.40E-04 b in/out (ActStp = 0.005) E—
@=(J==7b in/out (ActStp = 0.005)
1.20E-04 - —
O 8b in/out (ActStp = 0.005)
Ly LOOE-04 - @@= 6b in/out CDLM (ActStp =0.005) |
g =0 7b infout CDLM (ActStp = 0.005)
8.00E-05 1 O= 8b in/out CDLM (ActStp = 0.005)
6.00E-05
4.00E-05 SJ
2.00E-05
0.00E+00 T T T T T T T T T)
5 55 6 6.5 7 75 8 8.5 9 9.5 10
Number of Weight Bits

Figure 5.12: CDLM accuracy for jpeg (three-layer network with 8 hidden
neurons, 64 inputs, and 64 outputs) for varying activation steepness values.
The full-precision baselines correspond to a traditional activation steepness of
0.5.

98

a full-precision network with 6-bit weights, as opposed to 9-bit weights. Al-
though some applications have lower bit width requirements than others, the
performance and energy evaluation presented in Section 5.4 assumes 8-bit in-
put and output values and 8-bit weights to allow for high potential accuracy
over a range of applications, while adhering to the limitations present in analog

hardware.

5.4 Performance and Energy Evaluation

This section describes the application-level performance and energy
benefits of an A-NPU implementation. This performance and energy eval-
uation utilizes the cycle-accurate simulation and energy modeling framework
of prior work [37], with the addition of analog circuit estimations derived from

the transistor-level ANU design and simulations.

5.4.1 Methodology

Cycle-accurate simulation and energy modeling. We use the MARSSx86
x86-64 cycle-accurate simulator [96] to model the performance of the proces-
sor. The processor is modeled after a single-core Intel Nehalem to evaluate
the performance benefits of A-NPU acceleration over an aggressive out-of-

order architecture!. We utilize the simulator extensions from prior work that

!Processor: Fetch/Issue Width: 4/5, INT ALUs/FPUs: 6/6, Load/Store FUs: 1/1,
ROB Entries: 128, Issue Queue Entries: 36, INT/FP Physical Registers: 256/256, Branch
Predictor: Tournament 48 KB, BTB Sets/Ways: 1024/4, RAS Entries: 64, Load/Store
Queue Entries: 48/48, Dependence Predictor: 4096-entry Bloom Filter, ITLB/DTLB En-

99

Table 5.1: Area estimates for the analog neuron (ANU) [4].

Sub-circuit Area

8x8-bit DAC 3,006 T*

8xResistor Ladder (8-bit weights) 4,096 T + 1 KQ (=~ 450T)
8x Differential Pair 48 T

I-to-V Resistors 20 KQ (=~ 30T)
Differential Amplifier 244 T

8-bit ADC 2550 T + 1 KQ (= 450 T)
Total ~ 10,964 T

*Transistor with width / length =1

include ISA-level support for NPU queue and dequeue instructions [37]. We
also augmented MARSSx86 with a cycle-accurate simulator for our A-NPU
design and an 8-bit, fixed-point digital-NPU (D-NPU) with eight processing
engines (PEs) as described in [37]. We use GCC v4.7.3 with -03 to enable
compiler optimizations. The baseline in our experiments is the benchmark
running solely on the processor without the neural transformation. We use
McPAT [76] for processor energy estimations. We model the energy of an 8-bit,
fixed-point D-NPU using results from McPAT, CACTI 6.5 [91], and work by
Galal and Horowitz [46] to estimate its energy. Both the D-NPU and the
processor operate at 3.4 GHz, while the A-NPU is clocked at one third of the
digital clock frequency, 1.1 GHz at 1.2 V, as an estimate of operating frequency

that allows for acceptable accuracy.

tries: 128/256 L1: 32 KB Instruction, 32 KB Data, Line Width: 64 bytes, 8-Way, Latency:
3 cycles L2: 256 KB, Line Width: 64 bytes, 8-Way, Latency: 6 cycles L3: 2 MB, Line
Width 64 bytes, 16-Way, Latency: 27 cycles Memory Latency: 50 ns

100

ANU Circuit Design. We built a detailed transistor-level SPICE model
of the analog neuron, ANU. We designed and simulated and 8-bit, 8-input
ANU in the Cadence Analog Design Environment using predictive technology
models at 45 nm [94]. We ran detailed Spectre SPICE simulations to un-
derstand circuit behavior and measure ANU energy consumption. We used
CACTI to estimate the energy of the A-NPU buffers. Evaluations consider all
A-NPU components, both digital and analog. For the analog parts, we used
direct measurements from the transistor-level SPICE simulations. For SRAM
accesses, we used CACTI. We built an A-NPU cycle-accurate simulator to
evaluate the performance improvements. Similar to McPAT, we combined
simulation statistics with measurements from SPICE and CACTI to calcu-
late A-NPU energy. All energy and performance comparisons are to an 8-bit,
fixed-point D-NPU (8-bit inputs/weights/multiply-adders). For consistency
with the available McPAT model for the baseline processor, we used McPAT
and CACTI to estimate D-NPU energy.

For comparison with a digital neuron, Table 5.1 provides an estimate of
the ANU area in terms of number of transistors, where T denotes a transistor

with ;gﬁ]tﬁl = 1. As shown, each ANU (which performs eight, 8-bit analog

multiply-adds in parallel followed by a sigmoid) requires about 10,964 tran-
sistors. An equivalent digital neuron that performs eight, 8-bit multiply-adds
and a sigmoid would require about 72,456 T (from which 56,000 T are for
the eight, 8-bit multiply-adds and 16,456 T are for the sigmoid lookup). As

such, the analog neuron requires approximately 6.6x fewer transistors than a

101

Table 5.2: The evaluated benchmarks, characterization of each ofloaded func-
tion, training data, and the trained neural network [4].

Hof
#of : Fully _— Fully
Name ipti Type | Function l::fs ":I;g:/ ELE E""“’;’:"‘ INPUt | training Input Set .'::"T' Network | p,cival NN ;’;:"(’g_:':‘) A"""‘;::_:'c Error | pigital AE’:_::‘
calls B s LT MSE Error
Mathematical Financial 4096 Data Point | 16384 Data Point
blackscholes model of a Analysis 5 0 5 309 from PARSEC from PARSEC 6->8->8>1 0.000011 0.00228 Avg. Relative Error 6.02% 10.2%
financial market v
o2 Cooler|signat 2048 Random _|32768 Random
fft ‘{. e N 2 0 0 34 Floating Point Floating Point 1->4->4->2 0.00002 0.00194 Avg. Relative Error 2.75% 4.1%
Tukey fast fourier ~|Processing
Numbers Numbers
Inverse kinematics 10000 (x,y) 10000 (x,y)
inversek2j Robotics 4 0 0 100 Random Random 2->8->2 0.000341 0.00467 Avg. Relative Error 6.2% 9.4%
for 2-joint arm "
Coordinates Coordinates
10000 Random 10000 Random
[[ienels Pairs of 3D Pairs of 3D
imeint intersection 3D Gaming 32 0 23 1079 [Paree pioe 18->32->8->2 | 005235 | 006729 Miss Rate 17.68% | 19.7%
detection b2 HEACIE
Coordinates | coordinate
ipeg JPEG encoding | Compression | 3 4 0 1,257 |220200-Pixel | Three S1X512- ¢y _4¢ og 64 0.0000156 | 00000325 Image Diff 5.48% | 8.4%
Color Image | Pixel Color Images
o 220x200-Pixel _|50000 Pairs of
kmeans K-means clustering | o 1 0 0 26 |color Image Random (r, g, b) 6->8->4->1 | 000752 | 0.009589 Image Diff 321% 7.3%
-3 Values
sobel Sobel edge Image 3 2 1 gg |220x200-Pixel One 512x512- 9>8>1 | 0000782 | 0.00405 Image Diff 389% | 5.2%
detector Processing Color Image | Pixel Color Image

comparable digital implementation.

Benchmarks. We use the benchmarks from prior work on a digital NPU [37]
and add one more, blackscholes. These benchmarks represent a diverse set of
application domains, including financial analysis, signal processing, robotics,
3D gaming, compression, and image processing. Table 5.2 summarizes in-
formation about each benchmark: application domain, target code, neural-
network topology, training/test data and final application error levels for
fully-digital neural networks and analog neural networks using our customized
RPROP-based CDLM training algorithm. The neural networks were trained
using either typical program inputs, such as sample images, or a limited num-
ber of random inputs. Accuracy results are reported using an independent
data set, e.g, an input image that is different than the image used during
training. Each benchmark requires an application-specific error metric, which

is used in the evaluations.

102

N o N © -
n . . . n " .
: © o : o
o & 28 © - -
5)
< Speedup
~ o B Energy Savin
4) ©
«
™
t ~
Q oi
£ 0 < <
o N o o
>
o ©
1< g
Q 2 -
E
]
]
blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean

Figure 5.13: A-NPU with 8 ANUs vs. D-NPU with 8 PEs [4].

5.4.2 Analog-Digital NPU Comparison

A-NPU vs 8-bit D-NPU. Figure 5.13 shows the average energy improve-
ment and speedup for one invocation of an A-NPU over one invocation of an
8-bit D-NPU, where the A-NPU is clocked at one third the frequency of the
D-NPU. On average, the A-NPU is 12.1x more energy efficient and 3.3 x faster
than the D-NPU.

