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Abstract

VLIW and EDGE (Explicit Data Graph Execution) ar-

chitectures rely on compilers to form high-quality hyper-

blocks for good performance. These compilers typically

perform hyperblock formation, loop unrolling, and scalar

optimizations in a fixed order. This approach limits the

compiler’s ability to exploit or correct interactions among

these phases. EDGE architectures exacerbate this problem

by imposing structural constraints on hyperblocks, such as

instruction count and instruction composition.

This paper presents convergent hyperblock formation,

which iteratively applies if-conversion, peeling, unrolling,

and scalar optimizations until converging on hyperblocks

that are as close as possible to the structural constraints.

To perform peeling and unrolling, convergent hyperblock

formation generalizes tail duplication, which removes side

entrances to acyclic traces, to remove back edges into

cyclic traces using head duplication. Simulation results

for an EDGE architecture show that convergent hyperblock

formation improves code quality over discrete-phase ap-

proaches with heuristics for VLIW and EDGE. This algo-

rithm offers a solution to hyperblock phase ordering prob-

lems and can be configured to implement a wide range of

policies.

1. Introduction

Both VLIW [10] and EDGE architectures [6] rely on the

compiler to produce hyperblocks—single-entry, multiple-

exit sets of predicated instructions—that are well matched

to the underlying architecture [18]. Compilers for these ar-

chitectures perform transformations such as loop unrolling

to expose parallelism among iterations and if-conversion [3]

to expose parallelism among basic blocks [1, 10, 13, 16, 18,

24]. If-conversion replaces control dependences with data

dependences, i.e., predicated instructions [3], to combine

basic blocks into hyperblocks. The compiler further opti-

mizes hyperblocks with scalar optimizations such as com-

mon subexpression elimination to reduce instruction counts.

Prior compilers selected a discrete ordering for loop un-

rolling, loop peeling, hyperblock formation, and scalar op-

timizations [1, 10, 13, 16, 18, 24]. However, if hyperblock

formation occurs before loop unrolling, the compiler will

not combine iterations to form larger hyperblocks. If it per-

forms unrolling first, the compiler must predict the effects

of hyperblock formation to pick an appropriate unroll fac-

tor. To form effective hyperblocks, the compiler must bal-

ance the interactions among these phases. Although August

et al. introduce reverse if-conversion to resolve the phase

ordering problem between hyperblock formation and scalar

optimizations [5], but previous compiler research has not

focused on the interaction of unrolling and peeling with hy-

perblock formation [1, 10, 18].

EDGE architectures complicate this phase ordering

problem by placing additional structural constraints on hy-

perblocks. To simplify the hardware, hyperblocks have an

architecturally-defined maximum number of instructions,

maximum number of loads or stores, and restrictions on reg-

ister accesses. The compiler seeks to fill each block as full

as possible to amortize the runtime cost of mapping each

fixed-size block to the hardware substrate. If an EDGE

compiler conservatively forms hyperblocks that meet the

constraints and then applies scalar optimizations that reduce

code size, it misses opportunities to pack more instructions

into the hyperblocks and better utilize the hardware instruc-

tion window.

Convergent hyperblock formation addresses the chal-

lenges of phase ordering and converging to structural con-

straints. This algorithm incrementally merges basic blocks

and repeatedly applies scalar optimizations until it cannot

add any block, thus converging on the limit of the structural

constraints. To perform peeling and unrolling, convergent

hyperblock formation generalizes tail duplication [7, 18].

Tail duplication eliminates a side entrance to an acyclic

trace by duplicating code below a merge point. Head du-

plication eliminates the back edge of a loop (a side entrance



to a cyclic trace) by duplicating and predicating the target of

the back edge. This process integrates peeling and unrolling

with hyperblock formation.

The algorithm can implement a wide range of heuristics

by carefully selecting the order to merge blocks. VLIW

block selection heuristics have focused on minimizing and

balancing dependence height, because dependences along

any predicate path in a hyperblock constrain its static sched-

ule height, even if that path does not execute at runtime.

Because the EDGE microarchitecture supports dynamic in-

struction issue and allows a block to commit once it pro-

duces its outputs, the dependence height of a falsely pred-

icated path has little effect on performance. EDGE heuris-

tics instead perform best by creating full blocks, removing

unpredictable branches, and limiting tail duplication.

We evaluate convergent hyperblock formation using sim-

ulation of the TRIPS EDGE architecture [6, 24]. These

experiments show that this approach improves TRIPS mi-

crobenchmark cycle counts by 2 to 11% on average when

compared to classical phase orderings. These results also

establish a strong correlation between block count reduc-

tion and performance improvement. A functional simulator

shows that convergent hyperblock formation reduces block

counts of the SPEC2000 benchmarks, indicating potential

performance improvement on real applications.

We measure a number of EDGE hyperblock policies and

also measure VLIW heuristics implemented within the al-

gorithm. Measuring VLIW and EDGE heuristics with and

without phase ordering integration shows that integration

improves the performance of both by resolving the phase

ordering issues of hyperblock formation, loop peeling, loop

unrolling, and scalar optimizations.

2. TRIPS architecture background

Explicit Dataflow Graph Execution (EDGE) architec-

tures provide a hybrid dataflow execution model within a

single thread of control that supports conventional impera-

tive languages [6]. An EDGE program is compiled into a

sequence of structured hyperblocks that each commit atom-

ically. Within a block, the instructions explicitly encode

their dependences in a static dataflow graph, using target

form in source instructions rather than writing to shared reg-

isters. By mapping and executing multiple blocks at once,

the microarchitecture forms large instruction windows.

