
Web Service Composition with Volatile Information

Tsz-Chiu Au, Ugur Kuter, and Dana Nau

Department of Computer Science and Institute for Systems Research,
University of Maryland, College Park, MD 20742, USA

{chiu, ukuter, nau}@cs.umd.edu

Abstract. In many Web service composition problems, information may be
needed from Web services during the composition process. Existing research on
Web service composition (WSC) procedures has generally assumed that this in-
formation will not change. We describe two ways to take such WSC procedures
and systematically modify them to deal with volatile information.

The black-box approach requires no knowledge of the WSC procedure’s inter-
nals: it places a wrapper around the WSC procedure to deal with volatile infor-
mation. The gray-box approach requires partial information of those internals, in
order to insert coding to perform certain bookkeeping operations.

We show theoretically that both approaches work correctly. We present ex-
perimental results showing that the WSC procedures produced by the gray-box
approach can run much faster than the ones produced by the black-box approach.

1 Introduction

Most existing research on automated composition of semantic Web services has focused
on Web service composition (WSC) procedures, i.e., procedures for finding a composi-
tion of Web services to accomplish a given task. In order to assemble a composition, a
WSC procedure itself may need to retrieve information from Web services while it is
operating. Existing works have generally assumed that such information is static, i.e., it
will never change. For example, the Golog-based [1] and HTN-based [2, 3] approaches
both use the Invocation and Reasonable Persistence (IRP) condition. The WSC proce-
dures reported in [4, 5] are even more restrictive: they require that all of the information
needed by their procedures is provided by the user as input parameters. We will refer to
such procedures as static-information WSC procedures.

Clearly there are many cases where the static-information assumption is unrealistic.
There are thousands of Web services whose information may change while a WSC
procedure is operating: for example, whether a product is in stock, how much it will
cost or how much has been bid for it, what the weather is like, what time a train or
airplane will arrive, what seats are available for an airplane or a concert, what resources
are available in a grid-computing environment, and so forth.

This paper focuses on how to take static-information WSC procedures such as the
ones mentioned above, and translate them into volatile-information WSC procedures
that work correctly when information obtained from Web services may change.

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 52–66, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Web Service Composition with Volatile Information 53

Our primary contributions are as follows:

1. We provide a general procedural model for a class of WSC procedures. We model
them as trial-and-error search procedures that may try different possible Web ser-
vice compositions in order to find one that accomplishes the desired task.

2. We describe a black-box approach for translating static-information WSC proce-
dures into volatile-information WSC procedures. In particular, we describe a wrap-
per that can be placed around any WSC procedure, without needing to know how
the underlying composition procedure operates.

3. We describe a gray-box approach for translating static-information WSC proce-
dures into volatile-information WSC procedures. This approach is based on tak-
ing our procedural model mentioned above, and modifying it to deal with volatile
information—hence the same modification will work on any WSC procedure that
is an instance of our general procedural model. We call this approach a gray-box
approach because it requires partial knowledge about a WSC procedure: namely,
that the WSC procedure is an instance of our procedural model.

4. We state theorems saying that both the black-box and the gray-box approaches
work correctly on any WSC procedure that is an instance our general model.

5. We provide experimental results demonstrating that the gray-box approach pro-
duces volatile-information WSC procedures that may run exponentially faster than
the ones produced by the black-box approach. For example, in a set of problems
in which there were only seven information items that needed to be retrieved from
Web services, the procedure produced by the gray-box approach ran 50 times as
fast as the one produced by the black-box approach.

It also would be possible to define a white-box approach, namely to take the code for the
WSC procedure and rewrite it by hand. But this approach would be labor-intensive and
it would only extend a single composition procedure, hence we do not consider it in this
paper. Our results show that in comparison with the black-box approach, the gray-box
approach already can provide substantial speedups without having to delve into all of
the details of the original WSC procedure.

2 Procedural Model of Web Service Composition

Existing approaches for Web Service Composition formulate the problem in different
ways, depending mainly on how the developers of those approaches perceive the prob-
lem. Examples include the following:

• In [1], the states of the world and the world-altering actions are modeled as Golog
programs, and the information-providing services are modeled as external functions
calls made within those programs. The goal is stated as a Prolog-like query and
the answer to that query is a sequence of world-altering actions that achieves the
goal, when executed in the initial state of the world. During the composition process,
however, it is assumed that no world-altering services are executed. Instead, their
effects are simulated in order to keep track of the state transitions that will occur
when they are actually executed.

