
Memory Hierar
hy Extensions to the SimpleS
alarTool SetDoug Burgery Alain K�agiz M.S.Hrishikesh�Computer Ar
hite
ture and Te
hnology LaboratoryyDepartment of Computer S
ien
es�Department of Ele
tri
al and Computer EngineeringzMi
ropro
essor Resear
h Lab, Intel CorporationTe
h Report TR99-25The University of Texas at Austin
art�
s.utexas.edu | www.
s.utexas.edu/users/
artAbstra
tIn this report we des
ribe memory hierar
hy extensions to the Simples
alar tool set. Theextensions allow for the modeling of an arbitrary hierar
hy of
a
hes and asso
iated buses.The
a
hes are non-blo
king
a
hes with a �nite number of miss status holding registers andsupport both virtual and physi
al addressing. We also model detailed simulation of addresstranslation, the hardware translation look-aside bu�er (TLB) �lls and page table walks. Inthis report we des
ribe the
a
he and memory organization that we model and present theimplementation in detail. We also des
ribe how these extensions
an be
on�gured and providea sample
on�guration.

1

1 OverviewThe Simples
alar tool set [1℄ simulates a supers
alar, out-of-order pro
essor in detail, along with asimple model of the memory hierar
hy (versions 2.0 and 3.0), in
luding
a
hes that allow an in�nitenumber of outstanding misses and no modeling of bus
ontention and laten
y. Also, the memoryhierar
hy is not easily
on�gurable to model hierar
hies more
omplex than 2-levels of in
lusive
a
hes. We added modi�
ations to the Simples
alar tool set to provide a more realisti
 model ofthe memory hierar
hy. In this report we des
ribe our modi�
ations and show how the new model
an be
on�gured.These memory extensions model a non-blo
king
a
he that allows only a �nite number of out-standing misses and allows for
exible
on�guration of the memory hierar
hy. An arbitrarily deep
a
he hierar
hy
an be modeled by simply
hanging the
on�guration parameters. In addition, wemodel translation look-aside bu�ers (TLBs), simulate page-table walks and the
a
hing of pagetable entries. We also model the buses between multiple levels in the memory hierar
hy. Currentlyour memory extensions support only the sim-outorder simulator exe
uting PISA binaries. OtherISAs will be supported in the next release of the memory extensions.The rest of this report is organized as follows. Se
tion 2 des
ribes how di�erent
omponentsof the memory hierar
hy are
on�gured and shows a sample
on�guration. Se
tion 3 des
ribes theimplementation details of the new memory extensions.2 Con�guring and Using the Memory Hierar
hy2.1 Con�guring Ca
hes and TLBs-
a
he:d
a
he <name>-
a
he:i
a
he <name>-
a
he:define <name>:<nsets>:<bsize>:<subblo
k>:<asso
>:<repl>:<hitlaten
y>:<translation>:<prefet
h>:<# resour
es>:<resour
e
ode>:[resour
e names℄*The memory
on�guration requires the names of the level-1
a
hes to be expli
itly spe
i�ed.The syntax to de�ne the names of the level-1 instru
tion and data
a
he is shown above. A
a
he
on�guration line begins with the
ag \-
a
he:de�ne" and is followed by the parameters of the
a
he separated by
olons. The �rst parameter de�nes the name asso
iated with the
a
he. Thisname will be used to identify the
a
he in the
on�guration �le. The next four parameters arethe number of sets, the size of a
a
he line, the number of sub-blo
ks, and the asso
iativity of the
a
he. The
a
he
apa
ity is the produ
t of nsets, bsize and asso
.The other
a
he parameters are the repla
ement poli
y,
a
he hit laten
y, the
a
he translationand a prefet
h
ag. The
a
he repla
ement poli
y determines whi
h line in the
a
he will be evi
tedto make room for a new
a
he line. There are three
a
he repla
ement poli
ies that are supported:LRU (l), Random (r) and FIFO (f). The repla
ement parameter should be set to \l", \r" or \f" tosele
t the appropriate poli
y.The
a
he translation parameter is used to simulate one of the following
on�gurations: virtu-ally indexed virtually tagged (VIVT) virtually-indexed physi
ally-tagged (VIPT) and physi
ally-indexed physi
ally-tagged (PIPT). Physi
ally-indexed virtually-tagged
a
hes are not supported.All
a
he
on�gurations other than VIVT require the virtual address (from the pro
essor) to betranslated to a physi
al address by performing a TLB lookup. Only the highest level of physi
ally-tagged or physi
ally-indexed
a
he triggers an address translation. For VIPT
on�gurations the
a
he
an be indexed using the virtual address and only the tag
omparisons have to wait until the1