The TRIPS processor architecture is one EDGE ISA that

employs dynamic issue of instructions from all in-flight

blocks. The TRIPS microarchitecture is a 16-wide proces-

sor with 128 architectural registers. Each block can contain

up to 128 instructions, mapping eight instructions to each

functional unit to minimize contention and communication

latencies [8, 20]. Using speculative next-block prediction,

the microarchitecture supports eight blocks in flight, mak-

ing the maximum instruction window size 1024 instruc-

tions. The processor commits the oldest in-flight block af-

ter it produces all of its outputs: up to 32 stores, up to 32

register writes, and a single branch decision. Each block

contains up to 32 register reads and writes in addition to the

128 regular instructions.

The TRIPS ISA places four restrictions on blocks in-

tended to strike a balance between software and hardware

complexity. They are: (1) a maximum block size of 128 in-

structions, (2) a maximum of 32 loads and stores may issue

per block, (3) a maximum of eight reads and eight writes

to each of four register banks per block, and (4) a per-block

fixed number of block outputs (each block must always gen-

erate a constant number of register writes and stores, plus

exactly one branch). The first three constraints are fixed

by the block format, whereas the microarchitecture uses the

fourth to detect block termination.

Previous work describes how the compiler uses SSA

to guarantee that each block produces a fixed number of

outputs [24]. The hyperblock formation algorithm used

in that study forms hyperblocks conservatively, using a

fixed phase ordering for hyperblock formation, peeling, un-

rolling, and scalar optimizations. Due to interactions among

these phases, a conservative approach leaves many hyper-

blocks underfilled, thus motivating an alternative approach

to fixed phase ordering.

3. Phase ordering challenges

Structural architectural constraints on hyperblock forma-

tion exacerbate a phase ordering problem between hyper-

block formation, loop unrolling, loop peeling, and scalar

optimization.

Hyperblock formation creates scalar optimization oppor-

tunities that are difficult to express in the control-flow do-

main. Two such examples are instruction merging, which

combines instructions from distinct control-flow paths, and

implicit predication, where the compiler predicates only

the head instruction in a dependence chain, thus implicitly

predicating the successors [25]. Since these optimizations

typically eliminate instructions, their application may en-

able the compiler to include more basic blocks in the hyper-

block, improving code density.

Loop unrolling and peeling present a similar challenge.

If the compiler performs these transformations before hy-

perblock formation, it may if-convert multiple iterations and

combine them into large hyperblocks. Without perform-

ing hyperblock formation on the body of the loop, however,

the compiler cannot determine an appropriate unroll factor.

Figure 1a shows a CFG consisting of an outer loop with two

inner loops where all the loops must perform their exit test

on each iteration. Such loops are termed while loops, but

do not assume the C “while” loop construct. While-loop
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Figure 1. Hyperblock formation example.

unrolling requires hyperblock formation to predicate each

iteration, unlike for-loop unrolling, which can remove inter-

mediate tests. This example assumes that profiling indicates

that each loop typically iterates three times.

Figure 1b shows hyperblock formation in which the

compiler first if-converts the bodies of the inner while loops.

Figure 1c shows the code when the compiler uses the pro-

file to peel three iterations, and then unrolls the loop four

times to fill the hyperblock for the less frequent case. Ide-

ally, the compiler would now repeat hyperblock formation

to produce the code in Figure 1d.

Under different conditions, the ideal phase ordering may

include another pass of peeling: if the loops execute either

three or four times in the common case and the compiler

cannot fit four peeled iterations in a single block until after

scalar optimizations, the ideal compiler would peel again.

Thus, each static phase ordering of hyperblock formation,

peeling, unrolling and scalar optimizations may miss op-

portunities to create better hyperblocks.

4. Convergent hyperblock formation

Convergent hyperblock formation iteratively and incre-

mentally applies optimizations to ensure that each hyper-

block is well-constructed and tightly packed with useful

instructions. The algorithm incorporates loop peeling and

unrolling by generalizing tail duplication to remove back

edges.

4.1. Head and tail duplication

Compilers use tail duplication to expand a hyperblock by

duplicating code below a merge point and eliminating side

entrances. On a VLIW architecture, the compiler copies the

merge point, and changes the pertinent branch to target the

copy. Other than the branch, the compiler does not need to

modify either the copied or the original code.

An EDGE compiler, however, must predicate the merge

point for two reasons. First, a branch does not immediately

terminate an EDGE hyperblock; instead, the architecture re-

quires that a block produce all of its outputs (register writes

and stores, in addition to the branch) before committing.

Second, unpredicated instructions within the block execute

when they receive operands. Therefore, the instructions in

an unpredicated merge point would send results to the out-

puts of the block, even if the processor takes the side exit.

Essentially, duplicating the merge point makes it control-

dependent on the exit test, and correct dataflow execution

requires the compiler to convert this control dependence to

a data dependence.

Furthermore, the EDGE compiler must transform the re-

sultant hyperblock to meet the structural constraints (i.e.,

the block must produce a fixed number of outputs) [24].

Thus the side exit must produce the same number of outputs

as the main path, potentially adding size overhead to the hy-

perblock, and runtime overhead if the side exit is taken.

Figure 2a shows an example of tail duplication in which

the compiler chooses to combine A;B; and D. The com-

piler first if-converts B and merges it with A (Figure 2b).

The compiler then applies tail duplication to D to elimi-

nate the side entrance. It copies D to create D0 (Figure 2c).