Whole Application Speedup and Energy Savings. Figure 5.14 shows
the whole application speedup and energy savings when the processor is aug-
mented with an 8-bit, 8-PE D-NPU, our 8-ANU A-NPU, and an ideal NPU,
which takes zero cycles and consumes zero energy. Figure 5.14c shows the
percentage of dynamic instructions subsumed by the neural transformation
of the candidate code. The results show, following Amdahl’s Law, that the

larger the number of dynamic instructions subsumed, the larger the benefits

103

14.1
245
48.0
10.9
14.9
14.0

Core + D-NPU
B Core + A-NPU
* H Core + Ideal NPU
~
8
s o
° ©
g o 3
)
c
k]
E=4 ~
© ©]
L -° =
=3]
< ® N o
© « © o <
) 0~
2 -0 cm o
- - o
e
|| | |
blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean
(a) Whole application speedup.
0 QW LA @ ©
o= ol 6O~ N o
10 7“‘ 0w N ™M -
Core + D-NPU
l Core + A-NPU
l Core + Ideal NPU
8 i
~

Application Energy Reduction

]
< ©
6
-
0
4
N®®
LX) aNN
Nl
o NN R
. enh II -
-
I ‘-II
oLl || | BN | B] | EES | EEN | N

blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean

(b) Whole application energy savings.

blackscholes | fft inversek2j | jmeint | jpeg |kmeans | sobel

Percentage
Instructions 97.2% 67.4% | 95.9% [95.1% |56.3% | 29.7% |57.1%
Subsumed

(¢) % dynamic instructions subsumed.

Figure 5.14: Whole application speedup and energy saving with D-NPU, A-
NPU, and an ideal NPU that consumes zero energy and takes zero cycles for
neural computation [4].

104

Table 5.3: Error with a floating point D-NPU, A-NPU with ideal sigmoid, and
A-NPU with non-ideal sigmoid [4].

blackscholes fft inversek2j | jmeint | jpeg | kmeans | sobel

EO;SGQ Point 6.0% 2.7%| 6.2% |17.6% |5.4% | 3.2% |3.8%
A-NPU + Ideal 8.4% 3.0%| 8.1% |18.4%|6.6% | 6.1% |4.3%
Sigmoid

A-NPU 10.2% 41% | 9.4% |19.7% |8.4% | 7.3% | 5.2%

from neural acceleration. Geometric mean speedup and energy savings with
an A-NPU is 3.7x and 6.3x respectively, which is 48% and 24% better than
an 8-bit, 8&-PE NPU. Among the benchmarks, kmeans sees slow down with
D-NPU and A-NPU-based acceleration. All benchmarks benefit in terms of
energy. The speedup with A-NPU acceleration ranges from 0.8x to 24.5x.

The energy savings range from 1.3x to 51.2x.

Application Error. Table 5.3 shows the application-level errors with a
floating point D-NPU, A-NPU with ideal sigmoid and our A-NPU which in-
corporates non-idealities of the analog sigmoid. Except for jmeint, which
shows error above 10%, all of the applications show error less than or around
10%. Application average error rates with the A-NPU range from 4.1% to
10.2%. This quality-of-result loss is commensurate with other work on quality

trade-offs [36, 109, 8, 88].

To study the application-level quality loss in more detail, Figure 5.15
illustrates the cumulative distribution function plot of final error for each el-
ement of the application outputs. The output of each benchmark consists

of a collection of elements—an image consists of pixels, a vector consists of

105

100%

80% |

60% f-

®0@ blackscholes

a0% i+ ® ; miw fft '

- . +++ jmeint

N ! 000 inversek2j

20% |1 ' AAA jpeg H
! : XXX kmeans

. VYV sobel
0% B 4= = +- | | | | | T T

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Error

Percentage of Output Elements

Figure 5.15: CDF plot of application output error. A point (x,y) indicates
that y% of the output elements see error < x% [4].

scalars, etc. The error CDF reveals the distribution of output errors among
an application’s output elements and shows that a small fraction of the output
elements see large quality loss with analog acceleration. The majority (80% to
100%) of each application’s output elements have error less than 10% except

for jmeint.

5.5 Future Considerations for Addressing Analog Chal-
lenges
The compile-time learning techniques presented in Section 5.3 compen-
sate for design-time challenges of neural computation in the analog domain;
however, as mentioned in Chapter 3, an analog implementation presents ad-
ditional challenges, such as manufacture-time process variations and run-time

noise, both of which could degrade result quality. As compared to solving clas-

106

sification tasks (like the taken or not taken branch prediction produced by the
analog neural predictor), these non-idealities are particularly significant in the
context of regression tasks, like those targeted by the A-NPU, that produce
multi-bit neuron outputs, rather than binary outputs. Rational-valued out-
puts reduce the margin for undetectable errors, as signal variations within the
design are more likely to produce variations in neuron outputs. This section
briefly mentions possible approaches to future work in the identification and

correction of manufacture-time and run-time variabilities.

5.5.1 Addressing Manufacture-Time Variability

Through training, a neural approach to approximate computing presents
the opportunity to correct for certain types of analog-imposed inaccuracy, such
as process variation, non-linearity, and other forms of non-ideality that are con-
sistent across executions on a particular A-NPU hardware instance for some
period of time. Chip-in-the-loop training has frequently been used to address
such analog non-idealities [44, 79, 124]. Chip-in-the-loop training utilizes the
neural hardware in the feed_forward computation of network outputs for a
given set of training inputs. In this way, weights may be adjusted to minimize

the error seen at the network outputs for any particular hardware instance.

To address manufacture-time non-idealities, we suggest a third training
pass, similar to CDLM, where inputs and outputs are shipped to and from the
A-NPU, and full-precision computation is used to backpropagate network error

information and adjust for non-idealities specific to any particular hardware

107

instance. This training phase can utilize the network topology and trained
weight information calculated during the initial compilation phase (which uti-
lized a software model of the hardware restrictions), as it represents a good
starting solution; therefore, the chip-in-the-loop pass would not require addi-
tional search and training over the space of feasible topologies. We expect a
similar overhead as the CDLM training pass in terms of the number of train-
ing epochs required (10% of the initial number of training epochs), with the
additional overhead of sending training data to and from the A-NPU hard-
ware. Similarly, re-compilation with this additional chip-in-the-loop training
phase can adjust for hardware failures that occur over time. For example, a
programmer can recompile an application if the output quality becomes unac-

ceptable.

5.5.2 Addressing Run-Time Variability

In addition to utilizing standard circuit design techniques to minimize
the effects of noise, mechanisms that identify and possibly correct for run-time
variability could improve network accuracy and further enable analog designs
for approximate computation. This section discusses two possible approaches
to identifying run-time variability and inaccuracy in the A-NPU. One approach
relies on run-time event monitoring, and the other on compile-time training

information to detect variation from the expected results.

108

Event Monitoring and Error Prediction. One approach to identifying
run-time variability is through event monitoring. For example, certain circuit-
level events might indicate a high-noise environment or a high likelihood of
inaccurate operation. Examples of noise-indicative events include tempera-
ture swings or extremes measured by temperature sensors, or, at a larger
granularity, a run of extreme outputs at a particular neuron (such as a se-
ries of ‘1’s rather than an output value between 0 and 1), as extreme neuron
outputs might indicate internal analog noise and a detrimental loss in result
quality, especially in the context of regression tasks. Monitored events could
vary in granularity, though the analog-digital boundary at the neuron outputs
allows for easy access to signal values as compared to monitoring internal ana-
log nodes. These monitored events of interest could be used to predict drops
in result quality. Relevant recent work by Chippa et al. attempts to manage
the run-time quality /efficiency tradeoff of approximate computing applications

through the use of table-based quality predictors [22].

Measurement-Based Error Detection. Another approach for identifying
run-time variations is to compare run-time network outputs with a set of
expected outputs determined during compilation (perhaps after a hardware-
specific, chip-in-the-loop training phase). In this approach, a set of sample
inputs and weights can be sent to the A-NPU for computation. The run-time
outputs can then be compared against the expected outputs known at compile

time. Error above a specified value for a particular ANU output, or over the

109

output set as a whole, could signify an unacceptable degradation in result
quality. This error-checking computation overhead can be limited, as this

technique only requires a single, parallel computation over the set of physical

ANUs.

Correction Mechanisms. Possible correction mechanisms for both event-
based and measurement-based error detection include reversion back to the
programmer-written code, or the utilization of redundant hardware. For ex-
ample, if an ANU is deemed unacceptable through event-monitoring or error
measurement techniques, computation could be routed to an alternate ANU

hardware instance.

5.6 Conclusions

To utilize the growing number of transistors per chip and to continue
to provide gains in performance and energy efficiency, the architecture com-
munity has increasingly focused on the design of special-purpose, hardware
accelerators. With performance and energy efficiency as top-priority goals
in the development of new computing hardware, analog circuits warrant re-
investigation for their potential benefits toward that end; however, it is chal-
lenging to utilize analog hardware in a way that is both programmable and
generally useful. The transformation of approximation-tolerant code segments
to a neural model of computing, which can then be accelerated on neural

hardware, provides an avenue for realizing the benefits of analog computation

110

by taking advantage of the fixed-function qualities of a neural network, while
targeting traditionally written, approximation-tolerant code across application
domains. As compared to prior work in neural hardware, the work presented
in this chapter targets the enablement of general-purpose, regression tasks, to
maintain general applicability over a range of approximation-tolerant applica-
tions, which presents increased difficulties due to an analog implementation

over those present in classification tasks.

A transistor-level circuit design for a neuron computation block high-
lights the effects of analog range limitations on a neural model of computing.
Specifically, analog range limitations restrict network connectivity, activation
function behavior, and the bit widths of network inputs, weights, and outputs.

Each of these limitations potentially results in decreased network accuracy.

Exposing those limitations to the compiler, however, provides an op-
portunity for mitigating losses in accuracy and enables the utilization of inac-
curate analog hardware. A mixed-signal design that converts neuron outputs
to the digital domain allows for increased network topology flexibility by allow-
ing connections between neurons to vary across computations. We show that
this flexibility, along with compiler-determined connectivity, compensates for a
limited number of inputs per neuron. Additionally, we show that the RPROP
training algorithm is more resilient than the commonly-used backpropagation
algorithm in the presence of limitations on activation-function steepness that
arise due to analog range limitations. A second, CDLM-based training pass

further increases achievable accuracy by adjusting the network to compensate

111

for errors due to limited-precision value representation. For the applications
investigated, the A-NPU is 12.1x more energy efficient and 3.3x faster than an
8-bit D-NPU on average.