physi
al address is available. Therefore for this
on�guration the
a
he a

ess and the TLB a

esso

ur in parallel. However, for PIPT
on�gurations the TLB is �rst a

essed to obtain a physi
aladdress whi
h in turn is used to a

ess the
a
he.The pre fet
h parameter is a
ag that determines if the
a
he pre fet
hes data. If this
ag is setto 1 then on a
a
he hit the next
ontiguous
a
he line is pre fet
hed [2℄. The resour
es parametersets the number of buses that
onne
t the
a
he to the hierar
hy below. It is intended to be usedfor spe
ifying di�erent ways of mapping requests to multiple resour
es. Currently, ea
h
a
he
anbe
onne
ted to the memory/
a
he hierar
hy below via a single bus. Therefore, this parametershould be set to 1 if the
a
he is
onne
ted to a bus. The next parameter (resour
e
ode) should beset to 0, and is used for sele
ting poli
ies for
hoosing one of multiple buses, if the
a
he
onne
tsto more than one. The last parameter de�nes the names of the buses that the
a
he is
onne
tedto. Ea
h
a
he has a �xed number of miss status holding registers (MSHRs) asso
iated with it.The number of MSHRs and the number of targets per register are spe
i�ed as shown below. These
on�guration parameters spe
ify the number of MSHRs in every
a
he for the hierar
hy.-
a
he:mshrs <number of mshrs>-
a
he:mshr_targets <number of targets>Translation look-aside bu�ers (TLBs) are
on�gured as virtually-indexed virtually-tagged
a
hes.The other parameters for TLBs are identi
al to the
a
he parameters. The names of the instru
tionand data TLBs must be expli
itly spe
i�ed as shown below.-tlb:dtlb <name>-tlb:itlb <name>2.2 Con�guring Buses and Memory-bus:define <name>:<width>:<
y
le_differential>:<arbitration penalty>:<inf bandwidth>:<# resour
es>:<resour
e
ode>:[resour
e names℄*The syntax to
on�gure a bus is shown above. The �rst parameter de�nes the name asso
iatedwith the bus. This name will be used to refer to the bus in the
on�guration �le. The otherparameters are the width of the bus (in bytes), the number of pro
essor
y
les that equals one bus
y
le, the bus arbitration penalty (in bus
y
les) and a
ag to simulate in�nite bandwidth withzero
ontention delays. The resour
es and resour
e
ode parameters are similar to the parametersin the
a
he de�nition. The resour
e name parameter should be set to the name(s) of the memorystru
ture(s) or
a
he(s) to whi
h the bus
onne
ts.-mem:define <name>:<a

ess time>:<a

ess
ode>:<
y
le ratio>The syntax to
on�gure the parameters for memory is shown above. The �rst parameterde�nes a label that will be used within the
on�guration �le to refer to a memory unit. The se
ondparameter is the a

ess laten
y in
y
les (at bus frequen
y). The third parameter de�nes the typeof memory (SDRAM, RAMBUS et
). Currently only SDRAM is supported and this parametershould be set to 0; future extensions will support other types of memory. The last parameterde�nes the ratio between the memory bank frequen
y and the pro
essor frequen
y.2