54 T.-C. Au, U. Kuter, and D. Nau

• In [2], the WSC procedure is based on the relationship between the OWL-S process
ontology [6] used for describing Web services and Hierarchical Task Networks as in
HTN Planning [7]. OWL-S processes are translated into tasks to be achieved by the
SHOP2 planner [7], and SHOP2 generates a collection of atomic process instances
that achieves the desired functionality.

• [3] extends the work in [2] to cope better with the fact that information-providing
Web services may not return the needed information immediately when they are ex-
ecuted, or at all. The ENQUIRER algorithm presented in this work does not cease
the search process while waiting answers to some of its queries, but keeps search-
ing for alternative compositions that do not depend on answering those specific
queries.

• [4] models Web services and information about the world using the “knowledge-
level formulation” first introduced in the PKS planning system [8]. This formulation
models Web services based not on what is actually true or false about them, but what
the agent that performs the composition actually knows to be true or false about their
operations and the results of those operations. A composition is formulated as a con-
ditional plan, which allows for interleaving the executions of information-providing
and world-altering services, unlike the works described above.

Despite their differences, the aforementioned approaches have the following features in
common:

1. The WSC procedure is given the specification of the Web services written in a
formal language such as OWL-S [6], and a goal to be accomplished in the world.

2. The WSC procedure does a trial-and-error search through some space of possi-
ble solutions, to try to find a complete solution. A solution for a Web service-
composition problem is a set of services with ordering constraints such that, when
executed, the services achieve the desired functionality required by the input
service-composition problem.

3. The WSC procedure does not have a complete knowledge of the state of the world;
the missing information must be obtained from information-providing services. The
WSC procedures execute the information-providing services to obtain the missing
information either during the composition process or during the execution of the
composition.

4. The WSC procedure does not execute any Web services that have world-altering
effects during the composition process.

5. The information returned from the information-providing services is static. This is
the assumption that our work is intended to overcome.

We now describe a way to take a class of WSC procedures that have the characteristics
mentioned above, and modify them to work with volatile information. We start by defin-
ing an unknown to be any item of information that a WSC procedure needs to obtain
to carry out the composition process. For an unknown u, a WSC procedure sends a
query qu to the available information-providing Web services that can provide the
value vu for u.The value for u is returned by a Web service to the WSC procedure as

Web Service Composition with Volatile Information 55

Procedure General-WSC(P)
S0 ← create-initial-state(P); OPEN ← {S0}; ANSWERS ← ∅
loop

insert all new answers for the pending queries (if any) into ANSWERS
select a node S from OPEN and remove it
if solution(S, P, ANSWERS) then return extract-solution(S, P)
issue queries about zero or more unknowns in S that are not in ANSWERS
OPEN ← (OPEN \ {S}) ∪ children-of(S, P)

Fig. 1. The General-WSC procedure is an abstract model of many static-information WSC pro-
cedures. It is based on the observation that most existing WSC procedures are trial-and-error
search procedures that may try different possible Web service compositions in order to find one
that accomplishes the desired task. P is the problem description, and the initial state S0 is derived
from it.

an answer for the query qu. A query issued by a WSC procedure is said to be pending
if no answers have been received for that query. Otherwise, it is completed. A pending
query becomes completed if all answers for that query is received.

Our procedural model is the General-WSC procedure shown in Figure 1. This
model captures the procedural behavior of most existing service-composition tech-
niques. Examples include [1, 2, 3, 4, 5], and others.

In the General-WSC procedure, each state is an abstract representation of a partial
solution to the WSC problem. If S is a state, then each child S′ of S is obtained by
making some kind of refinement to the partial solution represented by S. We assume
that whether or not S can be refined to produce S′ will depend on some precondition
pre(S, S′), whose value may be true or false depending on the values of some of
the unknowns. If pre(S, S′) = false then the refinement cannot be performed, hence
S′ is a dead end. But if pre(S, S′) = true then the refinement can be performed.
In the latter case, either S′ is a solution to the WSC problem or else it has one or
more children of its own. A state is a terminal state if it is either a dead end or a
solution.

