T.C. Au, D. Nau, and V.S. Subrahmanian. Utilizing volatile external information during planning.
Proceedings of the European Conference on Artificial Intelligence (E@&ijust 2004, pp. 647—651.

Utilizing Volatile External Information During Planning

Tsz-Chiu Au and Dana Nau and V.S. Subrahmanian

Abstract. There are many practical planning situations in which  information source. When appropriate, the wrapper will automat-
planners may need information from external sources during the ically backtrack the planner to a previous point in its operation.

planning process. We describe the following: e We describe several different query-management strategies for
e Wrappers that may be placed around conventional (isolated) plan- Wrappers to use. These strategies dictate when to issue queries,
ners. The wrapper replaces some of the planner's memory ac- and when and how to backtrack the planner.

cesses with queries to external information sources. When appro» We describe experimental tests of several query management
priate, the wrapper will automatically backtrack the planner to a strategies on wrapped versions of three well-known planners,

previous point in its operation. SNLP [17], Graphplan [2], and SHOP2 [21]. Our experimental
e Query-management strategies for wrappers. These dictate when results show conditions under which different kinds of query man-
to issue queries, and when/how to backtrack the planner. agement strategies are preferable, and conditions under which cer-

. . . tain planners are preferable.
e Mathematical analysis and experimental tests. Our results show P P

conditions under which different query management strategies
are preferable, and demonstrate that certain kinds of planning OUR MODEL
paradigms are more suited than others for planning with volatile

information. In this section we describe how to map a conventional planning pro-
cedureA into awrapped procedured, which is also called srap-
1 INTRODUCTION per, that gets information from external sources during planning. We

do not care what kind of planning procedudeis, except thatd is

A fundamental assumption of most Al-planning research is that thénvoked on a problem descriptiafi written in some languagé, A

planner isisolated it is given a problem specification when it is in- 9€ts no additional information after it has been invoked, antitir-

voked, and receives no further input while it is running. In many Mminates it either returns failure or returns a plan or potidpat is a

practical planning situations, this assumption is unrealistic. Plannergolution forp.2

may need query information sources such as database systems [3],The languagd. will usually have many different types of syntac-

CAD systems [24], human users [20], and web services [27]. tic expressions. We now define a langudgthat includes all of the
One problem with such queriesla time Dix et al.[4] found that expressions of., and also includes additional symbols calleat

when the planner queried other agents for information rather thaknowns Each unknowru has one ofL’s expression types assigned

having it available internally, the planning time increased by moret0 it, and is only allowed to denote expressions of the same type.
than an order of magnitude. Expressions in_ are like the ones ird, except that inZ they may

Another problem with the queries iisformation volatility during ~ contain (or be) unknowns of the appropriate types. An expression
planning In practical planning situations, the planning activity may is u-ungroundf it is an unknown or contains one or more unknowns
occur over a period of hours, days, or weeks [18, 11]: a period mucRtherwise it isu-ground An expressior’ is au-instanceof e if ¢’
longer than the actual execution time of the plan. This means thatan be obtained from by substituting expressions for unknowns.
some of the relevant information is likely to change during the plan- f @ planning problen® is u-ground, then itsolutionsin L are the
ning process: if we lock a database or reserve a ticket, the lock opa@me as its solutions if. If P is u-unground, themr is a solution
reservation may lapse; if we obtain a sensor reading, we may be ufior P iff m is a solution for every u-ground instance/of

able to guarantee its accuracy for more than a short period of time. If We now describe therapper A. For each unknowa in P, there

the information changes, the plan may need to be revised. will be an information source (u) which A may query for the value
The focus Of the paper is hOW to manage p|ann|ng Systemgoru AW|" haVeacaChe fOI‘ hOldIng answers to quel’les we assume

queries, and responses in order to plan with volatile information. Oufhat the size of the cache is unlimited. Each tirheeeds to know the

contributions are as follows: value of some unknowa in P, A may either retrieve a value from
the cache or send a queryddu).

o We describevrappersthat may be placed around isolated plan-  While A is running onP, it will issue some sequence of queries
ners, to enable them to issue queries for volatile external infory; , g-, .. ., which may either be synchronous (i.€. pauses until an
mation and make appropriate use of the answers. The wrappemnswer is received) or asynchronouk ¢ontinues to operate, and
replaces some of the planner's memory accesses with queries thatay issue additional queries). For each qugrwe letu(q) be the
the wrapper will direct to either an internal cache or an external

2 In the worst case, we can wrap any planning algorithm by making a copy
1 Department of Computer Science, University of Maryland, College Park, of the planning algorithm’s execution state whenever it makes a query. De-
Maryland, U.S.A. email§chiu,nau,v$@cs.umd.edu pending on the planner, it may be sufficient to store much less information.




unknown whose value is requested, @pd) be thelag time (the
elapsed time between issuin@gnd getting a response).