Next, it modifies the CFG, redirectingAB ! D to D0 (Fig-

ure 2d). The compiler then if-converts D0, predicating the

instructions on the original branch condition for A ! B,

and merges the result into the hyperblock (Figure 2e).

Compilers typically perform hyperblock formation on

acyclic regions within a CFG. Head duplication generalizes

hyperblock formation to include cyclic regions, effectively
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Figure 4. Head duplication implements unrolling.

implementing peeling and unrolling. Encountering a block

that is the target of both an edge from the current hyperblock

and a loop back edge is similar to encountering a block with

a side entrance; thus the compiler can apply the same tail

duplication process. Tail duplication creates outgoing edges

from the duplicated block to the successors of the original.

If the original block was a loop, the new edge will either be

a loop entrance (peeling) or a back edge (unrolling).

Consider the CFG in Figure 3a. SinceB is a loop header,

tail duplication is insufficient for combiningA and B. Head

duplication peels a copy of B to merge with A. The com-

piler copies B to make B0 (Figure 3b), then redirects edgeA ! B to B0, adds B0 ! B, and for all B ! X , insertsB0 ! X (Figure 3c). Finally, the compiler if-converts and

merges B0 and A (Figure 3d).

Figure 4 shows how head duplication also implements

loop unrolling. Consider creating a hyperblock starting with

basic block B. Since the back edge points to B, the com-

piler can unroll and still satisfy the single entry constraint.

Head duplication creates a copy of the loop body B0 (Fig-

ure 4b). The compiler then replaces B ! B with B0 ! B,

inserts B ! B0, and B0 ! C (Figure 4c). The last step if-

converts and merges B0 into B (Figure 4d). If the compiler

were to apply additional unrolling directly to this CFG, it

could only unroll by powers of two. To remove this limi-

tation, the unrolling procedure saves the original loop body

and appends one additional iteration at a time.

4.2. Incremental hyperblock formation

Convergent hyperblock formation integrates unrolling,

peeling, tail duplication, if-conversion and scalar opti-

mizations to form hyperblocks incrementally. Figure 5

shows the pseudocode for the algorithm. The procedure

ExpandBlock starts with a block HB and selects a suc-

cessor S to merge according to a heuristic. The compiler

then calls MergeBlocks, which attempts to merge S intoHB , duplicating code if necessary. If the merge is success-

ful, the compiler adds the successors of S to the set of can-

didates.

MergeBlocks first copies HB and S to scratch space

and attempts to if-convert and mergeS into HBS . The com-

piler optimizes the resulting block, and then checks to deter-

mine whether the block violates the structural constraints. If

so, the merge fails and the compiler considers other succes-

sors. By testing the merge in scratch space before trans-

forming the CFG, the implementation avoids a more com-

plicated undo step.

If the merge is successful, the compiler must transform

the CFG appropriately. If HB ! S is the only entrance

to S, the compiler can simply remove S from the CFG and

replace HB with HBS (lines 7–9 in MergeBlocks). Oth-

erwise, it must perform code duplication. Lines 10–15 of

MergeBlocks show the cases where the compiler per-

forms unrolling, peeling, and tail duplication. The compiler

uses head duplication to implement unrolling and peeling

and tail duplication for other cases. The Optimize step

attempts to eliminate instructions in the merged block. The

compiler currently applies dominator-based global value

numbering and predicate optimizations that reduce the

number of instructions that use each predicate [25].

5. Policy

Convergent hyperblock formation constructs hyper-

blocks that obey architectural constraints while maximizing

code density. To achieve high performance, however, the al-

gorithm must apply heuristics that select the most profitable

basic blocks to include in each hyperblock. This block se-

lection policy can balance several characteristics of high-

performance hyperblocks.

The two simplest heuristics, breadth-first and depth-first,

each emphasize one of two opposing goals. By merging

basic blocks in breadth-first order, the compiler guarantees

the inclusion of some useless instructions, but attempts to

decrease the branch misprediction frequency and limit tail



procedure ExpandBlock(HB : block)

1: 
andidates := Successors(HB)

2: while 
andidates is not empty do

3: S := SelectBest(
andidates)

4: 
andidates := 
andidates � fSg
5: if not LegalMerge(HB, S) then

6: continue

7: else if MergeBlocks(HB, S) == Su

ess then

8: 
andidates := 
andidates S Successors(S)

9: end if

10: end while

procedure MergeBlocks(HB, S : block)

1: HB
opy := Copy(HB)

2: S
opy := Copy(S)

3: HBS := Combine(HB
opy , S
opy)

4: Optimize(HBS)

5: if not LegalBlock(HBS) then

6: return Failure
7: else if NumPredecessors(S) == 1 then

8: Replace(HB , HBS ) // no code duplication

9: Remove(S)

10: else if HB ! S is a back edge and HB == S then

11: UnrollLoop(HB ;S)

12: else if S is a loop header and HB ! S is not a back

edge then

13: PeelLoop(HB, S)

14: else

15: TailDuplicate(HB , S)

16: end if

17: return Su

ess
Figure 5. Convergent hyperblock formation algo­

rithm.

duplication. The depth-first policy risks a higher mispredic-

tion rate and performs more tail duplication, but seeks to

include a greater number of useful instructions.

Branch predictability: Removing conditional branches

is important for EDGE architectures because of their large

instruction windows. In the TRIPS prototype, each pro-

cessor has a 1024-instruction window consisting of eight

blocks, seven of which are speculative. A branch mispre-

diction and subsequent pipeline flush prevents effective uti-

lization of this window. The compiler can improve pre-

dictability during hyperblock formation by eliminating un-

predictable conditional branches. One heuristic that elimi-

nates conditional branches is to end blocks at merge points

so that each has a single exit, however this policy may result

in under-full hyperblocks.