Let S0 be the initial state of a WSC problem, and let 〈S0, S1, . . . , Sn〉 be a sequence
of states such that each Si+1 is a child of Si and Sn is a terminal node. Then from the
above assumptions, it follows that Sn is a solution if and only if

pre(S0, S1) ∧ pre(S1, S2) ∧ . . . ∧ pre(Sn−1, Sn) = true.

The variable OPEN is the set of all states that the WSC procedure has generated but
has not yet been able to examine. The variable ANSWERS is the set of all answers that
have been returned in response to a WSC procedure’s pending queries; i.e.,

ANSWERS = {(u, v) : a Web service has returned the value v for the unknown u}.

General-WSC begins with a set called OPEN that contains only the initial
state S0. Within each iteration of the loop, General-WSC does the following:

56 T.-C. Au, U. Kuter, and D. Nau

• It updates ANSWERS to include any answers that have been returned in response to
its queries.

• It selects S ∈ OPEN to work on next. Which node is selected depends on the partic-
ular WSC procedure. For example, in both the Golog-based [1] and SHOP2-based
[2] approaches, the search is performed in a depth-first manner. The PKS-based ap-
proach reported in [4] can perform either depth-first or breadth-first search.

• It checks whether or not S constitutes a solution (i.e., a composition that achieves
the goals of the current WSC problem). In the pseudocode of Figure 1, this check
is represented by the solution subroutine. The definition of the solution subroutine
depends on the particular instance of General-WSC. For example, in [1, 2, 3], so-
lution checks whether or not the sequence of world-altering services can really be
executed given the information collected from the information-providing services
during the composition process. In the PKS-based approach of [4], the definition of
solution includes (1) checking for the correctness and consistency of the knowledge-
level databases that PKS maintains, and (2) checking for whether the current solution
achieves the goals of the current WSC problem.

• If S is not a solution, then the procedure has an option to issue queries about the
unknowns that appear in S. Then it generates the successors of S, and inserts them
into the OPEN set. The children-of subroutine is responsible for this operation,
and again the details depend on the particular WSC procedure. In [1], children-of
a state is defined through the Trans rules described in that work. A successor state
generated by those rules specify the next Golog program to be considered by the
composition procedure as well as the current partial composition generated so far.
In HTN plannning based approaches as in [2, 3], successor states are computed via
task-decomposition techniques.

3 Dealing with Volatile Information

The previous section dealt with static-information WSC procedures, i.e., WSC proce-
dures for the case where the values of the unknowns will never change. We now consider
volatile-information WSC procedures, i.e., WSC procedures for the case where values
of the unknowns may change over time.

Figure 2 illustrates the life cycle for the value of an unknown u. Suppose a WSC pro-
cedure issued a query qu to a Web service W at time t = tissue(qu), asking for the value
of u. The answer for this query will arrive at time treturn(qu) = tissue(qu) + tlag(qu),
where the lag time tlag(qu) includes both the time the information-providing service
takes to process the query qu and the time delay due to network traffic.

In addition to the lag times of queries, we also need to consider (1) the time needed
to compute a precondition pre(S, S′), and the time needed to perform the refinement
refine(S, S′) that takes us from the state S to the state S′. Note that if pre(S, S′) =
false, then the time to perform refine(S, S′) is zero. If pre and refine refer to un-
knowns whose values are not currently known, then computing them may require send-
ing queries to Web services, thereby incurring some lag times. We assume that except
for those lag times, the time needed to compute pre and refine is negligible.

Web Service Composition with Volatile Information 57

TimeLine

query qu issued
at time tissue(qu)

value vu returned
at time treturn(qu)

vu expired
at time texpire(qu, vu)

lag time tlag(qu) valid time tvalid(qu, vu)

Fig. 2. A typical execution of an information-providing service. Above, tissue(qu) is the time that
a WSC procedure issues a query to a Web service for the value of an unknown u. treturn(qu) is
the time at which the value of u is received, and texpire(qu, vu) is the time point after which that
value is no longer guaranteed to be valid.