Associated withy is anexpiration time the amount of time that
the response tg is guaranteed to remain valid. After the expiration
time has passed, the value of the unknawin) may change.

3 QUERY MANAGEMENT STRATEGIES

In the previous section we described one of the query manageme
strategies that the wrapped proceddrenight use. We will call that
query strategy theager update strateggince the wrapper re-issues
a query immediately after its value expires.

The eager update strategy is not always best. When a quwag
expired, the value of the unknowriq) will not necessarily change—
and if it does change, it might later return to the previous value. Thu:
instead of reissuing the query immediately (which will incur a lag
time and will increase the load on the network), it may be better tc
use adazy update strategycontinue plannings if the value ofu(q)
were unchanged—and once we find what seems to be a solutio
reissue the query to make sure whether the solution is correct.

It is not hard to show that both strategies are sound, and we ha\x
derived conditions under which they are complete. We have also de
veloped aperiodic update strategy that is intermediate between the

eager and lazy strategies. We omit these results due to lack of space.

The implementation of the wrapped procedure needs to maintai
a data structure calledquery tree SupposeP is u-unground, and
let P be the set of all u-ground instancesf Suppose we rur on
P, using the followingquery-management strategil) if A needs
a value for an unknowm that is not in the cache, issue a query for
u and wait for a response; (2) if a quegyexpires, immediatelye-
issueit (i.e., issue a query’ with u(¢’) = u(q)), and wait for a
response; and (3) if(¢') # wv(q) then backtrackA to the point
whereq was issued, and proceed using;’) as the value fou(q).
We now consider two cases:

Case 1: no query ever expires. Then will never backtrack over
A’s execution, sod’s execution trace of? is basically the same as
A’s execution trace on some instancerafThere is one possible
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Figure 1. Query tree for the example.
n

Let A be a planner that uses a depth-first forward searchAziel
the wrapped planner. First} starts checking whether Jim can afford
to fly. First, A tries to access the value aifline_price, so A queries
atravel agent (quergl in Figure 1). After 10 minutes, the answer is
$120. Next, A tries to accesbank-balance, so A queries the bank
(queryg2 in the figure). After 5 minutes, the answer$i$50. Jim
can afford to fly to city B, sod starts putting the appropriate steps
into the plan for his flight. However, aftérmore minutes the bank
notifies A that the bank balance has changed. This may invalidates
the current plan, sel backtracks4 to g2 and reissues it (queny3
in the figure). The new value dfank_price is 100. So Jim can no
longer afford to fly, and ther starts checking whether he can afford

execution trace for each combination of responses to the querieto go by train. To do this, it needs to kndvain_price, so A queries

These execution traces form a tfgen which each internal node
corresponds a query, each edge corresponds to a portion of

to the train station. After 15 minutes, the answef&9. Thus Jim
aan afford to go by train.

execution trace, and each terminal node corresponds to the termi-

nation of an execution trace. We will call this tréés query tree
for P. We letry, 72, . .., 7, be the terminal nodes, and parent
be the parent of each node

Case 2: some query; expires. Therd will backtrack A to the point
in Y whereq was issued, and reissyelf the answer to the query
differs from before, them will proceed down a different branch
from before.

4  ANALYSIS OF RUNNING TIMES

We now analyze the query management strategies’ running times.
As A progresses, it will explore the nodes and edges of the query
tree. We assume that will represent the query tree in its cache as
follows. For each node, A will store the unknown: currently being
gueried and the current execution stateAgrand for each edge em-

As an example, consider a simple transportation-planning probleranating fromv, A will store the corresponding value of By storing
in which Jim wants to travel from one city to another, he may go bythis information,A can backtrack to quickly if w's value expires.
either train or airplane, and he does not know the price of the traifFurthermore, if the re-issued query produces a combination of values
ticket, the price of the airline ticket, and the amount of money in histhat A has seen before} will be able to resumel’s execution at the

bank account.
We can model this as a u-unground planning probfin which
there are three numerical unknowmistin_price, airline_price, and

node corresponding to this set of values, without having to re-execute

all of A’s computations leading to that node.
We letd be the average number of query nodes on each path in

bank_balance. Due to lack of space, we will not give the details of the query treet; be the average lag time for any quety,be the
the initial state and the operators—but the basic idea is that in ordeaverage time between any two consecutive queries,tarm the

to decide whether Jim can afford to fly, we will need to retriaire

average time between any two consecutive expirations of queries.

line_price andbank_balance, and in order to decide whether he can Fori =1, ..., n, we letT; be the amount of CPU tim& spends on

go by train, we will need to retrievigain_price andbank_balance.

the edge between parénf) andr;.