2.3 Sample Con�gurationBelow is a sample
on�guration. The
on�guration de�nes a memory hierar
hy
onsisting of splitlevel-1
a
hes ba
ked by a uni�ed level-2
a
he and a level-3
a
he. The level-1 data
a
he (DL1)is 8KB large, 2-way asso
iative and virtually indexed physi
ally tagged. It has a 3-
y
le a

esslaten
y and uses the FIFO repla
ement poli
y. The level-1 instru
tion
a
he (IL1) is 64KB large,2 way asso
iative, virtually-indexed virtually-tagged and uses LRU repla
ement poli
y. The IL1
a
he has a one
y
le hit laten
y. Both the level-1
a
hes are
onne
ted to the level-2
a
he via a
ommon bus (L2bus) that is 16 bytes wide. The level-2
a
he is 2MB with a 6-
y
le a

ess laten
ywhile the level-3
a
he is 4MB large with a 14-
y
le a

ess laten
y. Both the L2 and L3
a
hes aredire
t mapped.# defines name of first-level data
a
he-
a
he:d
a
he DL1# defines name of first-level instru
tion
a
he-
a
he:i
a
he IL1# defines the names of the data and instru
tion TLBs-tlb:dtlb DTLB-tlb:itlb ITLB#
a
he
onfigurations-
a
he:define DL1:64:64:0:2:f:3:vipt:0:1:0:L2bus-
a
he:define IL1:512:64:0:2:l:1:vivt:1:1:0:L2bus-
a
he:define L2:32768:64:0:1:l:6:pipt:0:1:0:L3bus-
a
he:define L3:65536:64:0:1:l:14:pipt:0:1:0:Membus# number of regular mshrs for ea
h
a
he-
a
he:mshrs 8# number of prefet
h mshrs for ea
h
a
he-
a
he:prefet
h_mshrs 4# number of targets for ea
h MSHR entry-
a
he:mshr_targets 8# define tlbs-tlb:define DTLB:1:32:0:128:l:1:vivt:0:1:0:L2bus-tlb:define ITLB:1:32:0:128:l:1:vivt:0:1:0:L2bus# bus
onfiguration-bus:define L2bus:16:1:1:0:1:0:L2-bus:define L3bus:16:1:1:0:1:0:L3-bus:define Membus:8:4:1:0:1:0:SDRAM 3

memory bank
onfiguration-mem:define SDRAM:150:0:1# Additional options# flush
a
hes on system
alls-
a
he:flush false3 ImplementationThis se
tion des
ribes the implementation of the memory hierar
hy extensions. We �rst presentdetails of the data stru
tures used to model the memory hierar
hy and then des
ribe the relevantfun
tions that simulate memory a

ess.3.1 Data Stru
tures3.1.1 Ca
he A

ess Pa
ket Stru
tureThe
a
he a

ess pa
ket is a stru
ture used to pa
k the parameters that de�ne ea
h
a
he a

ess.The important parameters in
a
he a

ess pa
ket are shown below. This stru
ture stores a pointerto the
a
he stru
ture being a

essed, the address to a

ess, a
ag indi
ating if the address is virtual,the number of bytes required and the type of a

ess (Read/Write). In addition,
a
he a
ess pa
ketalso
ontains pointers to two fun
tions | the release fun
tion (release fn) and the valid fun
tion(valid fn). These fun
tions are \
allba
k fun
tions" and are used if the a

ess results in a
a
hemiss or
annot be served immediately. On a
a
he miss subsequent stru
tures (
a
he/memory) inthe hierar
hy are a

essed until the miss is resolved. At that point the valid fun
tion is used to
he
k if the instru
tion that generated this
a
he a

ess is still valid (e.g. it has not been squasheddue to a pipeline
ush). If the instru
tion is still valid, the release fun
tion is
alled. For example,the release fun
tion
ould be used to inform a load/store operation that the a

ess it initiated has
ompleted.typedef stru
t _
a
he_a

ess_pa
ket{ stru
t
a
he *
p; /*
a
he to a

ess */unsigned int
md; /* a

ess type, Read or Write */md_addr_t addr; /* address of a

ess */enum trans_
md vorp; /* is the address virtual or physi
al*/int nbytes; /* number of bytes to a

ess */RELEASE_FN_TYPE release_fn; /* Fun
tion to
all upon
a
he release */VALID_FN_TYPE valid_fn; /* Fun
tion to
he
k validity of return */}
a
he_a

ess_pa
ket;3.1.2 MSHR Stru
tureThe
a
he data stru
ture from Simples
alar 3.0 was modi�ed to support the new memory exten-sions. The most signi�
ant
hange is the addition of a stru
ture to support MSHR registers. The4

important parameters in the MSHR stru
ture are shown below. The MSHR registers hold stateinformation for a

esses that missed in the
a
he. Ea
h MSHR entry stores the following data |address of the missed a