Limiting tail duplication: On a dataflow architecture,

tail duplication requires additional predication below the

side exit, including predication of the merge point. This re-

quirement introduces data dependences on the outcome of

the test in the duplicated code, while in the original program

the instructions were control independent. These depen-

dences may degrade performance, since the resultant code

cannot execute speculatively, but must wait on the resolu-

tion of a possibly time-consuming test. This effect is es-

pecially problematic when the duplicated merge point con-

tains a loop induction variable update that is on the critical

path through an otherwise parallel loop.

Loop peeling and unrolling: Because convergent hy-

perblock formation folds loop transformations into the hy-

perblock formation algorithm, the compiler can apply block

selection policies to loops as well. To perform peeling ac-

curately, the compiler can use loop trip count histograms

to augment an edge frequency profile. A loop peeling pol-

icy can then evaluate the benefit of unrolling additional loop

iterations versus including post-loop code by using a thresh-

old function to pick an appropriate peeling factor.

Local and global heuristics: Local heuristics consider

only the characteristics of the current hyperblock when

choosing among the candidate successors. Because of the

architectural constraints on TRIPS hyperblocks, a local ap-

proach works well for TRIPS block formation. By incre-

mentally merging basic blocks, the hyperblock gradually

converges on the upper bound of the constraints. Because

the compiler adds blocks individually to satisfy structural

constraints, the algorithm focuses on selecting one of a

block’s immediate successors for inclusion.

Using lookahead can increase the power of local heuris-

tics. For example, a heuristic that improves branch pre-

dictability favors blocks with a single exit. Such a heuris-

tic might first determine if a hyperblock has one exit, and

then use lookahead to estimate if the compiler can include

enough additional basic blocks to reach the next merge

point, thus constructing a larger, single-exit hyperblock.

Although local heuristics seem most suitable for incre-

mental hyperblock formation, the algorithm can use global

information to inform block selection by performing a pre-

pass analysis. To implement path-based VLIW heuris-

tics [17, 18] using convergent hyperblock formation, the

compiler analyzes the CFG to create a prioritized list of ba-

sic blocks, and then merges blocks in priority order, when

possible.

Dependence height: The best-known block selection

heuristic for VLIW architectures analyzes all paths through

a region to determine which basic blocks to include [17].

Because a VLIW hyperblock is statically scheduled, the

dependence height of the longest path determines the ex-

ecution time of the block, even if that path is not taken

at runtime. Paths are therefore prioritized to favor those

that execute frequently, consume few resources, and have

short dependence heights. These heuristics attempt to avoid

over-constraining the static schedule or over-saturating the
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Figure 6. Compiler flow with convergent hyperblock formation.

processor’s resources, while still including the most useful

paths and removing unpredictable branches.

For EDGE ISAs, minimizing dependence height is less

important. EDGE instructions issue dynamically when their

operands arrive, and the architecture can commit a block as

soon as it produces its outputs. Therefore, if a short path

through an EDGE hyperblock completes before a longer

one, the architecture detects block termination and does not

wait for the longer path to finish. Although speculative in-

structions on an untaken path may contend for resources

with instructions on a taken path, this contention reflects

constraints on issue width rather than on schedule height.

6. TRIPS compiler

We implement convergent hyperblock formation in Scale

[19, 24], a retargetable compiler with a back end for TRIPS.

Figure 6 shows the overall compiler flow. The compiler

front end operates on a language and machine-independent

control-flow graph representation. Scale performs inlining

and for-loop unrolling first, followed by classical scalar op-

timizations. The compiler then lowers the program repre-

sentation to a RISC-like form. Using this representation,

the compiler performs hyperblock formation, followed by

register allocation, fanout insertion to replicate values for

multiple consumers, and finally scheduling.

Since register allocation and fanout insertion add addi-

tional instructions and occur after hyperblock formation,

the compiler must estimate final block sizes while forming

hyperblocks. Although hyperblock formation tries to con-

struct blocks of the appropriate size and load/store count,

the register allocator may insert spill code that violates the

block constraints. If a block has spills that cause it to violate

a constraint, the compiler performs reverse if-conversion

on the block, and repeats register allocation. Scale rarely

needs to split blocks in this manner, both because TRIPS

has a large number of architectural registers and because

the compiler attempts to avoid inserting spill code in nearly

full hyperblocks. Once register allocation completes and

all blocks are valid, the scheduler inserts fanout instruc-

tions, assigns locations to all instructions in their respective

blocks, and translates them to TRIPS assembly language.

7. Experimental results

We evaluate convergent hyperblock formation using a

TRIPS cycle-level timing simulator, which has been veri-

fied to be within 4% of the cycle counts generated by the

TRIPS prototype hardware design on a set of microbench-

marks. This simulator models all aspects of the microarchi-

tecture, including global control, data path pipelines, and

communication delays within the processor. Because de-

tailed simulation is prohibitively slow (approximately 1000

instructions per second), we restrict the evaluation to mi-

crobenchmarks derived by extracting loops and procedures

from SPEC2000, and with signal-processing kernels from

the GMTI radar suite, a 10x10 matrix multiply, sieve (a

prime number generator), and Dhrystone.