For our analysis, we will consider the case where the maximunbut the total lag time can be much smaller for the lazy strategy than
expiration time is small enough for at least one expiration to ocCufne eager Onezyif” r; < m®*9° pt;) whenp is much larger than

on each path in the query tree. Each time an expiration ocelirs, 1. Thus, either strategy can have a larger running time than the other.
using eager update strategy will cachis execution state, indexed |f expirations are frequent is small), therp is large, so the third

by the associated set of values for the unknowns, then backtrack f@rm of the equation fof..,., will be much larger than foff},.,.

the query node whose query expired and reissue the query. Whet\rthermore, the lazy update strategy can issue several queries si-
the new answer to the query arriveswill either jump back to the  myltaneously, while the eager update strategy cannot. Thus in this

place it just left, or will jump to some other path in the query tree, case, usuallffia., < Teager. However, ifTh.:, is very small and
depending on whether or not the new value 4d¢) is the same as

n expirations occur less frequently, then potentidlly,ger < Tiqzy.
the old one.A using lazy update strategy, however, will not cache
A’’s execution state and backtrack immediately when an expiratio
occurs; it will do so only wheni reaches a terminal node, at which % EXPERIMENTS
it will re-issue all pending expirations at once. We 1et“?*” and  Since the analysis required several simplifying assumptions, an im-
n;l‘”y be the total number of jump4 with eager update strategy and portant question is whether these hypotheses are true even when the
A using lazy update strategy makes before it terminates, respectivelgssumptions are not satisfied. We now investigate this experimen-

Lazy update strategy.In the lazy update strategy, only checks for
expirations wherA reaches a terminal node. This happens wHen
either finds a solution or exits with failure. Let, ..., 7, be all of
the terminal nodes that visits. If A’s queries ever again produce
the same set of answers that led to samed will go immediately
to the cached value for;, at which point it can immediately exit.
Thus, for each;, the computational work done by to get tor; will
only need to be done once, ahds equal tom'**V. Let T,,.,, be the
average value ofT; : A visits 7, }, andT 5" be the sum of the CPU
times for all edges of the query tree that are abave. . , 7 but not
adjacent tory, . . ., 7. For eachi, we lett; andt; be the times when
A jumps to a path from the root of the query tree to thand away
from the path, respectively. For eachlet r; be the maximum lag
time for all queries issued at timé (i.e.,r; = t;11 — t}). It follows
that the total running time of the lazy update strategy is

mlazy

laz laz
ﬂazy = Tpr +m yTavg + E Ti.

i=1

Eager update strategyln this strategyA immediately backtracks
to the query node for the unknown when the value ofi; expires,
the execution trace fod at; is usually left unfinished. Each timé
visits the path to ta;, it spends an average tf time extendingA’s
execution trace before it moves to another pathuill exit as soon as
it reaches a terminal node. Letp = T),:» /t. be the average num-
ber of visits for each path toward each terminal node7ket. ., 7;
be all of the terminal nodes that visits. WhenA terminates, each
path from the root of the query tree to anyhas already been visited
p times on average, and has spent},,;, amount of CPU time to
work on each path on average. There are a totab 67" x p tran-

tally. Our experimental hypotheses were that (1) the lazy update strat-
egy would usually issue fewer queries than the eager update strategy,
and (2) the lazy update strategy would usually produce a smaller total
running time (including both CPU time and lag time) than the eager
update strategy.

Experimental Setup: For our experimental tests, we used
wrapped versions of three planners: SNLP, Graphplan, and SHOP2.
For SHOP2, our testbeds consisted of 60 randomly generated u-
unground problems from the satellite domain used in the AIPS-2002
planning competition, and 80 randomly generated u-unground logis-
tics problems. Graphplan cannot handle numeric values; so we only
tested it on the logistics problems. In addition, Graphplan is much
slower than SHOP?2: it could solve only 18 of the 80 problems within
the time limit of our experimentsSNLP was too slow to solve even
a single one of the logistics problems. So for both SNLP and Graph-
plan we used 20 u-unground problems from a simplified version of
logistics domain that we called the travel domain. Each problem con-
tained at most four unknowns; most unknowns had two possible val-
ues.

In order to test the two hypotheses, we measured the total number
of queries and total running time for the wrapped planning proce-
dures. We kept the lag times fixed @tl seconds, and varied the
expiration times from 0.2 to 1.5 seconds. For each combination of
planner, problem, expiration time, and query management strategy
we did five runs. Thus each data point for the satellite domain is the
average of 300 runs, each data point for the logistics domain is the
average of 400 runs of SHOP2 or 90 runs of Graphplan, and each
data point for the travel domain is the average of 100 runs of SNLP
or 100 runs of Graphplan. Since this gave us a total of more than
30,000 runs to perform, we needed to limit the running time of each
procedure; we chose a limit of 5 minutes per run.