Application-level speedup and energy savings are limited by the amount
of code that can be translated to a neural network for accelerated computa-
tion. Further work in creating more sophisticated compile-time code transfor-
mations, such as the incorporation of genetic algorithms or multiple network
models, could increase application coverage and accuracy. While this chapter
provides solutions for design-time analog non-idealities, future work should
also address the manufacture-time and run-time implications of an analog de-

sign.

112

Chapter 6

Related Work

Related work falls within three main categories: (1) approximate com-
puting, (2) neural-network hardware design, and (3) learning algorithms for

hardware neural networks.

6.1 Approximate Computing

Error-tolerance has been shown to be a common characteristic among
emerging workloads [40, 77, 134, 97]. These applications may compute on
noisy data, may inherently use approximation techniques (e.g. machine learn-
ing), or may use approximation to decrease the computation load of com-
plex operations on large data sets [25]. Decreasing hardware reliability due
to transistor scaling, an increased focus on energy efficiency, and the rise of
error-tolerant applications has produced a quickly growing body of work in
the area of approximate computing, both in hardware and in software, which
aims to decrease energy consumption by relaxing the abstraction of precise

and, sometimes, repeatable computation [49, 135].

113

Software Support for Approximate Computing. Language and compi-
lation support has been developed to leverage applications error tolerance [14,
26, 8, 109, 5, 120]. Ansel et al. provide language extensions and compiler
support for executing variable-accuracy code by applying a genetic-algorithm-
based tuning technique that searches a space of candidate algorithms and ac-
curacies. Green [8] provides a framework to leverage algorithmic-level approx-
imation through early loop termination and approximate functions, while at-
tempting to adhere to programmer-defined quality requirements. EnerJ [109]
allows a programmer to label data as approximate, so that computations with
that data may take advantage of low-power computation and storage [78, 110,
36]. The analog neural accelerator presented in this thesis serves as an imple-
mentation of approximate computation, which supports approximate program-
ming models and could serve to help understand their potential benefits. The
compile-time neural learning techniques presented in this dissertation could
be incorporated into other compilation frameworks for enabling approximate

computing.

Hardware Design for Approximate Computing. Hardware designs for
approximate computing have primarily been digital [74, 51, 19, 95, 82, 36,
111]. Digital approaches often employ supply voltage scaling to decrease en-
ergy /operation. PCMOS [19] compute blocks use less-than-critical supply
voltages for low-order bits and compute correctly with a well-characterized

probability. ANT [51] addresses error correction for soft digital signal pro-

114

cessing applications where errors arise in the most significant bits of compu-
tation values due to increased critical path delays with less-than-critical sup-
ply voltages. Other digital approximate-computation techniques include fuzzy
memoization [3], which approximates floating-point computations with table
look-ups, and bit-width reduction [129], which suggests using lower-precision,
floating-point functional units to save energy when appropriate. Bio-Inspired
Imprecise Computation Blocks [82] utilize digital, integer computations in im-
precise adders and multipliers. Though these various digital approximate-
computing blocks could be utilized for computation in the neural predictor or
neural accelerator, analog hardware offers greater potential for gains in energy

efficiency.

Thus far, however, analog approximate computing blocks have yet to
be successfully integrated with a high-performance CPU for general-purpose,
approximate computing. The work presented in this thesis investigates a neu-
ral approach as an avenue toward the incorporation of analog hardware in

high-performance, general-purpose approximate computation.

Recent work investigates combined hardware-software approaches to
enable a variable level of approximation that meets programmer-defined qual-
ity metrics. Quality programmable processors [131] utilize ISA extensions that
specify quality requirements along with microarchitectural support for en-
abling general-purpose, approximate computing. The microarchitecture design
consists of arrays of processing elements that provide various levels of accuracy,

along with a quality control unit that configures those elements (through bit-

115

width modulation) to provide the required level of precision. The SAGE [108§]
framework enables approximate execution on GPUs through compile-time ap-
proximation techniques (selective discarding of atomic operations, data pack-
ing, and thread fusion) that generate a set approximate kernels, along with
run-time management support that selects among the approximate kernels to

provide efficiency gains while meeting target-output quality requirements.

These digital designs occupy a different point in the tradeoff space of
power and energy efficiency, accuracy, generality, and programmability from
the A-NPU work presented in this thesis, though they also present a valid path
toward enabling high-performance, general-purpose approximate computing.
In particular, enabling execution with various levels of approximation is a
promising and worthwhile research direction. Some work in providing quality
control could potentially be applied to the A-NPU, for example, table-based
error prediction based on event monitoring [22]. The A-NPU work presented
in this thesis differs from these designs in that it focuses on enabling compu-
tation with analog circuits, rather than digital ones. As such, the path toward
enabling and managing approximation will likely look different. For example,
an analog neural approach can potentially correct for sources of inaccuracy

through training, which minimizes run-time energy overheads.

6.2 Analog and Digital Hardware for Neural Networks

There has been a significant amount of work in the area of hardware

neural networks. Frank Rosenblatt followed up his development of the per-

116

ceptron algorithm in 1957 [104] with hardware implementations. The Mark I
Perceptron was an electro-mechanical machine that performed simple classi-
fication tasks [50]. Potentiometers supplied variable resistances to represent
weight values, and topology connections could be reconfigured through plug-

board re-wiring.

As illustrated in Figure 2.1, neural hardware designs vary in circuit
implementation, integration with other computing units, supported network
models and their connectivity, as well as training techniques. Design choices
vary depending on the goal of the neural hardware, with each design occupying
a different point in the tradeoff space of performance, energy consumption,

programmability, generality, and result quality (accuracy).

The choice of implementation is often dominated by performance and
energy targets, since dedicated hardware offers the opportunity for orders of
magnitude improvements in performance and energy efficiency over software-
simulated networks [48]. Hardware implementations might utilize analog elec-
tronic signals [29], digital ones [128], or some combination of two (mixed-
signal) [87]. There has also been research in the implementation of neural net-
works with alternative technologies, such as optical neural networks, where val-
ues are represented with light beams. Optical neural networks have been stud-
ied because of their potential for highly parallel computation and speed [42].
Although the mirror and lens technology used to implement these networks
varies significantly from that used in standard high-performance processors,

optical networks share similar challenges with analog and digital electronic im-

117

plementations, such as limitations in the effective bit-width of values, as light
beams can only represent a limited number of values; as such, work in optical
networks may still be relevant for enabling energy-efficient electronic imple-
mentations. For example, the continuous-discrete learning method (CDLM)

leveraged in Chapter 5 was proposed for use in optical neural networks [23].

The goal of neural hardware largely falls into two categories: (1) to fa-
cilitate biological research, or (2) to accelerate a specific application or class of
applications. Designs in either category can utilize analog or digital implemen-
tations or any variety of neural model; however, designs aimed to advance bio-
logical research often utilize analog circuits and spiking neural models, rather
than an MLP model, since analog spiking models more closely resemble the
type of signaling and processing found in the brain [58]. In the commonly
used leaky integrate-and-fire (LIF) spiking model, a neuron integrates input
spikes over time and produces an output spike (fires) when that value crosses

a specified threshold.

Neuromorphic Designs. Hardware designed to emulate certain biological
functions found in real neural systems has been referred to as neuromorphic
computing [59]. Carver Mead’s group pioneered efforts in this area with analog
hardware implementations of the silicon retina [85] and the silicon cochlea [80],
which utilized CMOS transistors operating in the sub-threshold region. Synap-
tics Inc. produced a commercial version of the silicon retina, the I-1000 [99],

which has been used to recognize characters on bank checks. Weights are

118

hard-wired, as the character set is known, and this fixed design operates with

low power consumption.

There has been a recent growth in hardware designed for the accelera-
tion of biological research, both in industry [62] and academia [72]. In 2008,
DARPA announced funding for the Systems of Neuromorphic Adaptive Plas-
tic Scalable Electronics (SyNAPSE) initiative [24], with the goal to develop
electronic neuromorphic machine technology that scales to biological levels.
With support from this program, researchers at Stanford have developed a
synapse model that uses phase change memory to model synaptic plastic-
ity [72]. Also under this program, IBM commenced work on a Cognitive Com-
puting Chip [62], which aims to empower large-scale brain simulations with
computational building blocks of the brain (neurons and spikes). The IBM
neurosynaptic core architecture [6] consists of 256 fully-digital leaky integrate-
and-fire neurons with a 1,024 x 256 SRAM crossbar memory for synapses
(weights), where spike events occurring on the order of milliseconds consume
45pJ/spike at 45nm [106]. Programming a system of neurosynaptic cores is a
challenge, as it requires offline mapping of an application to a spiking model
and setting the parameters of each neuron in a way that results in a useful

function [39].

The SpiNNaker architecture [45] represents another digital approach to
implementing large-scale neural systems. The architecture utilizes a collection
of ARM processors for bio-inspired computing with unreliable spikes, with

the goal of simulating a billion neurons in real time. An array of ARM9

119

cores enable a point-neuron model that communicates asynchronous neuron
spikes and neuron address information between cores via packets on a custom

interconnect fabric.

The BrainScaleS system (formerly FACETS) [113] describes wafer-
scale integration of mixed-signal, spiking neurons with a mean firing rate of
10 Hz. One wafer includes 448 HICANN (High Input Count Analog Neural
Network) chips, where a chip can be configured to maximize the number of
inputs per neuron (resulting in 8 neurons with 16,000 inputs per neuron) or

the number of neurons (resulting in 512 neurons with 256 inputs per neuron).

Systems designed to emulate biological functions can not necessarily be
applied to solve general, approximation-tolerant problems in computation at
high performance. Even if such a mapping can be identified and described,
programmability is a challenge. Performance requirements can also pose chal-
lenges, as signaling in these systems occurs on the order of milliseconds (though
highly parallel signaling potentially increases the computation capacity per

second).