7.1. Comparison to static phase ordering

Table 1 compares the performance of hyperblock for-

mation with discrete phases of unrolling and if-conversion

to the single-phase, but iterative, convergent hyperblock

formation. Column 2 shows the baseline cycle count of

each benchmark using basic blocks as TRIPS blocks. Ba-

sic blocks are a good baseline because they are defined

by the front end of the compiler, and do not depend on

the hyperblock formation algorithm or heuristics. The re-

maining columns apply if-conversion (I), unrolling/peeling

(UP), and scalar optimizations (O) in various orders. Phases

grouped together in parentheses indicate that the transfor-

mations are applied incrementally, using head duplication to

implement unrolling and peeling, and iterative optimization

to improve code density. All results use a greedy breadth-

first policy and use incremental if-conversion to avoid vio-

lating the block constraints.

The UPIO and IUPO columns show discrete phase or-

derings of structural transformations followed by scalar op-

timizations. UPIO performs loop unrolling and peeling be-

fore incremental if-conversion and tail duplication. This ap-

proach improves performance by an average of 16% over

basic blocks. The second phase ordering (IUPO in Column

4) performs if-conversion before loop unrolling and peel-

ing. It improves performance an additional 8.8% on aver-



BB UPIO IUPO (IUP)O (IUPO)

cycles m/t/u/p % m/t/u/p % m/t/u/p % m/t/u/p %

ammp 1 1544356 18/11/3/0 18.2 18/11/11/7 68.6 18/11/11/7 68.6 18/11/13/8 65.9

ammp 2 1021042 39/11/3/0 13.6 39/11/8/3 59.0 39/11/8/3 59.0 40/2/10/2 60.2

art 1 83309 11/1/3/5 4.5 12/0/3/4 12.1 13/0/3/2 4.9 13/0/4/2 6.0

art 2 128499 4/1/2/5 -7.5 6/0/2/2 1.0 8/1/2/1 -5.3 7/1/4/3 3.4

art 3 638918 23/1/2/3 76.6 24/0/3/2 77.0 25/1/3/1 74.4 25/0/3/2 76.1

bzip2 1 478746 7/0/0/0 22.1 7/0/0/0 22.1 7/0/0/0 22.1 7/0/0/0 22.1

bzip2 2 334299 9/1/3/5 32.6 10/0/3/5 32.0 10/0/3/5 32.0 10/1/3/5 32.0

bzip2 3 556743 10/0/3/0 34.6 10/0/3/1 34.6 10/0/3/1 34.6 10/0/3/1 34.5

dct8x8 51988 4/0/0/0 -0.6 4/0/0/0 -0.6 4/0/0/0 -6.3 4/0/0/0 -6.3

dhry 234345 63/2/4/5 13.5 64/3/6/9 22.5 66/4/6/8 23.1 64/4/10/12 23.5

doppler GMTI 85229 7/2/10/9 21.8 8/1/11/9 13.2 8/1/11/9 14.3 8/1/12/11 16.6

equake 1 114324 6/0/0/0 0.7 6/0/0/0 0.7 6/0/0/0 2.3 7/0/0/0 12.4

fft2 GMTI 130496 11/3/1/3 25.9 12/2/1/2 21.1 13/3/1/1 25.2 13/4/1/1 27.9

fft4 GMTI 98538 7/1/0/1 4.7 8/0/0/0 7.3 8/0/0/0 6.6 8/1/0/0 4.9

forward GMTI 180900 10/2/1/3 0.5 10/3/1/4 2.2 11/4/1/3 2.0 11/3/3/7 3.8

gzip 1 29377 9/3/0/0 22.2 9/3/0/0 22.2 9/3/0/0 20.8 12/2/0/0 48.4

gzip 2 98414 5/2/3/6 54.8 6/2/3/4 46.4 7/2/3/2 48.3 6/2/6/7 54.9

matrix 1 71814 10/0/0/1 -25.2 10/0/3/5 37.9 10/1/3/5 38.4 10/1/4/6 42.3

parser 1 395076 12/0/0/0 46.5 12/0/0/0 46.5 12/0/0/0 46.5 12/0/0/0 46.5

sieve 443064 6/3/7/8 -13.1 7/1/7/4 20.9 7/2/7/4 23.7 7/2/9/5 22.6

transpose GMTI 185803 6/0/0/0 4.2 6/0/0/0 4.2 6/0/0/0 1.6 7/1/0/1 1.5

twolf 1 527166 10/5/1/2 38.9 11/4/1/1 39.7 12/4/1/0 38.9 15/1/1/0 38.6

twolf 3 588011 12/0/0/0 0.5 12/0/0/0 0.5 12/0/0/0 0.5 12/0/0/0 0.5

vadd 105407 5/1/0/1 -2.1 5/1/1/5 7.9 6/2/1/5 5.4 6/2/2/5 9.4

Average 16.2 25.0 24.2 27.0

Table 1. Percent improvement in cycle counts of hyperblocks over basic blocks (BB) and static count of blocks

merged/tail duplicated blocks/unrolled iterations/peeled iterations (m/t/u/p), with various orderings of Unrolling

(U), Peeling (P) Incremental If­conversion (I), and Scalar Optimizations (O). Parentheses indicate merged phases.

age compared to UPIO since the unroller has more accurate

block counts and size estimates for loops with control flow

after if-conversion than before.