Suppose the answer for qu specified the value vu for u. Associated with the answer
is a valid time tvalid(qu, vu), i.e., the amount of time that the answer is guaranteed to be
valid.1 This means that the value of the unknown u is guaranteed to be vu between the
times treturn(qu) and texpire(qu, vu) = treturn(qu)+tvalid(qu, vu). At texpire(qu, vu),
the value vu expires; i.e., u’s value is no longer guaranteed to be vu after the time
texpire(qu, vu).

Since the values of the unknowns change over time, the correctness of a solution
composition returned a volatile-information WSC procedure depends on the values
gathered during the composition time. In order to guarantee that the returned com-
position will be executed correctly on the Web, we will define a solution composi-
tion to be T -correct if it is guaranteed to remain correct for at least some time T
after a WSC procedure returns that solution. In order to provide such a guarantee,
we assume that a value obtained for an unknown u will remain valid for at least
time T .

A static-information WSC procedure is said to be sound if whenever it returns a
solution to a WSC problem, the solution is a correct one. By analogy, we will say that
a volatile-information WSC procedure is T -sound if whenever it returns a solution, the
solution is T -correct.

In the following subsections, we introduce two approaches for taking static-
information WSC procedures and translating them into volatile-information WSC pro-
cedures. For both of them, if the original WSC procedure is sound, the translated
procedure will be T -sound.

1 Some WSC procedures provide a valid time explicitly. For example, hotel rooms can usually
be held without charge until 6pm on the night of arrival; and the web site at our university’s
concert hall will hold seating selections for several minutes (with a countdown timer showing
how much time is left). However, our approach does not actually need a valid time to be given
explicitly, as long as there is a mechanism to inform the WSC procedure immediately after an
expiration has occurred.

However, in that case, the WSC procedure can no longer guarantee how long the solution
will remain valid after it is returned, because expirations may occur anytime after the solution
is returned.

58 T.-C. Au, U. Kuter, and D. Nau

3.1 The Black-Box Approach

[9] investigated how to generate plans in the presence of incomplete and volatile in-
formation. The authors provided a query management strategy that could be wrapped
around most automated-planning systems, to manage their queries to external
information sources.

Our black-box approach is a modified version of the approach described in [9]. The
modifications are: (1) replace the planner with a WSC algorithm, (2) replace the infor-
mation sources with information-providing Web services, and (3) modify the strategy
to pretend that each unknown u’s expiration time is texpire(qu, vu) − T rather than
texpire(qu, vu). The latter modification is necessary to ensure that the solution returned
by the WSC procedure is T -correct.

[9] also described two query-management strategies that we can use with the black-
box approach:

• In the eager strategy, when the information collected from external information
sources is expired, the query-management strategy immediately re-issues the rele-
vant query or queries and suspends execution of the underlying WSC procedure until
the answers come back.

• In the lazy strategy, the query-management strategy does not immediately reissue
new queries about the expired information. Instead, it assumes that such information
is still valid and continues with the composition process until the underlying WSC
procedure generates a solution. At that point, the lazy strategy re-issues queries about
all expired information that that solution depends on, and suspends execution of the
WSC procedure until all of the answers is received.

If the same answers are received for the re-issued queries as before, these strategies
restart the WSC procedure from where it left off. With the lazy strategy, this means the
procedure immediately returns the solution and exits. Otherwise, the strategies back-
track the WSC procedure to the first point where it made a decision that depends on an
unknown whose value has changed, and restarts the procedure from that point.

The following theorem establishes the correctness of the black-box approach:

Theorem 1. Let A be a WSC procedure that is an instance of General-WSC, and let
AB be the modified version of A produced by the black-box approach. If A is sound,
then AB is T -sound.

For a detailed discussion and analysis on the black-box approach, please see [9].

3.2 The Gray-Box Approach

Although the black-box approach described in the previous section is a simple and
a general technique to modify WSC procedures to deal with volatile information, it
has one drawback: it does not consider the internal operations of the underlying WSC
procedures, and therefore, it may not perform very efficiently in some WSC problems.
In this section, we describe another technique, called the gray-box approach, that takes
into account the internals of WSC procedures that are instances of General-WSC in
order to generalize them to deal with volatile information.