Spiking models are potentially a good match for an analog implementa-
tion [59]. Joubert et al. compared analog and digital spiking models with 8-bit
signed weights at 65 nm and showed that an analog implementation required
bx less area and 20x less energy than a digital design [70]. Assuming optimistic
scaling of the digital design, the authors project that an analog design would
retain energy benefits of 3x over a digital one until at least the 22 nm node.

Though spiking models map well to analog circuits, little work has been done

120

to show their ability to solve general regression problems, like those targeted
by the A-NPU, that require multi-bit outputs. Work in utilizing spiking neu-
rons to implement function approximation tasks could be beneficial for the

enablement of analog implementations for approximate computing.

Domain-Specific Neural Accelerators. Domain-specific neural acceler-
ators have been proposed that aim to speed up specific neuro-inspired algo-
rithms [81, 18, 41, 9]. Chakradhar et al. describe an FPGA co-processor for the
hardware acceleration of convolutional neural networks. It achieves real-time
video stream processing on object detection and recognition tasks [18]. The
neuFlow architecture [98] also aims to accelerate convolution neural networks

for vision tasks.

Recent work by Belhadj et al. presents an interesting application of
spiking neurons to accelerate signal processing applications [9]. The authors
leverage prior work that translates signal processing tasks to a set of oper-
ators that can be implemented with spiking neurons. This work devises a
new programming model that allows programmers to express digital signal
processing applications as a graph of analog neurons and automatically maps
the expressed graph to tiled spiking neural hardware. The accelerator utilizes
analog computational operators, but output spikes are converted to the digital
domain for routing between neurons. The analog neuron at 65 nm is capable
of harnessing inputs between 1 kHz and 1 MHz. Although the programming

model uses application graphs, rather than a familiar instruction-based model,

121

this work is an interesting step toward increasing generality for analog imple-

mentations of approximation-tolerant tasks.

Toward General-Purpose Neural Accelerators. BenchNN [20] aims to
show that the application scope that can be implemented approximately with
neural networks is very broad; the authors translate approximation-tolerant
applications (including 5 PARSEC benchmarks) to neural models for compu-
tation. One thing to note from this work is that 3 of the 4 function approx-
imation tasks are translated to MLP networks, one of which (blacksholes)
is evaluated on the A-NPU in Chapter 5. The BenchNN work supports the
usefulness and direction of the A-NPU work presented in this thesis. Future
work on translating additional computation and applications to MLP networks
would be beneficial. Additionally, compilation and neural hardware support

that enables the acceleration of multiple neural models is a promising direction.

6.3 Learning Techniques for Hardware Neural Networks

Prior work has proposed hardware-friendly learning algorithms to ad-
dress the challenges of limited neural hardware [102, 89, 44, 29, 28]. When
reviewing prior work on addressing the hardware limitations of multilayer-
perceptron networks, there are several differences to note to put each piece of
work into context: (1) what implementation type is considered? (e.g. analog
or digital), (2) which type of applications are evaluated? (e.g. classification or

regression), and (3) where does learning occur? (on-chip, off-chip, or chip-in-

122

the-loop). Hardware faults, such as stuck-at faults, for example, potentially
affect analog and digital networks differently. Similarly, if a network is shown
to display good convergence despite the presence of noise, it is important to
note the type of application evaluated. Classification tasks that produce sim-
ple, binary outputs are more robust against noise [32]. Also, on-chip, off-chip,
and chip-in-the-loop learning techniques aim to overcome different problems

that result from limitations in hardware.

Learning can occur ‘on chip’ with dedicated hardware [86, 54, 90, 87],
‘off chip’, or with a ‘chip-in-the-loop’ training approach [124]. With on-chip
learning, the learning calculations, e.g. backpropagating error, are subject to
limitations in the hardware implementation, such as limited precision and in-
accurate computation. These training-time hardware limitations often result
in poor convergence and poor result quality. Off-chip training also results in
poor quality results if the hardware behaves differently than predicted during
training. Chip-in-the-loop training utilizes the neural hardware to compute
the feed-forward pass of the network during training; however, the weight-
update computation occurs in software with reliable, full-precision compu-
tation. Chip-in-the-loop training, therefore, avoids the convergence problems
that are common when the learning computations are limited in precision, and
result quality is improved over a training approach that does not incorporate

real hardware behavior.

There are three approaches in the literature that aim to compensate

for hardware limitations and non-idealities during training: (1) a chip-in-the-

123

loop approach, (2) the utilization of a hardware model during an off-chip,
software training step, and (3) the use of alternate learning algorithms, such
as perturbation algorithms, that were specifically designed to mitigate the

effects of hardware non-idealities.

Chip-in-the-loop Training. Analog designs often utilize a chip-in-the-loop
training approach, and this approach has been shown to compensate for a
large range of analog non-idealities, including threshold-voltage component
variation, limited dynamic range, and weight quantization, among others [44,
79, 124]. Frye et al. show that, of the analog non-idealities considered, limiting
the maximum weight value (due to limited dynamic range in the synaptic
connections) presented the largest challenge [44]. The A-NPU compile-time
learning algorithm addresses this challenge with the CDLM training pass that

compensates for limited-precision values.

Temam developed a defect-tolerant neural accelerator that implements
a limited-precision, digital multilayered-perceptron neural model at 90 nm [126].
He investigates the impact of transistor-level defects (assuming chip-in-the-
loop training with backpropagation learning) on the functionality of the net-
work over a variety of classification tasks from the UCI machine-learning
benchmark suite [7]. The author noted that the effects of transistor-level de-
fects can be significantly different than those of a simplified fault model, such
as stuck-at synapses. As most prior work considers simplified fault models,

additional work in error modeling is a worthwhile step toward the enablement

124

of neural computation at sub-micron technologies.

Hardware Modeling in Off-Chip Training. FEdwards and Murray pro-
posed a technique of training with weight noise as a means to improve fault
tolerance [92, 93]. In this way, chip-in-the-loop training could be avoided
by creating a defect-tolerant, robust network by modeling noise in the weights
during training time. Later work [33] investigated this approach on real analog
hardware that exhibited non-ideality in the form of offset in the neuron out-
put due to temperature fluctuations, as well as limited weight dynamic range.
The authors concluded that a restricted weight range decreases the fault toler-
ance benefit of training with weight noise and that a chip-in-the-loop training
pass would still be necessary to overcome the analog non-ideality of limited
dynamic range. As future work, we propose a chip-in-the-loop training pass
to deal with manufacture-time non-idealities in the A-NPU hardware. This
chip-in-the-loop pass could potentially add robustness to noise, as noise would
be present during this training pass; however, the explicit injection of a noise
model during training might also prove additionally beneficial in managing

run-time noise.

Lont and Guggenbiihl formalized the backpropagation algorithm to
handle a wider class of synaptic operators [79]. Specifically, the updated train-
ing algorithm handles non-linear multiplication between the neuron inputs and
weights, which is beneficial for analog implementations with limited dynamic

range. Their results show that a description of the multiplication character-

125

istic incorporated into the training phase enables convergence. Additionally,
the authors used a chip-in-the-loop training approach on analog hardware at
3 pm and showed high-quality results on character recognition tasks despite
noise and other analog non-idealities, such as device mismatch. The A-NPU
compile-time training approach could be extended to incorporate information
regarding the synapse multiplication characteristic to further mitigate the ac-

curacy challenges of an analog implementation.

Perturbation Algorithms. Perturbation training algorithms offer a po-
tentially hardware-friendly alternative to a backpropagation-based training
approach. These algorithms were proposed to simplify on-chip training hard-
ware, as backpropagation requires the computation of the derivative of the
non-linear activation function and bi-directional circuitry. Rather than uti-
lizing explicit calculations of the gradients, weight perturbation approximates
the gradients by serially applying small perturbations to the weights in the
network and measuring the network error at the output [61]. This approach
requires many feed forward passes and has high costs in terms of compu-
tation time; however, it has the advantage of not requiring a model of the
non-linear activation function, which can benefit a non-ideal analog imple-
mentation. Improvements in perturbation algorithms have also aimed to re-
duce computational complexity, while maintaining accuracy, through parallel
perturbations [43, 2, 17, 54]. Little work, however, utilizes perturbation algo-

rithms when off-line training is available. Additionally, evaluations of these

126

methods are more commonly reported for classification tasks, which leaves the
effects of these training methods on accuracy unclear, particularly for regres-
sion tasks, such as those targeted by the A-NPU. Moving forward, however,
with improvements in technologies that support non-volatile analog storage,
this class of training algorithm could potentially benefit an all-analog A-NPU
implementation, where weights are stored in resistive memories (ReRAM) that
support easy perturbation (incrementing and decrementing) of the weights

with low energy costs.

In general, when off-chip, full-precision computation is available, back-
propagation is the most widely utilized gradient-descent training algorithm
referenced in the literature for training MLP networks. The suggestion of
utilizing resilient propagation (RPROP), as opposed to backpropagation, for
its benefits in addressing analog hardware limitations is novel. Future work
in further addressing the challenges of an analog approach could incorporate
additional techniques outlined in this section, such as incorporating a more de-
tailed hardware model into the compile-time learning algorithm, for example,

to limit the effects of run-time noise.

127

Chapter 7

Conclusions

Although the first known computing devices were analog, advancements
in electronic technology, along with work by Alan Turing, John von Neumann,
and other computing pioneers forged a computing industry focused on digital
designs. The end of Dennard scaling, however, has limited the advancements
of traditional, general-purpose designs. As such, to continue to provide the
industry with performance improvements and decreased energy consumption,
computer architects are in a position to re-think the assumptions and abstrac-

tions that have guided work in computing until this point.

One such abstraction is that of known precision and repeatable com-
putation. Relaxing this abstraction, when appropriate, allows accuracy to be
traded for potential gains in energy efficiency. Under an approximate comput-
ing paradigm, analog circuits offer high potential and warrant re-investigation
for their potential benefits. The challenges with analog computing, however,
which contributed to the prevalence of digital implementations, must be ad-

dressed.