The (IUP)O column shows that iterating peeling and un-

rolling appears to offer no benefit over the distinct phases in

IUPO on these benchmarks, despite adding the capability to

generate hyperblocks like Figure 1d. Most of these bench-

marks consist simply of for loops with high trip counts. Be-

cause Scale applies for-loop unrolling in the front end, the

only benefit of head duplication is to merge the test for the

execution of the post-conditioning loop with the body of the

unrolled loop. Sometimes merging this test helps perfor-

mance slightly (e.g., fft2 GMTI and sieve), and sometimes

it hurts slightly (e.g., art 1 and art 2). The best candidates

for head duplication are ammp 1 and ammp 2, which con-

tain while loops with low trip counts. However, the com-

piler’s block size estimates are not yet sufficiently accurate

to combine peeled iterations of these loops with surround-

ing code (see Section 6).

Integrating scalar optimizations into hyperblock forma-

tion (the (IUPO) column) attains an additional 2% perfor-

mance improvement because the compiler can pack blocks

more tightly and perform more if-conversion and unrolling.

The most significant improvement, gzip 1, occurs because

the compiler uses if-conversion and scalar optimizations to

fit the entire body of the innermost loop in one block, dra-

matically reducing the total number of blocks executed.

The m/t/u/p statistics show how often the compiler ap-

plies if-conversion, tail duplication, unrolling, and peeling.

For example, the performance improvement of ammp 1 in

all columns following UPIO occurs because the compiler

unrolls and peels several additional iterations of the criti-

cal loops. Using (IUPO) on ammp 1 enables peeling of an

additional loop iteration, but this transformation happens to

create a less-predictable branch pattern and increases the

number of mispredicted branches by 50%.

On the microbenchmarks, the best heuristic for forming

TRIPS hyperblocks improves performance compared to ba-

sic blocks by 27% on average. Convergent hyperblock for-

mation outperforms classical optimization phase orderings

by an average of between 2 and 11%.

7.2. VLIW and EDGE heuristics

The above results show that convergent hyperblock for-

mation offers potential performance benefits given the right

heuristics. Convergent hyperblock formation is flexible

enough to implement a variety of policies as discussed in

Section 5. We compare performance using three heuristics:

the VLIW heuristic proposed by Mahlke et al. [17, 18], a



BB VLIW Convergent VLIW DF BF

ammp 1 1544356 64.8 61.7 62.8 65.9

ammp 2 1021042 3.8 4.1 1.7 60.2

art 1 83309 3.3 2.6 7.0 6.0

art 2 128499 0.3 7.2 6.9 3.4

art 3 638918 45.0 45.0 29.3 76.1

bzip2 1 478746 -25.4 -25.4 -37.4 22.1

bzip2 2 334299 -59.0 0.9 -40.6 32.0

bzip2 3 556743 -67.9 -68.1 -91.7 34.5

dct8x8 51988 -0.6 18.3 -7.5 -6.3

dhry 234345 17.2 17.2 19.6 23.5

doppler GMTI 85229 13.1 16.6 19.7 16.6

equake 1 114324 0.7 13.6 12.4 12.4

fft2 GMTI 130496 28.0 28.0 28.7 27.9

fft4 GMTI 98538 5.6 6.6 10.2 4.9

forward GMTI 180900 4.7 -1.0 5.4 3.8

gzip 1 29377 49.3 46.1 12.1 48.4

gzip 2 98414 30.1 29.2 32.0 54.9

matrix 1 71814 37.9 39.2 40.0 42.3

parser 1 395076 25.1 27.0 45.1 46.5

sieve 443064 11.2 16.6 1.5 22.6

transpose GMTI 185803 4.2 -0.9 2.5 1.5

twolf 1 527166 -60.8 -42.6 -41.9 38.6

twolf 3 588011 7.4 3.7 4.8 0.5

vadd 105407 7.9 11.2 15.1 9.4

Average 6.1 10.7 5.7 27.0

Table 2. Percent improvement in cycle count over basic blocks (BB) using VLIW heuristics, VLIW with iterative

optimization, depth­first (DF) and breadth­first (BF) EDGE heuristics.

depth-first heuristic that selects the most frequent path, and

a breadth-first heuristic that removes conditional branches.

Table 2 shows the performance of the VLIW and EDGE

heuristics on TRIPS. Columns 3 and 4 show the VLIW

block selection heuristic applied without and with itera-

tive optimization, respectively. Without iterative optimiza-

tion the VLIW heuristic achieves a 6.1% average speedup

over basic blocks, compared to 10.7% with iterative opti-

mization, demonstrating that convergent hyperblock forma-

tion improves the performance of this heuristic. Column 5

shows the depth-first heuristic, which achieves a small 5.7%

speedup. Breadth-first merging shows the greatest improve-

ment, at 27%.

Several of the largest performance differences among

these results occur because tail duplication incurs addi-

tional predication on a dataflow architecture. The most

extreme example of this effect is bzip2 3, where breadth-

first merging achieves a 34.5% speedup while depth-first

and VLIW degrade performance by 68.1% and 91.7%, re-

spectively. While breadth-first merges all paths through the

main loop, the depth-first and VLIW heuristics exclude an

infrequently-taken block, and therefore must tail duplicate

the final block in the loop, which contains the induction

variable increment. The induction variable is then data-

dependent on the earlier test, instead of being independent.

This dependence results in a slowdown even over basic

blocks, where the increment can be executed speculatively.

Improved branch prediction accuracy is another impor-

tant effect. In parser 1, the VLIW heuristic excludes several

rarely taken paths with relatively large dependence heights.

Because these branches are rarely taken, they cause mispre-

dictions when they occur, resulting in an 11-fold increase in

the misprediction rate (0.4% using breadth-first versus 4.5%

with VLIW), which reduces the effective size of the proces-

sor’s issue window. The depth-first heuristic does not suffer

branch mispredictions because it is able to include all paths

through the loop, since there is ample space in the block

after merging the most frequent path.