Web Service Composition with Volatile Information 59

Procedure VI-General-WSC(P, T)
S0 ← create-initial-state(P); OPEN ← {S0}; ANSWERS ← ∅

loop
remove some or all expired answers from ANSWERS
insert all new answers for the pending queries into ANSWERS
select a node S from OPEN
if solution(S, P, ANSWERS) then

if S contains no unknowns whose values have expired or will
expire within time period T , then

return extract-solution(S, P)
else

remove zero or more values from ANSWERS that have expired or
will expire within time period T , and re-issue queries about them

OPEN ← OPEN ∪ {S}
else

issue queries about zero or more unknowns in S that are not in ANSWERS
OPEN ← (OPEN \ {S}) ∪ children-of(S, P)

Fig. 3. The VI-General-WSC procedure generalizes the General-WSC to deal with volatile
information. It returns a solution to the WSC problem that will remain correct for at least T
amount of time after the solution is returned.

The gray-box approach is based on a modified version of the General-WSC pro-
cedure, called VI-General-WSC, that works with volatile information. This procedure
is shown in Figure 3. In this approach, we take an instance of the abstract General-
WSC service-composition procedure, and translate it into the corresponding instance
of VI-General-WSC.

Like General-WSC, VI-General-WSC performs a search in the space of states,
but it also keeps track of the expired values for the unknowns for which it issued queries
previously, and maintains the ANSWERS set accordingly. At each iteration, a state
S in OPEN is active, if for every unknown u that appears in S we have (u, v) ∈
ANSWERS, where v is the value of u in S. In other words, a state in OPEN is active
at a particular iteration of VI-General-WSC, if all of the information that it depends on
is valid at that iteration. Otherwise, S is inactive. As an example, in Figure 4, the solid
squares are active states and the dashed squares are inactive ones.

The following theorem establishes the correctness of the gray-box approach:

Theorem 2. Let A be a WSC procedure that is an instance of General-WSC, and let
AG be the modified version of A produced by the gray-box approach. If A is sound,
then AG is T -sound.

This theorem holds because (1) given a set of unknowns and possible values for them,
both A and AG have the same search traces, and (2) AG terminates only when the
solution satisfies the solution function and the values the solution depends on remain
valid for time T . Therefore, the solution is T -correct only if A is sound.

Earlier, for the black-box approach, we defined two query-management strategies:
the eager and lazy strategies. In the gray-box approach, since we have some control

60 T.-C. Au, U. Kuter, and D. Nau

S1

S2

S3

S4

S5

S6

S7
S8

S9

S10

S11

S12 S13

S14
S15

u1 = v1

u1 = v2
u1 = v3

u1 = v4

u2 = v5 u2 = v6 u2 = v5
u2 = v6

Fig. 4. An example snapshot of a VI-General-WSC search space. There are three unknowns, and
their current values are u1 = v3, u1 = v4, and u2 = v5. The squares represent the states in the
open list, and the circles represent the states that have already been visited. The label on each
edge (Si, Sj) gives a value uh = vk that the refinement refine(Si, Sj) depends on. For example,
refine(S12, S14) only works if u2 = v5, and the state S14 is a valid refinement of S1 only if both
u1 = v4 and u2 = v5. The solid squares denote active states; these represent valid refinements of
S1. The dashed squares denote inactive states: these once were valid refinements of S1, but they
are not currently valid because some of the information they depend on has expired.

over the way underlying WSC procedures perform their search, our query-management
strategies can be more sophisticated. For example, here are two query management
strategies for use with the gray-box approach:

• The active-only strategy selects the first active state from the OPEN set, if there
exists any. If there is no active state in the OPEN set, then the composition process
stops until some states become active again. In this case, when an answer for a query
expires, we immediately re-issue that query.

• The active-inactive strategy first attempts to select an active node, if there are active
nodes in the OPEN list. If not, it attempts to select an inactive node, assuming that
the values for the unknowns that this selection depends on will become valid at some
point later in the composition process. In this case, we do not reissue a query after its
value is expired; instead, we treat the expired values as if they are not expired. When
we get to a goal state, we reissue all the queries for all expired values that some goal
state in the OPEN set depends on.