ess, the number of bytes requested and the type of the a

ess (read/write).A spe
i�ed number of
a
he misses to the same
a
he line,
an be
oales
ed into one MSHR registerby allo
ating multiple targets. The ntargets variable holds the number of misses that are
oales
edinto ea
h MSHR entry.stru
t mshregisters{ md_addr_t addr; /* address sent to next
a
he level */unsigned int
md; /* Read if all targets are reads */unsigned int size; /* Number of bytes requested */int ntargets; /* number of allo
ated targets */stru
t target_table{ ti
k_t time; /* time of request */stru
t _
a
he_a

ess_pa
ket *pkt; /* pa
ket representing this
a
he a

ess */} target_table[MAX_TARGETS℄; /* target des
riptors */} mshregisters[MAX_MSHRS℄;3.2 Ca
he A

ess Fun
tionsIn this se
tion we des
ribe in detail the fun
tions that are used to simulate a

esses to the memoryhierar
hy.3.2.1 Simulating Ca
he A

essA
a
he a

ess is initiated by �rst
reating a
a
he a

ess pa
ket and passing it as an argumentto the
a
he timing a

ess fun
tion to a

ess the level-1
a
he. For example, the ruu issue() fun
-tion initiates a
a
he a

ess for loads by
reating a
a
he a

ess pa
ket to a

ess the level-1 data
a
he. The
p variable in the
a
he a

ess pa
ket is set to point to the level-1 data
a
he stru
-ture, the valid fn variable is set to the valid rs() fun
tion, and the release fn variable is set toeventq queue event(). The valid rs() fun
tion is used to
he
k the appropriate RUU entry toensure that the instru
tion is still valid (i.e. it has not been
ushed from the pipeline). Theeventq queue event() fun
tion is used to pla
e an instru
tion onto a queue of
ompleted instru
-tions.Figure 1 shows a
ow
hart of a
all to the
a
he timing a

ess() fun
tion. The fun
tion �rst
he
ks to see if the address is a virtual address. If the address is virtual and the
a
he beinga

essed is not virtually indexed and virtually tagged (VIVT) then the
a
he pa
ket is passedto the
a
he translate address() fun
tion to translate the virtual address to a physi
al address.The working of
a
he translate address() is des
ribed later in this se
tion. On
e the address istranslated, the tag bits from the address are extra
ted and
ompared with the tags of the theappropriate
a
he set. If the
omparison indi
ates a
a
he hit, the fun
tion returns the
a
hehit laten
y. On a
a
he miss, the MSHR registers are sear
hed to �nd if a previous
a
he misshas o

urred for the same
a
he line. If an MSHR mat
h is found and an MSHR target entry isavailable the
a
he pa
ket is added to the MSHR entry's list of targets. The fun
tion then returnsa CACHE MISS. If the mat
hing MSHR entry has no free target entries available, the fun
tion5

call cache_timing_access (...)

Yes

Virtual?
Is the address

No Yes

No

Yes

Yes
Is it a

MSHR hit?

Yes

Return CACHE_MISS
Allocate an MSHR entry

No

Update MSHR entry
Find latency to next memory level

Does MSHR have
a free target ?

Return cache hit and hit latency

Access Level−1 cache

Is Cache VIVT ?
No

Access TLB

Is access a hit ?

No

Return TARGET_FULL

No

Yes

A
cc

es
s

ne
xt

 le
ve

l i
n

m
em

or
y

hi
er

ar
ch

y

Is a free
MSHR available

Return MSHR_FULL

call cache_translate_address(...)

Figure 1: A
ow
hart showing the operations that are performed by the
a
he timing a

ess fun
tion.
6

returns a value indi
ating that the MSHR targets are full and the a

ess should be re-tried at alater time.If there is no outstanding miss to the same
a
he line (an MSHRmiss), a newMSHR entry is allo-
ated and the
a
he pa
ket is stored as a target in that entry. A new
a
he a

ess pa
ket is then
re-ated to a

ess the next level of memory. The valid fn and release fn in the new
a
he a

ess pa
ketare set to valid mshr() and s
hedule response handler() respe
tively. The bus to the next level of
a
he/memory is
he
ked to determine the delays due to laten
y and
ontention. An event is thens
heduled on the global event queue to a