7.3. Estimated performance with block counts

The cycle-level simulator is too slow to simulate the full

SPEC benchmarks. Since successful transformations re-

duce the number of blocks executed, thus increasing the

issue window utilization and decreasing block overhead,

block counts and program cycle counts should correlate.

We demonstrate this correlation and present block count re-

sults for SPEC2000.

The best static phase ordering achieves a 2.1x improve-

ment in number of blocks executed over basic blocks on

the microbenchmarks, while iterative hyperblock formation

achieves a 2.3x improvement. To first order, the relationship

between the number of blocks executed and the cycle count

is roughly: 
y
lestotal = 
y
lesbase + blo
ks � overhead ,
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Figure 7. Cycle count reductions versus block

count reductions.

where 
y
lestotal is the total number of cycles the program

takes to execute, 
y
lesbase is the number of cycles to per-

form the computation (ignoring block boundaries), blo
ks
is the number of blocks, and overhead is the fixed architec-

tural overhead associated with mapping a block.

This equation is an oversimplification, because it does

not account for increased parallelism exposed by block

merging, nor interference from including speculative, use-

less instructions in a block. To evaluate the accuracy of this

estimate, Figure 7 plots the change in cycle counts against

the change in block counts (as compared to basic blocks)

for all the data presented in Table 1. The relationship be-

tween block count reduction and cycle count reduction is

roughly linear (r2 = 0:78 using a linear regression test),

with a few outliers due to ammp 1, in which reducing the

block count by unrolling while loops dramatically improves

performance. This result suggests that reduction in block

count is a good but imperfect metric of performance im-

provement.

The correlation between block count reduction and cycle

count reduction justifies the use of block counts (gathered

using a fast, functional simulator) to estimate the perfor-

mance effect of these algorithms on the SPEC2000 bench-

marks. Table 3 shows the block count results for 19 of 21

FORTRAN and C benchmarks (at the time of this writing,

the toolchain is not stable for 176.gcc and 253.perlbmk),

where the baseline (BB) measures millions of basic blocks

executed. The remaining columns report percent improve-

ment, using the same configurations and format as Ta-

ble 1. These results use the MinneSPEC small reduced

dataset [14], since the ref datasets require too much simu-

lation time, even using a less detailed simulator. The block

count results show the same trends as the cycle-accurate re-

sults on the microbenchmarks, although head duplication

is in general more effective and scalar optimizations are

slightly less effective than in the microbenchmark results.

8. Related work

The closest related research is on algorithms for creat-

ing blocks to use as compilation units, and approaches for

dealing with phase interactions.

8.1. Block formation algorithms

Fisher pioneered trace scheduling for VLIW architec-

tures [10]. This compiler uses static branch prediction

to identify frequently executed program paths (traces) at

compile-time. It optimizes traces by removing constraints

and pushing correcting code on to the less frequently taken

paths. While effective, its drawbacks include code and com-

piler complexity due to side trace entrances [13] and the

possibility of exponential code expansion [15].

Superblock scheduling [13] improves over trace schedul-

ing by eliminating the need for side entrances by using tail

duplication, which replicates instructions below a merge

point, and redirects the side entrance to this copy. Treegions

[12] are also single-entry, multiple-exit regions, but are

larger than superblocks because they include basic blocks

from many paths of control, thus limiting the effects of vari-

ations in execution profiles. The speculative hedge heuristic

for superblock scheduling similarly attempts to minimize

execution time across all paths to account for such varia-

tions [9].

The hyperblock [18] generalizes the superblock to en-

able effective use of predicated execution. The goal of hy-

perblock formation is to eliminate branching and maximize

ILP, while avoiding over-committing processor resources

[17]. Mahlke et al. perform heuristic-driven hyperblock for-

mation, followed by block-enlargement optimizations (such

as predicated loop peeling and hyperblock loop unrolling),

and finally apply dataflow optimizations modified to oper-

ate on predicated code.

VLIW heuristics [5, 18, 22] focus on balancing de-

pendence height, dependence width (resource utilization

of each VLIW instruction and other resources), path fre-

quency, and branch predictability. The hyperblock forma-

tion goals for VLIW and EDGE architectures are related

since both attempt to apply if-conversion to expose schedul-

ing (or placement) regions by removing branches. Path fre-

quency is important to both architectures, since it is better

to fill a hyperblock with instructions that execute under the

same conditions and frequencies.

There are two important differences between VLIW and

EDGE constraints. First, TRIPS blocks also must con-

form to the TRIPS architectural restrictions on block size,

load/store ids, and register usage. Second, since VLIW ma-

chines issue instructions in a statically determined order,

there is a high penalty for imbalanced dependence chains.