4 Implementation and Experimental Evaluation

In our experiments, we used both the black-box and gray-box techniques to gener-
ate volatile-information WSC procedures. In particular, we used the static-information
WSC procedure described in [2], which is an instance of the abstract General-WSC
procedure. This WSC procedure is based on a translation of OWL-S process models
into HTN methods and operators for use within the SHOP2 planning system [7].

Web Service Composition with Volatile Information 61

In our experiments, we assumed that this translation process had already been car-
ried out, hence we started directly with the SHOP2 methods and operators. We im-
plemented the following four volatile-information WSC procedures:

• Eager and Lazy: black-box translations of the static-information WSC procedure
using the eager and the lazy strategies, respectively.

• Active-Only and Active-Inactive: gray-box translations of the static-information
WSC procedure using the active-only and the active-inactive strategies, respectively.

For our experiments, we used two service-composition scenarios. The first is the
Delivery-Company application described in [3]. In this domain, a delivery company
is trying to arrange the shipment of a number of packages by coordinating its several
local branches. The company needs to query Web services to gather information from
its branch offices about the locations and the availability of vehicles (i.e., trucks and
planes) and the status of packages. The goal is to generate a sequence of commands
to send as Web service calls to the vehicle controllers, such that the execution of these
commands will route all of the packages to their final destinations.

Our second service-composition scenario involves a simplified model for grid- and
utility-based computing [10]. In our scenario, there are a number of Grid Services for
reserving computing resources owned by several different companies on the Web. Some
of them are information-providing grid services giving the current workload, memory
usage, software license, etc. The WSC procedure’s goals are to figure out which com-
puting resources to use for a given computing task, and to generate a composite Grid
Service that actually makes the reservation once it is executed. Since the workload and
the memory usage of the machines keep changing, it is necessary for the WSC proce-
dure to deal with the change of information during composition.

We randomly created 7 delivery-company problems and 8 grid-computing prob-
lems. Then, in the description of each problem, we randomly inserted n number of un-
known symbols, for n = 1, . . . , 9. For each number of unknowns, we ran each problem
50 times and averaged the running times. Every time a query was issued, we generated
the lag time for that query and the valid time for the answer by choosing numbers at
random from the time interval 0.5 ≤ t ≤ 2.5 seconds.

The results are shown in Figures 5 and 6 on Delivery-Company and Utility-
Computing problems using an Intel Xeon 2.6GHz CPU with 1GB memory. Each data
point is an average of 350 and 400 runs, respectively. Missing data points correspond
to experiments where one or more of the runs went for longer than 30 minutes.

In these experiments, the two WSC procedures produced by the gray-box approach
(the Active-Only and Active-Inactive procedures) performed much better than the two
WSC procedures produced by the black-box approach (the Eager and Lazy proce-
dures). This occurred because the former were able to explore alternative compositions
for a problem while awaiting responses from the information-providing services. The
improvement in running time was roughly exponential. For example, with 7 unknowns
Active-Inactive took roughly 1/50 the time required by the Lazy procedure.

62 T.-C. Au, U. Kuter, and D. Nau

Active-Only

Active-Inactive

Eager

Lazy

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9

Number of Unknowns

A
v

g
.
C

P
U

 T
im

e
s

 (
s

e
c

.'
s

)

Fig. 5. Average running times of our algorithms on Delivery-Company problems, as a function of
the number of unknowns

Active-Only

Active-Inactive

Eager

Lazy

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9

Number of Unknowns

A
v

g
.
C

P
U

 T
im

e
s

 (
s

e
c

.'
s

)

Fig. 6. Average running times of our algorithms on Utility-Computing problems, as a function of
the number of unknowns

In addition, the Active-Inactive procedure performed much better than the Active-
Only procedure.2 The reason is that in the case when there are no active nodes

2 Analogously, Lazy performed much better than Eager. This confirms the results reported in
[9].

Web Service Composition with Volatile Information 63

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9

Number of Unknowns

A
v

g
.
C

P
U

 T
im

e
s

 (
s

e
c

.s
)

Active-Only (vt=2.5) Active-Inactive (vt=2.5) Active-Only (vt=3.5)

Active-Inactive (vt=3.5) Active-Inactive (vt=5.0) Active-Only (vt=5.0)

Fig. 7. Average running times of our algorithms on Delivery-Company problems with varying
number of unknowns and valid times for the answers of queries. In each case, “vt” denotes the
upper bound for the valid times used in the experiments.