ess the next level of
a
he using the
a
he timing a

essfun
tion.A missed a

ess travels down the memory hierar
hy via su

essive
alls to
a
he timing a

ess()and is eventually resolved at some level in the hierar
hy (i.e. hits in
a
he or memory). On
e thea

ess is resolved the valid fn from the
a
he
a
he a

ess pa
ket is invoked to
he
k if the instru
-tion that initiated this memory operation is still valid. If the instru
tion is still valid the release fn(s
hedule response handler()) in the
a
he a

ess pa
ket is
alled. The s
hedule response handler()fun
tion
alls the response handler() fun
tion and passes it a pointer to the
a
he a

ess pa
ketthat was used to a

ess the previous
a
he in the hierar
hy (i.e. the last level in the
a
he hierar
hythat su�ered a miss). The response handler() fun
tion sele
ts a line from the
a
he to evi
t basedon the
a
he's repla
ement poli
y. If the sele
ted line is valid and dirty then it is written to thelower level in the hierar
hy and tags of the
orresponding
a
he-line is set to the new value. TheMSHRs are then sear
hed to �nd the entry
orresponding to the returning
a
he miss and therelease fun
tions of all the targets in the MSHR are
alled.3.2.2 Address TranslationVirtual addresses are translated to physi
al addresses by a

essing the TLB. The
a
he translateaddress() and the
a
he timing a

ess() fun
tions are used to simulate TLB a

esses. As shownin Figure 1, when a non-VIVT
a
he is a

essed with a virtual address then the address ispassed to the
a
he translate address fun
tion for address translation. This fun
tion
reates a
a
he a

ess pa
ket and a

esses the TLB by invoking the
a
he timing a

ess fun
tion. TLBs areorganized like VIVT
a
hes and a

esses to the TLB happen as des
ribed in 3.2.1. On a TLB missthe translation is found by a

essing the lower levels of the hierar
hy.3.2.3 Implementation NotesThis subse
tion lists the new �les that have been added to support the memory hierar
hy exten-sions. The
a
he.
 �le from the original Simples
alar (Version 3.0a) has been split into three �les.Ca
he timing.

ontains the
ode to support the memory hierar
hy extensions,
a
he fun
.

on-tains
ode to support fun
tional exe
ution (sim-fast) and is largely un
hanged from Simples
alar3.0a, and
a
he
ommon.

ontains
ode that are used by both sim-outorder and other simulatorsin the suite (e.g.
ode for
a
he evi
tion poli
ies).bus.
, bus.h : Code to model buses
a
he_
ommon.
,
a
he_fun
.
,
a
he_timing.

a
he.h : Code to model
a
he a

essmshr.h : Code to model MSHRstlb.
, tlb.h : Code to model TLB a

essNote that the fun
tions in
a
he fun
.
 are used by the sim-fast and sim-
a
he simulators.However, only sim-outorder is supported in this release. Other simulators will be supported in7

future releases.4 SummaryIn this report we des
ribe memory hierar
hy extensions to the Simples
alar tool set (version 3.0).These extensions enable modeling
a
he hierar
hies of arbitrary depths and they also model thebuses that
onne
t the di�erent levels. The
a
hes
an be
on�gured to use either virtual orphysi
al addresses. We model virtual to physi
al address translation by simulating a hardwareTLB. Se
tion 2 provides a detailed explanation of how the di�erent memory
omponents
an be
on�gured.The memory extensions support only the sim-outorder simulator exe
uting PISA binaries. Also,in the
urrent version it is not possible to spe
ify split TLBs for
a
hes at level 2 and lower. Allthe
a
hes that are at level 2 or lower use the DTLB (if spe
i�ed) to perform address translation.Future versions will add additional support for other ISAs and to provide greater
exibility in
on�guring TLBs.Referen
es[1℄ D. Burger and T. M. Austin, \The simples
alar tool set version 2.0," Te
h. Rep. 1342, ComputerS
ien
es Department, University of Wis
onsin, June 1997.[2℄ J. D. Gindele, \Bu�er blo
k prefet
hing method," IBM Te
h. Dis
losure Bull., vol. 20, pp. 696{697, July 1977.

8