This thesis work specifically targets the historical analog shortcom-

ings of programmability, generality, and accuracy. Due to inaccuracy, analog,

128

general-purpose computing will likely require some system for accuracy detec-
tion and correction. A neural approach is one avenue of research for solving
this challenge, as neural networks can function as a feedback and correction
system by utilizing training to improve accuracy. One long-term contribution
of this dissertation work is to highlight the potential of a neural approach as
a path toward incorporating inaccurate, analog circuits into general-purpose,
computing hardware, as we exhibit their utilization for approximate comput-

ing at both the microarchitecture-level and application-level.

The analog neural branch predictor work presented in this thesis demon-
strates the successful incorporation of analog circuits for approximate com-
puting tasks at the microarchitecture level. The SNAP predictor enabled a
highly-accurate prediction algorithm that is infeasible to implement in the
digital domain (it would consume several orders of magnitude more power),
while incurring only a 0.12 MPKI decrease in accuracy over a fully-precise
version of the predictor. It is not yet clear whether table-based predictors,
like TAGE [118], or neural predictors will eventually prove the most accurate.
Thus far, neural predictors have performed better than table-based predictors
on hard-to-predict applications [118]; as such, we will likely continue to see re-
search in the area of neural branch prediction, and in particular, analog neural
branch prediction, as we have shown that analog circuits enable more accurate
prediction algorithms through the capacity for fast, low-power computation.
Our successful microarchitectural integration of analog circuits for the task of

branch prediction also opens the door for similar approaches to other predic-

129

tion and resource scheduling tasks that can tolerate imprecision. As such, the
investigation of mapping other approximation-tolerant microarchitecture tasks
to neural models for efficient, analog computation is a promising direction for

future research.

The SNAP predictor would further benefit from the incorporation of
analog storage by reducing the power required for reading and writing digi-
tal tables, by reducing the power required for incrementing and decrementing
weights during training (which occurs 10% of the time on average), and by po-
tentially enabling improved predictor accuracy by increasing storage density
and predictor state. A SNAP digital-table read, for example, consumes 117
mW, where as the dot-product computation consumes only 7.4 mW with the
majority of the computation power attributed to the digital-to-analog conver-
sions. Further work in understanding the implications of various analog storage

technologies on predictor energy and accuracy would be highly beneficial.

Branch prediction offers the opportunity for performance improvements
across applications; however, the overheads associated with executing a pro-
gram with known precision in a repeatable fashion on a von Neumann archi-
tecture limit the opportunity for performance and energy improvements. To
pursue the possibility of even greater performance and energy benefits, for ex-
ample, 200% improvement as opposed to 20%, the second piece of this thesis
work investigates application-level approximate computing. The mixed-signal,
neural accelerator goes beyond a precise, digital implementation in trading

accuracy for efficiency by allowing for approximation in the neural network

130

computations in addition to the approximation present due to the algorithmic

transformation.

Limited signal ranges in the analog domain, however, make the task
of function approximation (regression) challenging. The ANU circuit design
presented in this thesis delineates how design-time range limitations restrict
network connectivity, limit the bit widths of values, and place restrictions on
the activation function steepness, all of which potentially decrease a network’s
capacity to produce high-quality outputs. We show that exposing these limi-
tations to the compiler allows for improved accuracy. We found that topology
restrictions are not detrimental to network accuracy as long as synaptic con-
nections can be reconfigured. Additionally, we show that, even when on-chip
training is not required and full-precision computation is available at train-
ing time, training algorithms vary in their ability to support accuracy in the
analog domain. This thesis work suggests the RPROP training algorithm as
being well-suited to an analog implementation because it shows less sensitivity
to activation-function steepness than the more commonly used backpropaga-
tion algorithm. Additionally, this thesis work suggests CDLM as a successful
training algorithm for the compensation of limited bit widths, which broadens
the scope of applications that can benefit from an analog neural approach to
computation. RPROP, CDLM, and a strategy for reconfiguring synaptic con-
nections all contribute to the enablement of an analog NPU implementation;
without these methods, the number of applications that could benefit from an

analog neural approach to computation would be extremely limited.

131

As compared to an 8-bit digital-NPU, the A-NPU achieves 12.1x more
energy savings and 3.3x speedup on average for each accelerator invocation.
These gains translate to 6.3x energy savings and 3.7x application-level speedup
over the original, conventionally-written code run on an aggressive, out-of-
order architecture. With the proposed compilation support, application error

levels remain below 10% despite design-time, analog-signal range limitations.

Future A-NPU work must address manufacture-time variability, as well
as run-time noise. The addition of a chip-in-the-loop training pass is likely
the best approach to compensate for manufacture-time non-idealities across
A-NPU hardware instances. The explicit injection of a noise model could
potentially produce networks with high tolerance to noise; however, this tech-
nique must be investigated with more accurate noise models, as current work
in the literature assumes simple fault models and focuses evaluations on clas-
sification tasks. Likely, run-time support, such as event sensing and correction
mechanisms, will be required to manage run-time noise and maintain quality

outputs.

The investigation of additional neural models of computation, in addi-
tion to the multilayered perceptron, would complement the work presented in
this thesis. For example, a more sophisticated compilation transformation and
the accompanying neural hardware might support multiple neural models of
computation to increase the scope of applications that benefit from the neural

acceleration approach.

Tailoring analog circuits for use in general-purpose, regression problems

132

that require rational, multi-bit outputs is a difficult problem due to the chal-
lenges of range limitations and noise in the analog domain, which are further
exacerbated by shrinking technology. A neural approach to solving the his-
torical challenges of analog computing is a promising direction, however, the
investigation of additional neural models that might be more robust to noise
or limited-precision, such as models utilizing simple threshold activation func-
tions, would compliment this work. Neural models that utilize neurons with
binary output values, for example, would significantly ease the implementa-
tion challenges present in the analog domain. However, it has not yet been
shown that such neural models can perform complex tasks like function ap-
proximation. Work in translating real-world problems to such neural models is
an interesting avenue for future research. Restated, translating a broad range
of real-world problems to problems in pattern classification could increase the

likely usage of neural models in the near future.

The end of Dennard scaling has created an industry-wide focus on
energy-efficient designs. As such, a trend toward specialized hardware has
emerged in the post-multicore era to achieve gains in energy efficiency at the
expense of generality. The goal of generality, however, will continue to be a
critical force in the industry moving forward. The economics driving tech-
nology scaling thus far has relied on a decreasing cost per transistor between
successive technology generations. However, increasing fabrication costs due
to the nonidealities and sensitivities in devices at small technology nodes (un-

der 20 nm) has halted that trend. As the cost per device no longer scales, the

133

industry will be motivated to minimize the number of devices and increase the
scope targeted by each device, thereby favoring generality over specialization.
Since the industry has focused on specialization to increase energy efficiency,
moving forward, designers will face a tough balance between generality and

specialization.

The previously-proposed neural transformation allows a wide range of
codes to be run on a single specialized design, in some sense using the trans-
formation to improve generality, while retaining the efficiency benefits of spe-
cialization. In addition to that foundation, this thesis work demonstrates the
utilization of analog circuits as a means to achieve energy efficiency, rather
than solely specialization, thereby still maintaining the goal of generality. As
compared to a digital neuron, an analog neuron requires fewer costly tran-
sistors, which is economically advantageous moving forward, particularly in
the mobile domain, which requires increasing functionality on a single device

within fixed area and energy constraints.

The computing industry is in a new age of large data sets and the ubiq-
uitous use of sensors, which motivates work in energy-efficient, approximate
computing, and, consequently, the re-visitation of our assumptions around
the design of computing devices. Advances in 3D stacking technologies and
resistive storage may support completely new models of computing. The in-
tegration of analog circuits in these models could offer significant benefits,
though the historical analog challenges, including that of generality, must be

addressed. The techniques presented in thesis aim to support such a goal.

134

Bibliography

[1] Phillip E. Allen and Douglas R. Holberg. CMOS Analog Circuit Design.

Oxford University Press, second edition, 2002.

[2] J. Alspector, A. Jayakumar, and S. Luma. Experimental evaluation of
learning in a neural microsystem. In In Advances in Neural Information

Processing Systems (NIPS) 5, pages 871-878. Morgan Kaufmann, 1993.

[3] Carlos Alvarez, Jesus Corbal, and Mateo Valero. Fuzzy memoization
for floating-point multimedia applications. IEEE Transactions on Com-

puters, 54(7), 2005.

[4] Renée St. Amant, Amir Yazdanbakhsh, Jongse Park, Bradley Thwaites,
Hadi Esmaeilzadeh, Arjang Hassibi, Luis Ceze, and Doug Burger. General-
Purpose Code Acceleration with Limited-Precision Analog Computa-

tion. In Proceedings of the 41st Annual International Symposium on

Computer Architecture (ISCA), 2014.

[5] Jason Ansel, Yee Lok Wong, Cy Chan, Marek Olszewski, Alan Edel-
man, and Saman Amarasinghe. Language and Compiler Support for
Auto-Tuning Variable-Accuracy Algorithms. In Proceedings of the 9th
Annual IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), pages 85-96, April 2011.

135

[6]

[10]

[11]

[12]

John V. Arthur, Paul a. Merolla, Filipp Akopyan, Rodrigo Alvarez, An-
drew Cassidy, Shyamal Chandra, Steven K. Esser, Nabil Imam, William
Risk, Daniel B. D. Rubin, Rajit Manohar, and Dharmendra S. Modha.
Building block of a programmable neuromorphic substrate: A digital

neurosynaptic core. The 2012 International Joint Conference on Neural

Networks (IJCNN), pages 1-8, June 2012.
K. Bache and M. Lichman. UCI machine learning repository, 2013.

Woongki Baek and Trishul M. Chilimbi. Green: A framework for sup-
porting energy-conscious programming using controlled approximation.

In PLDI, 2010.