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9

Number of Unknowns

A
v

g
.
C

P
U

 T
im

e
s

 (
s

e
c

.'
s

)

Active-Only (vt=2.5) Active-Inactive (vt=2.5) Active-Only (vt=3.5)

Active-Inactive (vt=3.5) Active-Only (vt=5.0) Active-Inactive (vt=5.0)

Fig. 8. Average running times of our algorithms on Utility-Computing problems, with varying
number of unknowns and valid times for the answers of queries. In each case, “vt” denotes the
upper bound for the valid times used in the experiments.

(i.e., when every state in the OPEN set depends on an unknown whose value has ex-
pired), Active-Only suspends execution while waiting for responses from Web services,
whereas Active-Inactive keeps working: it expands the inactive nodes assuming the

64 T.-C. Au, U. Kuter, and D. Nau

responses they depend on may become valid again at some point in the future. This en-
ables Active-Inactive to explore many more alternative compositions than Active-Only
in the same amount of time.

Note that the running times of our WSC procedures grow exponentially with the
number of unknowns. The reason is that it is getting harder to get all required valid val-
ues simultaneously as the number of unknowns increases. In order to further investigate
the effect of valid times on the behavior of our WSC procedures, we also did another
set of experiments in which we varied the upper bounds for the valid times of the an-
swers for our WSC procedures. In these experiments, we used the same experimental
scenarios described above with 2.5, 3, 5 and 5.0 seconds as upper bounds for the valid
times in our random simulation.

Figures 7 and 8 show the results of these experiments on the Delivey-Company
and Utility-Computing problems, respectively. As shown in these figures, the perfor-
mances of our procedures increase dramatically with the increasing valid times for
the answers of their queries. The Active-Only procedure was able to solve the prob-
lems with 9 unknowns, which it was not able to solve before. The Active-Inactive
procedure outperformed Active-Only in all cases. Finally, the performance of Active-
Inactive increased expoenentially with the increasing valid times. This is because,
when the values obtained for the unknowns do not expire very quickly as in our first
set of experiments, Active-Inactive quickly finds a solution as it expands inactive
states as well as active ones and returns it before any value that that solution depends
on expires.

5 Related Work

In addition to the service-composition techniques [1, 2, 3, 4] described earlier, another
WSC procedure that fits into our framework is a technique based on an estimated-
regression planner called Optop [5]. As an instance of the General-WSC procedure,
a state is a situation in Optop, which is essentially a partial plan. The solution function
checks whether the current situation satisfies the conjunction of the goal literals given to
the planner as input, and the children-of function computes a regression-match graph
and returns the successors of the current situation.

[11] is another WSC approach that also fits into our framework. It is based on a
partial-order planner that uses STRIPS-style services translated from DAML-S descrip-
tions of atomic services to compose a plan. As an instance of the General-WSC, a state
is a partial-order plan; the solution function checks if there is any unsatisfied subgoal
in a plan, and the children-of function generates child nodes by either instantiating op-
erators or using external inputs or preconditions to satisfy the subgoals. By using our
approach, the extended procedure might obtain information about the conditions of the
subgoals though Web services during planning.

In [12] and [13], a planning technique based on the “Planning as Model Checking”
paradigm is described for the automated composition of Web services. The BPEL4WS
process models was first translated into state transition systems that describe the dy-
namic interactions with external services. Given these state-transition systems, the plan-
ning algorithm, using symbolic model checking techniques, returns an executable pro-

Web Service Composition with Volatile Information 65

cess rather than a linear sequence of actions. It is not immediately clear to us if this
approach fits into the trial-and-error framework that our approaches are based on.

6 Conclusions and Future Work

In this paper, we have described two approaches for taking WSC procedures designed
to work in static-information environments, and modifying them to work correctly in
volatile-information environments.

The black-box approach requires no knowledge of the internal operation of the orig-
inal WSC procedure. It puts a wrapper around the procedure to deal with the volatile
information.