An EDGE hyperblock can commit when all of its out-



Phased Convergent

BB (M) UPIO IUPO (IUP)O (IUPO)

ammp 12.5 65.4 72.9 73.9 73.9

applu 1.6 42.4 42.4 43.9 45.8

apsi 5.9 47.3 47.3 47.5 48.9

art 331.8 65.0 65.0 70.1 72.6

bzip2 248.8 40.8 45.9 46.5 50.4

crafty 16.7 42.7 46.5 49.3 55.3

equake 100.1 57.3 57.8 58.1 59.0

gap 20.6 11.7 11.8 11.8 11.9

gzip 86.5 59.4 60.0 60.0 62.3

mcf 28.1 61.2 69.8 70.1 63.8

mesa 870.3 51.8 51.8 51.8 51.8

mgrid 591.6 4.3 4.3 4.5 5.3

parser 87.2 51.7 57.0 57.1 57.1

sixtrack 479.3 54.1 54.2 54.2 53.5

swim 2.8 30.1 30.1 30.1 31.7

twolf 15.6 57.4 59.6 60.6 62.1

vortex 41.2 63.7 63.8 63.8 62.9

vpr 2.9 60.1 61.2 61.5 62.8

wupwise 1469.7 47.5 46.9 49.2 52.9

Average 48.1 49.9 50.7 51.8

Table 3. Percent improvement in block counts of SPEC benchmarks over basic blocks (BB) with various combi­

nations and orderings of Unrolling (U), Peeling (P) If­conversion (I), and Scalar Optimizations (O). Parentheses

indicate merged phases.

puts are produced, and thus long dependence chains with

a false predicate do not directly add to the execution sched-

ule length, although they do occupy space in a hyperblock

that may otherwise have been filled with useful instructions.

Block-structured ISAs [11] also implement a block

atomic execution model to exploit speculation and support

wide issue. Instructions are not predicated but execute spec-

ulatively, with the processor aborting mispredicted blocks.

The compiler attempts to combine basic blocks to increase

the processor’s fetch bandwidth and scheduling abilities, us-

ing an incremental technique that combines basic blocks

until meeting a threshold: block size and number of ex-

its. These resource constraints are more similar to a single

VLIW instruction than a structured EDGE hyperblock. The

block enlargement phase is similar to the incremental block

merging in convergent formation, but the major phases dif-

fer because the block-structured ISA compiler does not in-

clude if-conversion, loop unrolling/peeling, or scalar opti-

mizations in its iterative loop.

8.2. Solutions to phase ordering problems

August et al. discuss the interaction of hyperblock for-

mation and scalar optimizations [5]. Their solution iterates

on if-conversion, scalar optimizations, and VLIW schedul-

ing. If this algorithm produces a poor schedule, it performs

reverse if-conversion to remove basic blocks that constrain

the schedule, allowing the algorithm to adjust hyperblock

formation decisions after scheduling. Convergent hyper-

block formation, by contrast, makes decisions incremen-

tally in a single pass to ensure that the block conforms to

the architectural constraints.

Another related technique is software pipelining [1, 2,

16, 23], which uses an iterative approach to select an appro-

priate unroll factor based on scheduling constraints. Rau’s

iterative modulo scheduling algorithm performs software

pipelining for progressively larger values of the iteration in-

terval until it resolves dependence constraints. Convergent

hyperblock formation unrolls incrementally to fill blocks,

but does not consider inter-iteration dependences.

9. Conclusions

While convergent hyperblock formation provides a

method for building optimized hyperblocks, additional re-

search should investigate block selection policies that better

weigh block frequency, branch predictability, dependences

created by tail duplication, and loop trip counts. Additional

mechanisms (basic block splitting, for-loop unrolling, re-

entrant hyperblocks, and partial inlining) have the potential

to increase the ability of convergent hyperblock formation

to build effective and full structured hyperblocks. An open

question is how to integrate these mechanisms into a single

algorithm that does not have phase ordering issues.

Basic block splitting: Most hyperblock formation algo-

rithms include basic blocks in a hyperblock in their entirety.

However, because of the TRIPS structural constraints, the

compiler may not be able to fit an entire basic block into



the current hyperblock. To solve this problem, the compiler

could split large basic blocks and merge each part with a dif-

ferent hyperblock to improve code density. The policy that

guides a block-splitting mechanism should consider care-

fully where to split the basic block. Within a block, tem-

porary values do not consume architectural registers due

to direct instruction communication, but values communi-

cated between blocks must be stored in registers or memory,

consuming resources. When splitting blocks, the compiler

should seek to minimize cross-block communication, thus

minimizing register pressure and the resultant spills.

For-loop unrolling: While-loop unrolling, which con-

vergent hyperblock formation incorporates, requires the

compiler to predicate each loop iteration. The Scale com-

piler also performs for-loop unrolling early in compilation

to select an appropriate unroll factor using data from pre-

vious compilations [21]. Implementing incremental for-

loop unrolling with hyperblock formation in the back end

will more accurately target the block constraints and conse-

quently produce better hyperblocks.

Re-entrant hyperblocks: The classical definition of a

hyperblock does not permit side entrances. However, the

compiler may introduce conventions for passing predicate

information across blocks that correctly handle side en-

trances, violating the single-entry constraint to reduce code

expansion [4]. For instance, a hyperblock at the head of a

loop could perform different actions depending on whether

it is entered from outside the loop or via the back edge.

Partial inlining: Compilers typically inline a function

entirely or do not inline it at all. While the complexity of

partial inlining—merging some basic blocks of the callee

into the caller—discourages its implementation in compil-

ers for an architecture with low function call overhead,

structurally-constrained ISAs may require partial inlining

to fill blocks aggressively.

Convergent hyperblock formation addresses the phase

ordering problems created by generating blocks that are

well-matched to the underlying architecture. By integrating

loop unrolling and peeling using head duplication, and by

performing scalar optimizations incrementally during basic

block merging, the compiler can construct more densely

packed hyperblocks that obey structural constraints im-

posed by the ISA. As technology scaling moves architecture

towards communication-dominated designs requiring such

ISAs, the compiler’s role in effectively mapping code struc-

tures to the underlying microarchitecture will only become

more important.
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