Bilel Belhadj, Antoine Joubert, Li Zheng, Rodolphe Héliot, and Olivier
Temam. Continuous Real-World Inputs Can Open Up Alternative Ac-
celerator Designs. In Proceedings of the 40th Annual International Sym-

posium on Computer Architecture (ISCA), pages 1-12, 2013.

John Bryant and Chris Sangwin. How Round is your Clircle?: Where

Engineering and Mathematics Meet. Princeton University Press, 2007.

Bsim Research Group at UC Berkeley. BSIM4.6.1 mosfet manual
user’s guide, 2007. http://www-device.eecs.berkeley.edu/~bsim3/

BSIM4/BSIM461/doc/.

Arthur W. Burks and Alice R. Burks. Atanasoff-berry computer. In

Encyclopedia of Computer Science, pages 108-109. John Wiley and Sons

136

[13]

[14]

[15]

[16]

[17]

[18]

Ltd., Chichester, UK.

V. Bush and H. Hazen. The differential analyzer: a new machine

for solving differential equations. Journal of the Franklin Institute,

212(4):447-488, 1931.

Michael Carbin, Deokhwan Kim, Sasa Misailovic, and Martin C. Rinard.
Verified Integrity Properties for Safe Approximate Program Transforma-
tions. In Proceedings of the ACM SIGPLAN 2013 Workshop on Par-
tial Fvaluation and Program Manipulation (PEPM), pages 63-66. ACM
Press, 2013.

Michael Carbin, Sasa Misailovic, and Martin C. Rinard. Verifying quan-
titative reliability for programs that execute on unreliable hardware.
In Object-Oriented Programming, Systems, Languages € Applications
(OOPSLA), pages 33-52, 2013.

Charles Care. A multi-stranded chronology of analogue computing. In
Technology for Modelling, History of Computing, pages 17-55. Springer
London, 2010.

Gert Cauwenberghs. A fast stochastic error-descent algorithm for super-
vised learning and optimization. In In Advances in Neural Information

Processing Systems (NIPS) 5, pages 244-251. Morgan Kaufmann, 1993.

S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi. A dynam-

ically configurable coprocessor for convolutional neural networks. In

137

[19]

[20]

[21]

[22]

ACM/IEEE International Symposium on Computer Architecture (ISCA),
June 2010.

Lakshmi N. Chakrapani, Pinar Korkmaz, Bilge E. S. Akgul, and Kr-
ishna V. Palem. Probabilistic system-on-a-chip architectures. ACM
Trans. Des. Autom. Electron. Syst., 12(3):29:1-29:28, May 2008.

Tianshi Chen, Yunji Chen, Marc Duranton, Qi Guo, Atif Hashmi, Mikko
Lipasti, Andrew Nere, Shi Qiu, Michele Sebag, and Olivier Temam.
BenchNN: On the broad potential application scope of hardware neu-
ral network accelerators. In Proceedings of the 2012 IEEE International
Symposium on Workload Characterization (IISWC), pages 36-45. leee,
November 2012.

Tianshi Chen, Jia Wang, Yunji Chen, and Olivier Temam. DianNao : A
Small-Footprint High-Throughput Accelerator for Ubiquitous Machine-
Learning. In Proceedings of the 19th International Conference on Ar-

chitectural Support for Programming Languages and Operating Systems

(ASPLOS), pages 269-283, February 2014.

Vinay K Chippa, Kaushik Roy, Srimat T Chakradhar, and Anand Raghu-
nathan. Managing the Quality vs . Efficiency Trade-off Using Dynamic
Effort Scaling. ACM Transactions on Embedded Computing Systems
(TECS) - Special Section on Probabilistic Embedded Computing, 12(2),
2013.

138

23]

[24]

[25]

[26]

[27]

[29]

Fiesler Choudry, E. Fiesler, A. Choudry, and H. J. Caulfield. A weight
discretization paradigm for optical neural networks. In International
Congress on Optical Science and Engineering (ICOE), pages 164-173,
1990.

DARPA. Systems of Neuromorphic Adaptive Plastic Scalable Electron-
ics (SyNAPSE), April 2014. http://www.darpa.mil/Our_Work/DS0/

Programs/Systems_of_Neuromorphic_Adaptive_Plastic_Scalable_Electronics_

%28SYNAPSEY,29 . aspx.

M. de Kruijf and K. Sankaralingam. Exploring the synergy of emerging
workloads and silicon reliability trends. In SELSE, 2009.

Marc de Kruijf, Shuou Nomura, and Karthikeyan Sankaralingam. Relax:

An architectural framework for software recovery of hardware faults. In

ISCA, 2010.

R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R.
LeBlanc. Design of ion-implanted mosfet’s with very small physical

dimensions. IEEE Journal of Solid-State Circuits, 9, October 1974.

B K Dolenko and H C Card. Tolerance to analog hardware of on-chip
learning in backpropagation networks. [EEE Transactions on Neural

Networks, 6(5):1045-52, September 1995.

Sorin Draghici. Neural Networks in Analog Hardware - Design and Im-

plementation Issues. International Journal of Neural Systems, 10(1):19—

139

[30]

[31]

[32]

[33]

[34]

[35]

42, February 2000.

P. Dudek and P.J. Hicks. A cmos general-purpose sampled-data analog
processing element. Circuits and Systems II: Analog and Digital Signal
Processing, IEEE Transactions on, 47(5):467 —473, may 2000.

J.P. Eckert and J.W. Mauchly. Electronic numerical integrator and
computer. Technical Report 3,120,606, US Patent Application, 1947.

Peter J Edwards and Alan F Murray. Analogue Imprecision in MLP
Training, volume 4 of Progress in Neural Processing. World Scientific

Publishing Co. Pte. Ltd., 1996.

Peter J Edwards and Alan F Murray. Fault Tolerance via Weight Noise
in Analog VLSI Implementations of MLPs - A Case Study with EP-
SILON. [IEEE Transactions on Circuits and Systems II: Analog and
Digital Signal Processing, 45(9):1255-1262, 1998.

Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant, Karthikeyan Sankar-
alingam, and Doug Burger. Dark silicon and the end of multicore scal-

ing. IEEE Micro Top picks from the computer architecture conferences,

32:122-134, May/June 2012.

Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant, Karthikeyan Sankar-
alingam, and Doug Burger. Dark silicon and the end of multicore

scaling. In Proceedings of the The 38th International Symposium on
Computer Architecture (ISCA ’12), June 2011.

140

[36]

[37]

[38]

[39]

Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger.
Architecture support for disciplined approximate programming. In
Proceedings of the 17th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS ’12),
March 2012.

Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger.
Neural Acceleration for General-Purpose Approximate Programs. In
Proceedings of the 45th Annual IEEE/ACM International Symposium

on Microarchitecture, 2012.

Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger.
Neural acceleration for general-purpose approximate programs. [EEE
Micro Top Picks from the 2012 Computer Architecture Conferences,
33(3):16-27, May/June 2013.

Steve K Esser, Alexander Andreopoulos, Rathinakumar Appuswamy,
Pallab Datta, Davis Barch, Arnon Amir, John Arthur, Andrew Cassidy,
Myron Flickner, Paul Merolla, Shyamal Chandra, Nicola Basilico, Ste-
fano Carpin, Tom Zimmerman, Frank Zee, Rodrigo Alvarez-icaza, Jef-
frey A Kusnitz, Theodore M Wong, William P Risk, Emmett Mcquinn,
Tapan K Nayak, Raghavendra Singh, and Dharmendra S Modha. Cog-
nitive Computing Systems : Algorithms and Applications for Networks
of Neurosynaptic Cores. The 2013 International Joint Conference on

Neural Networks (IJCNN), August 2013.

141

[40]

[41]

[42]

[43]

[44]

Yuntan Fang, Huawei Li, and Xiaowei Li. A fault criticality evaluation
framework of digital systems for error tolerant video applications. In

Test Symposium (ATS), 2011 20th Asian, pages 329 —334, nov. 2011.

C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and Y. Le-
Cun. Neuflow: A runtime reconfigurable dataflow processor for vision.
In Computer Vision and Pattern Recognition Workshops (CVPRW),
2011 IEEE Computer Society Conference on, pages 109 —116, june 2011.

Emile Fiesler and Russell Beale. Handbook of Neural Computation.
Oxford University Press, 1996.

Barry Flower and Marwan A. Jabri. Summed weight neuron perturba-
tion: An o(n) improvement over weight perturbation. In In Advances in
Neural Information Processing Systems (NIPS) 5, pages 212-219. Mor-

gan Kaufmann, 1993.

R. C. Frye, E. A. Rietman, and C. C. Wong. Back-propagation learning
and nonidealities in analog neural network hardware. [IFEE Transac-

tions on Neural Networks Networks, 2(1):110-117, January 1991.

Steve B. Furber, David R. Lester, Luis A. Plana, Jim D. Garside, Eu-
stace Painkras, Steve Temple, and Andrew D. Brown. Overview of

the spinnaker system architecture. IFEEE Transactions on Computers,

62(12), December 2013.

142

[46]

[47]

[49]

[50]

[51]

S Galal and M Horowitz. Energy-efficient floating-point unit design.
IEEE Transactions on Computers, 60(7):913-922, 2011.

Dirk Grunwald, Artur Klauser, Srilatha Manne, and Andrew Pleszkun.
Confidence estimation for speculation control. In ACM SIGARCH Com-

puter Architecture News, volume 26, pages 122-131. IEEE Computer
Society, 1998.

Rehan Hameed, Wajahat Qadeer, Megan Wachs, Omid Azizi, Alex Solo-
matnikov, Benjamin C. Lee, Stephen Richardson, Christos Kozyrakis,
and Mark Horowitz. Understanding sources of inefficiency in general-
purpose chips. In Proceedings of the 37th Annual International Sympo-
sium on Computer Architecture (ISCA), 2010.

Jie Han and Michael Orshansky. Approximate Computing: An Emerg-
ing Paradigm for Energy-Efficient Design. In Proceedings of the 18th
IEEE European Test Symposium (ETS), May 2013.