The gray-box approach requires some knowledge of the original WSC procedure,
but only partial knowledge: it requires knowing that the original procedure is an in-
stance of our General-WSC. The gray-box approach works by inserting some addi-
tional bookkeeping operations at various points in the instances of General-WSC.

Our experimental results show that despite the simplicity of these modifications,
the resulting volatile-information WSC procedures can perform much better than the
ones produced by the black-box approach. This is because the modifications enable the
volatile-information WSC procedure to explore alternative Web service compositions
while waiting for its queries to be answered.

This paper is just a first step in the development of WSC procedures for volatile-
information environments. There are several important topics for future work:

• There are situations in which some of the valid times are so short that the WSC pro-
cedure cannot finish its task due to an overwhelmingly large number of expirations.
Furthermore, there are situations in which the WSC procedure can never get hold
of valid values of some of the unknowns simultaneously, and thus it is impossible
to return a valid solution. We would like to determine what kinds of conditions are
sufficient to guarantee that our procedure will terminate with a solution.

• Like most of the previous work on WSC procedures, we have assumed that the WSC
procedure does not execute any Web services that have world-altering effects dur-
ing the composition process—just the information-providing services. We intend to
generalize our work to accommodate the execution of services that have information-
providing effects, world-altering effects, or both during service composition.

• Even more generally, we are interested in allowing the possibility of interleaving
composition and execution—e.g., to allow the WSC procedure to execute a portion
of the composition before generating the rest of the composition.

• We believe the gray-box approach can be made even more efficient by extending it to
make use of knowledge of what the search space looks like, and what the solutions
should look like.

Acknowledgment. This work was supported in part by NSF grant IIS0412812 and
AFOSR grant FA95500510298. The opinions expressed in this paper are those of au-
thors and do not necessarily reflect the opinions of the funders.

66 T.-C. Au, U. Kuter, and D. Nau

References

[1] McIlraith, S., Son, T.: Adapting Golog for composition of semantic web services. In:
KR-2002, Toulouse, France (2002)

[2] Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN planning for web service composi-
tion using SHOP2. Journal of Web Semantics 1 (2004) 377–396

[3] Kuter, U., Sirin, E., Nau, D., Parsia, B., Hendler, J.: Information gathering during planning
for web services composition. In: ISWC-2004. (2004)

[4] Martinez, E., Lespérance, Y.: Web service composition as a planning task: Experiments
using knowledge-based planning. In: ICAPS-2004 Workshop on Planning and Scheduling
for Web and Grid Services. (2004)

[5] McDermott, D.: Estimated-regression planning for interactions with web services. In:
AIPS. (2002)

[6] OWL Services Coalition: OWL-S: Semantic markup for web services (2004) OWL-S
White Paper http://www.daml.org/services/owl-s/1.1/owl-s.pdf.

[7] Nau, D., Au, T.C., Ilghami, O., Kuter, U., Murdock, W., Wu, D., Yaman, F.: SHOP2: An
HTN planning system. JAIR 20 (2003) 379–404

[8] Petrick, R.P.A., Bacchus, F.: A knowledge-based approach to planning with incomplete
information and sensing. In: AIPS. (2002)

[9] Au, T.C., Nau, D., Subrahmanian, V.: Utilizing volatile external information during plan-
ning. In: ECAI. (2004)

[10] Foster, I., Kesselman, C., Nick, J.M., Tuecke, S.: The physiology of the
grid: An open grid services architecture for distributed systems integration.
http://www.globus.org/research/papers/ogsa.pdf (2002)

[11] Sheshagiri, M., desJardins, M., Finin, T.: A planner for composing services described in
daml-s. In: AAMAS Workshop on Web Services and Agent-based Engineering. (2003)

[12] Pistore, M., Barbon, F., Bertoli, P., Shaparau, D., Traverso, P.: Planning and monitoring
web service composition. In: AIMSA. (2004)

[13] Traverso, P., Pistore, M.: Automated composition of semantic web services into executable
processes. In: ISWC. (2004)

	Introduction
	Procedural Model of Web Service Composition
	Dealing with Volatile Information
	The Black-Box Approach
	The Gray-Box Approach

	Implementation and Experimental Evaluation
	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