Figure 2 shows the total number of queries issued by the wrappers

sitions from one path to another, and since there is only one query gfs 4 function of the expiration time. Note that thexis is on a loga-

each transition, each transitions takes an avetagmount of time,
wheret; is the average lag time of each quefy,}7“" be the sum of
the CPU times for all edges of the query tree that are abgve . , 7;
but not adjacentte, ..., 7;, wherej is equal tom“*9°" x p. Thus,
the total running time of the eager update strategy is

__ rpeager eager eager
Teager - TGP +m T’mzn +m Ptl

Comparison betweenTi,., and T.qg.-. It is difficult to say
which of THZY and TS%°" is larger: on one hand, it is likely that

rithmic scale that spans three orders of magnitude. In most cases the
eager update strategy generates many times more queries than the
lazy update strategy, especially when the expiration time is small.
These results confirm Hypothesis 1.

Figure 3 shows the total running time for the wrapper as a function
of the expiration time. Again thg axis is on a logarithmic scale.

3 For this purpose we used a simulation. For a planhét is straightforward
to develop a simulation of the wrapped planaethat gives very accurate
results. The basic idea is to run invocationso§eparately on each of the

mbe*¥ < me9eT hut on the other hand, the eager strategy will spend paths in the query tree and keep track of the timing data. This data can then

less CPU time on each path toward each terminal nodes. The total

be reused for several simulations, making it possible to simulate a large
number of runs of the planner in a short amount of time.

CPU time can be much larger for the lazy strategy than the eager onesHoP2 ran so much faster than the other planners because it can make use

(MY > M9 T)nin) WhenTy,, is much larger thaff,,in,

of domain-specific information
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Figure 4. Fraction of the total number of queries issued at any point during
pe planning process if there is no expiration. All timelines are normalized to
' 1. Each line is the average over all possible execution traces.

Figure 2. Total number of queries as a function of expiration time. Eager
and lazy update strategies are denoted by dotted and solid lines, respective‘
Each data point is the average of several hundred runs (see the text). To
avoid biasing the results, no data point is shown if one or more runs did not
finish within the time limit.
would also have generated fewer queries than SNLP if we had run it

on the problems in the travel domain.

10° : ‘ To provide additional verification of which planner would be most
o e o ORY. Sl suitable for solving in which there is volatile external information,
e o we did one more experiment. In this one, we generated the entire
10°) s 1 query tree for each planner. Each path in the query tree represents
~ =S what the planner's execution trace would be if no expirations ever
g S . Trewel occurred. For each of these paths, and for each query along that path,
& 10'; E we computed the total number of queries that a planner has issued as
£ f O, a function of what percentage of the total planning time has elapsed.
§ R TP f j G000 We averaged this data over all of the paths in the query tree: this
; 10°F T e consisted of 320 paths for SNLP and 384 paths for Graphplan in the
2 %‘WK travel domain, 288 paths for Graphplan and 2876 paths for SHOP2
g Toe g o in the logistics domain, and 2236 paths for SHOP2 in the satellite
<10 © e domain.
g s =S8 " g The figure shows that both Graphplan and SNLP issue almost all
) o g o of their queries at the beginning of their planning process, while
°F *oox °o o E SHOP2's queries are somewhat more spread out. This provides addi-
OW;—»\ = ° o tional confirr_nation that SHOP2 is bet@er suitt_ad than SNI__P or Grgph-
Expiration time (seconds) plan for solving problems when there is volatile external information.

If a planner issues all of its queries at once, this will temporarily in-
crease the load on the communication network and the information
sources, which is likely to increase the lag time for those queries. A
planner that spreads out its queries will avoid this difficulty.

Figure 3. Total running time as a function of expiration time. Eager and
lazy update strategies are denoted by dotted and solid lines, respectively.
Each data point is the average of several hundred runs (see the text). To

avoid biasing the results, no data point is shown if one or more runs did not

finish within the time limit.
6 RELATED WORK

In every case, the lazy update strategy has a smaller running tim@ur problem stems from the works on integrating planning system
than the eager update strategy, regardless of the planner, domain, anith multi-agent environments, in which a planning agent can inter-
expiration time. This confirms Hypothesis 2. act with external agents, and make queries to distributed, heteroge-

In addition to confirming the two hypotheses, Figures 2 and 3 sugheous information sources. There are different types of multi-agent
gest that of the three planners, SHOP2 is the one that is best suit@anning problem, but our problem is most similar to the problem in
for solving planning problems in which there is volatile external in- which a single planner creates plans for several agents [4, 22, 26].
formation. In the logistics domain, it consistently generated fewerThis type of problem arises in application areas such as multi-robot
queries than Graphplan (and the data points for SHOP2 include sigenvironments, distributed database management system, servers dis-
nificantly more complicated problems than Graphplan, since Graphtributed over the Internet, logistics, manufacturing, evacuation oper-
plan was only able to solve 20% of the logistics problems). SHOPztions and games.
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