John C Hay, Albert E Murray, Frank Rosenblatt, Alexander Stieber,
and Robert A. Wolf. Mark I Perceptron Operators’ Manual. Technical

report, Cornell Aeronautical Laboratory, Inc., 1960.

Rajamohana Hegde and Naresh R. Shanbhag. Energy-efficient signal
processing via algorithmic noise-tolerance. In Proceedings of the 1999
International Symposium on Low Power Electronics and Design, pages

30-35, August 1999.

143

[52]

[53]

[55]

[56]

[57]

[58]

Harry Henderson. Encyclopedia of Computer Science and Technology.
Infobase Publishing, revised edition, 2008.

M. Holler, Simon Tam, H. Castro, and R. Benson. An electrically train-
able artificial neural network (etann) with 10240 ’floating gate’ synapses.
In International Joint Conference on Neural Networks (IJCNN), pages
191-196 vol.2, 1989.

P. W. Hollis and J. J. Paulos. A neural network learning algorithm
tailored for VLSI implementation. [IEEFE Transactions on Neural Net-
works, 5(5):784-91, January 1994.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer
feedforward networks are universal approximators. Neural networks,

2(5):359-366, 1989.

S Huang, J Lee, H Lee, Golnar Khodabandehloo, Mitra Mirhassani,
and Majid Ahmadi. Analog Implementation of a Novel Resistive-Type

Sigmoidal Neuron. IEFEE Transactions on Very Large Scale Integration

(VLSI) Systems, 20(4):750-754, April 2012.

Christian Igel and Michael Hiisken. Improving the RPROP learning
algorithm. In International ICSC Symposium on Neural Computation

(NC), pages 115-121, 2000.

Giacomo Indiveri and Bernabe Linares-barranco. Integration of nanoscale

144

[59]

[60]

[61]

[62]

memristor synapses in neuromorphic computing architectures. Nan-

otechnology, 24, 2013.

Giacomo Indiveri, Bernabé Linares-Barranco, Tara Julia Hamilton, André
van Schaik, Ralph Etienne-Cummings, Tobi Delbruck, Shih-Chii Liu, Pi-
otr Dudek, Philipp Hafliger, Sylvie Renaud, Johannes Schemmel, Gert
Cauwenberghs, John Arthur, Kai Hynna, Fopefolu Folowosele, Sylvain
Saighi, Teresa Serrano-Gotarredona, Jayawan Wijekoon, Yingxue Wang,
and Kwabena Boahen. Neuromorphic silicon neuron circuits. Frontiers

in Neuroscience, 5(73), May 2011.

E. Ipek, O. Mutlu, J.F. Martinez, and R. Caruana. Self-optimizing
memory controllers: A reinforcement learning approach. In Proceedings

of the 35th International Symposium on Computer Architecture (ISCA
'08)., pages 39 —50, June 2008.

Marwan Jabri and Barry Flower. Weight Perturbation: An Optimal
Architecture and Learning Technique for Analog VLSI Feedforward and
Recurrent Multilayer Networks. IEFEE Transactions on Neural Net-
works, 3(1):154-157, 1992.

Bryan L. Jackson, Bipin Rajendran, Gregory S. Corrado, Matthew Bre-
itwisch, Geoffrey W. Burr, Roger Cheek, Kailash Gopalakrishnan, Si-
mone Raoux, Charles T. Rettner, Alex G. Schrott, Rohit S. Shenoy,
Bulent N. Kurdi, Chung H. Lam, and Dharmendra S. Modha. Cogni-
tive computing. Communications of the ACM, 54(8), 2011.

145

[63]

[65]

[67]

[68]

D.A. Jiménez. An optimized scaled neural branch predictor. In IEEE
29th International Conference on Computer Design (ICCD 2011), pages
113 —118, October 2011.

Daniel A. Jiménez. Fast path-based neural branch prediction. In Pro-
ceedings of the 36th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-36), pages 243-252. IEEE Computer Soci-
ety, December 2003.

Daniel A. Jiménez. Piecewise linear branch prediction. In Proceedings
of the 32nd Annual International Symposium on Computer Architecture

(ISCA-32), June 2005.

Daniel A. Jiménez. Guest editor’s introduction. Journal of Instruction-
Level Parallelism (JILP) Special Issue: The Second Championship Branch
Prediction Competition (CBP-2), 9, May 2007.

Daniel A. Jiménez and Calvin Lin. Dynamic branch prediction with
perceptrons. In Proceedings of the 7th International Symposium on High
Performance Computer Architecture (HPCA-7), pages 197-206, January
2001.

Daniel A. Jiménez and Calvin Lin. Neural methods for dynamic branch
prediction. ACM Transactions on Computer Systems, 20(4):369-397,

November 2002.

146

[69]

[70]

[71]

[72]

[75]

David A. Johns and Ken Martin. Analog Integrated Circuit Design.
John Wiley and Sons, Inc., 1997.

Antoine Joubert, Bilel Belhadj, Olivier Temam, and Rodolphe Héliot.
Hardware spiking neurons design: Analog or digital? In IEEE Interna-

tional Joint Conference on Neural Networks (IJCNN), June 2012.

Alan H. Kramer. Array-based analog computation. I[IEEE Micro,
16(5):20-29, October 1996.

Duygu Kuzum, Rakesh G. D. Jeyasingh, Byoungil Lee, and H. S. Philip
Wong. Nanoelectronic programmable synapses based on phase change

materials for brain-inspired computing. Nano Letters, 12(5), June 2011.

Nagesh B Lakshminarayana, Jaekyu Lee, Hyesoon Kim, and Jinwoo
Shin. Dram scheduling policy for gpgpu architectures based on a poten-

tial function. Computer Architecture Letters, 11(2):33-36, 2012.

Larkhoon Leem, Hyungmin Cho, Jason Bau, Quinn A. Jacobson, and
Subhasish Mitra. ERSA: Error resilient system architecture for proba-
bilistic applications. In DATE, 2010.

Boxun Li, Yi Shan, Miao Hu, Yu Wang, Yiran Chen, and Huazhong
Yang. Memristor-Based Approximated Computation. International
Symposium on Low Power Electronics and Design (ISLPED), pages 242—
247, September 2013.

147

[76] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M.
Tullsen, and Norman P. Jouppi. McPAT: An integrated power, area, and

timing modeling framework for multicore and manycore architectures.

In MICRO, 20009.

[77] Xuanhua Li and Donald Yeung. Application-level correctness and its

impact on fault tolerance. In HPCA, 2007.

[78] Song Liu, Karthik Pattabiraman, Thomas Moscibroda, and Benjamin G.
Zorn. Flikker: Saving dram refresh-power through critical data parti-
tioning. In Proceedings of the Sixteenth International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS XVI, pages 213-224, New York, NY, USA, 2011. ACM.

[79] J. B. Lont and W. Guggenbiihl. Analog cmos implementation of a
multilayer perceptron with nonlinear synapses. [IEEE Transactions on

Neural Networks, 3(3):457-465, May 1992.

[80] R.F. Lyon and C. Mead. An analog electronic cochlea. Acoustics,
Speech and Signal Processing, IEEE Transactions on, 36(7):1119-1134,
Jul 1988.

[81] Ahmed Al Maashri, Michael Debole, Matthew Cotter, Nandhini Chan-

dramoorthy, Yang Xiao, Vijaykrishnan Narayanan, and Chaitali Chakrabarti.

Accelerating neuromorphic vision algorithms for recognition. In Pro-
ceedings of the 49th Annual Design Automation Conference (DAC ’12),
page 579, New York, New York, USA, 2012. ACM Press.

148

[82]

[83]

[84]

[85]

[36]

H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas. Bio-inspired
imprecise computational blocks for efficient vlsi implementation of soft-

computing applications. [FEEE Transactions on Circuits and Systems,

57(4), april 2010.

Aqeel Mahesri, Daniel Johnson, Neal Crago, and Sanjay J. Patel. Trade-
offs in designing accelerator architectures for visual computing. In Pro-
ceedings of the J1st Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 41, pages 164—-175, Washington, DC, USA,
2008. TEEE Computer Society.

J.F. Martinez and E. Ipek. Dynamic multicore resource management: A

machine learning approach. Micro, IEEFE, 29(5):8 —17, sept.-oct. 2009.

Carver Mead. Analog VLSI and Neural Systems. Addison-Wesley
Longman Publishing Co., Inc., 19809.

M. Mirhassani, M. Ahmadi, and W.C. Miller. A mixed-signal VLSI
neural network with on-chip learning. In In Proceedings of the Canadian
Conference on Electrical and Computer Engineering, volume 1, pages

591-594. Ieee, 2003.

Mitra Mirhassani, Majid Ahmadi, and William C. Miller. A Feed-
Forward Time-Multiplexed Neural Network with Mixed-Signal Neuron-
Synapse Arrays. Microelectronic Engineering, 84(2):300-307, February
2007.

149

[38]

[90]

[91]

[92]

(93]

Sasa Misailovic, Stelios Sidiroglou, Hank Hoffman, and Martin Rinard.
Quality of service profiling. In International Conference on Software

Engineering (ICSE), pages 25-34, 2010.

P.D. Moerland and E. Fiesler. Hardware-friendly learning algorithms
for neural networks: an overview. In Proceedings of Fifth Interna-

tional Conference on Microelectronics for Neural Networks, pages 117—

124. TEEE Comput. Soc. Press, 1996.

A. J. Montalvo, R. S. Gyurcsik, and J. J. Paulos. Toward a general-
purpose analog VLSI neural network with on-chip learning. [EFFEFE
Transactions on Neural Networks, 8(2):413-23, March 1997.

Naveen Muralimanohar, Rajeev Balasubramonian, and Norm Jouppi.
Optimizing NUCA organizations and wiring alternatives for large caches
with CACTI 6.0. In International Symposium on Microarchitecture
(MICRO), pages 3—14, 2007.

Alan F Murray and Peter J Edwards. Synaptic weight noise during mul-
tilayer perceptron training: fault tolerance and training improvements.

IEEE Transactions on Neural Networks, 4(4):722-725, July 1993.

Alan F Murray and Peter J Edwards. Enhanced MLP Performance and
Synaptic Weight Noise During Training. IEEFE Transactions on Neural
Networks, 5(5):792 — 802, September 1994.

150

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

Nanoscale Integration and Modeling Group at ASU. Predictive Technol-
ogy Models (PTMs). http://wuw.eas.asu.edu/~ptm/.

Sriram Narayanan, John Sartori, Rakesh Kumar, and Douglas L. Jones.

Scalable stochastic processors. In DATE, 2010.

Avadh Patel, Furat Afram, Shunfei Chen, and Kanad Ghose. MARSSx86:
A full system simulator for x86 CPUs. In Design Automation Confer-
ence (DAC), pages 1050-1055, 2011.

P.Dubey. Recognition, mining and synthesis moves computers to the

era of tera. Technology at Intel Magazine, Feb 2005.

Phi-hung Pham, Darko Jelaca, Clement Farabet, Berin Martini, Yann
Lecun, and Eugenio Culurciello. NeuFlow : Dataflow Vision Process-
ing. 2012 IEEE 55th International Midwest Symposium on Circuits and
Systems (MWSCAS), pages 1044 — 1047, August 2012.

John Platt and Tim Allen. A Neural Network Classifier for the 11000
OCR chip. In Proceedings of Advances in Neural Information Processing

Systems 8, pages 938944, 1996.

Behzad Razavi. Design of analog CMOS integrated circuits. Tata
McGraw-Hill Education, 2002.

B. Reagen, Y.S. Shao, Gu-Yeon Wei, and D. Brooks. Quantifying ac-

celeration: Power/performance trade-offs of application kernels in hard-

151

[102]

[103]

[104]

[105)

[106]

ware. In Low Power Electronics and Design (ISLPED), 2013 IEEE

International Symposium on, pages 395-400, Sept 2013.

L M Reyneri. Implementation issues of neuro-fuzzy hardware: going
toward HW/SW codesign. IEEE Transactions on Neural Networks,
14(1):176-94, January 2003.

M. Riedmiller and H. Braun. A direct adaptive method for faster back-
propagation learning: the RPROP algorithm. IEEFE International Con-
ference on Neural Networks, pages 586591, 1993.

Frank Rosenblatt. The Perceptron—a perceiving and recognizing au-
tomaton. Technical Report 85-460-1, Cornell Aeronautical Laboratory,
Inc., 1960.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal
representations by error propagation. In Parallel Distributed Processing:

FExplorations in the Microstructure of Cognition, volume 1, pages 318—

362. MIT Press, 1986.

J. s. Seo, B. Brezzo, Y. Liu, B. Parker, S. Esser, R. Montoye, B. Rajen-
dran, J. Tierno, L. Chang, D. Modha, , and Others. 45nm cmos neu-
romorphic chip with a scalable architecture for learning in networks of

spiking neurons. IEEFE Custom Integrated Circuits Conference, Septem-
ber 2011.

152

107]

108

[109]

[110]

[111]

Hebatallah Saadeldeen, Diana Franklin, Guoping Long, Charlotte Hill,
Aisha Browne, Dmitri Strukov, Timothy Sherwood, and Frederic T
Chong. Memristors for Neural Branch Prediction : A Case Study in
Strict Latency and Write Endurance Challenges. In Proceedings of the
ACM International Conference on Computing Frontiers (CF), 2013.

Mehrzad Samadi, Janghaeng Lee, D Anoushe Jamshidi, Amir Hormati,
and Scott Mahlke. SAGE : Self-Tuning Approximation for Graphics
Engines. In Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2013.

Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapra-
gasam, Luis Ceze, and Dan Grossman. Enerj: Approximate data types
for safe and general low-power computation. In Proceedings of the 32nd
ACM SIGPLAN conference on Programming Language Design and Im-
plementation (PLDI ’11), June 2011.

Adrian Sampson, Jacob Nelson, Karin Strauss, and Luis Ceze. Approx-
imate storage in solid-state memories. In International Symposium on

Microarchitecture (MICRO), 2013.

John Sartori and Rakesh Kumar. Architecting processors to allow volt-
age/reliability tradeoffs. In Proceedings of the 14th International Con-
ference on Compilers, Architectures and Synthesis for Embedded Systems

(CASES), pages 115 — 124. ACM Press, 2011.

153

[112] Srinagesh Satyanarayana, Yannis P. Tsividis, and Hans Peter Graf. A
reconfigurable vlsi neural network. [IEFEE Journal of Solid-State Clir-
cuits, 27(1):67-81, January 1992.

[113] J. Schemmel, J. Fieres, and K. Meier. Wafer-scale integration of analog

neural networks. In IJCNN, 2008.

[114] Johannes Schemmel, Steffen Hohmann, Karlheinz Meier, and Felix Schiirmann.
A mixed-mode analog neural network using current-steering synapses.
Analog Integrated Circuits and Signal Processing, 38(2-3):233-244, February-
March 2004.

[115] André Seznec. Redundant history skewed perceptron predictors: Push-
ing limits on global history branch predictors. Technical Report 1554,
IRISA, September 2003.

[116] André Seznec. Analysis of the o-geometric history length branch pre-
dictor. In Proceedings of the 32nd Annual International Symposium on

Computer Architecture (ISCA’05), June 2005.

[117] André Seznec. A 256 kbits l-tage branch predictor. Journal of Instruction-
Level Parallelism (JILP) Special Issue: The Second Championship Branch
Prediction Competition (CBP-2), 9, May 2007.

[118] André Seznec. A New Case for the TAGE Branch Predictor. In Pro-
ceedings of the 44th Annual IEEE/ACM International Symposium on

Microarchitecture, 2011.

154

[119]

[120]

[121]

[122]

[123]

[124]

William Shockley. The theory of p-n junctions in semiconductors and
p-n junction transistors. Bell System Technical Journal, 28:435-489,
July 1949.

Stelios Sidiroglou, Sasa Misailovic, Henry Hoffmann, and Martin Ri-
nard. Managing performance vs. accuracy trade-offs with loop per-
foration. In Proceedings of the 19th ACM SIGSOFT Symposium and
the 13th European Conference on Foundations of Software Engineering

(SIGSOFT/FSE), pages 124-134. ACM Press, September 2011.

Renée St. Amant, Daniel A. Jiménez, and Doug Burger. Low-power,
high-performance analog neural branch prediction. In Proceedings of the
41st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-41), November 2008.

Renée St. Amant, Daniel A. Jiménez, and Doug Burger. Mixed-signal
approximate computation: A neural predictor case study. I[IEEE MI-
CRO Top picks from the computer architecture conferences, 29(1), Jan-
uary/February 2009.

David K. Su, Mark J. Loinaz, Shoichi Masui, and Bruce A. Wooley.
Experimental results and modeling techniques for substrate noise in

mixed-signal integrated circuits. [EEFE Journal of Solid-State Circuits,
28(4):420-430, April 1993.

Simon M Tam, Bhusan Gupta, Hernan A Castro, Santa Clara, and Mark

155

Holler. Learning on an Analog VLSI Neural Network Chip. In Proceed-
ings of the International Conference on Systems, Man and Cybernetics,

pages 701 — 703, November 1990.

[125] David Tarjan, Shyamkumar Thoziyoor, and Norman P. Jouppi. Cacti
4.0. Technical Report HPL-2006-86, HP Laboratories Palo-Alto, June
2006.

[126] Olivier Temam and Inria Saclay. A Defect-Tolerant Accelerator for
Emerging High-Performance Applications. In Proceedings of the 39th
Annual International Symposium on Computer Architecture (ISCA), pages
356-367, 2012.

[127] W Thomson. The tide gauge, tidal harmonic analyser, and tide pre-
dicter. Proceedings of the Institution of Civil Engineers, 65:3-24, 1881.

[128] Jr. Tomlinson, M.S., D.J. Walker, and M.A. Sivilotti. A digital neural
network architecture for visi. In Proceedings of the International Joint

Conference on Neural Networks (IJCNN), pages 545-550, June 1990.

[129] Jonathan Ying Fai Tong, David Nagle, and Rob. A. Rutenbar. Reduc-
ing power by optimizing the necessary precision/range of floating-point
arithmetic. IEEE Trans. Very Large Scale Integr. Syst., 8(3):273-285,
June 2000.

[130] Alan Mathison Turing. On computable numbers, with an application
to the entscheidungsproblem. J. of Math, 58:345-363, 1936.

156

[131] Swagath Venkataramani, Vinay K Chippa, Srimat T Chakradhar, Kaushik
Roy, and Anand Raghunathan. Quality Programmable Vector Proces-
sors for Approximate Computing Categories and Subject Descriptors. In
Proceedings of the 46th Annual IEEE/ACM International Symposium on

Microarchitecture, pages 1-12, 2013.

[132] John von Neumann. First Draft of a Report on the EDVAC. Technical
Report W-670-ORD-4926, Moore School of Electrical Engineering, 1945.

[133] Jianxing Wang, Yenni Tim, Weng-Fai Wong, and Hai Helen Li. A prac-
tical low-power memristor-based analog neural branch predictor. Inter-
national Symposium on Low Power Electronics and Design (ISLPED),
pages 175-180, September 2013.

[134] Vicky Wong and Mark Horowitz. Soft error resilience of probabilistic
inference applications. In In Proceedings of the Workshop on System

Effects of Logic Soft Errors, 2006.

[135] Chunbai Yang, Changjiang Jia, W. K. Chan, and Y. T. Yu. On
Accuracy-Performance Tradeoff Frameworks for Energy Saving: Models
and Review. In Proceedings of the 19th Asia-Pacific Software Engineer-
ing Conference (APSEC), pages 58-65. Ieee, December 2012.

157

