Scheduling of Mobile Workstations for Overlapping Production Time
and Delivery Time

Dohee Lee! and Tsz-Chiu Au!

Abstract— Many existing mobile service robots, including the
robots in Robocup@Home, perform their designated tasks only
when the robots are stationary. The efficiency of these robots
can be improved if they can perform some tasks while moving.
In this paper, we propose the concept of mobile workstations,
which combine mobile platforms with production machinery
to increase efficiency by overlapping production time and
delivery time. We present a model of mobile workstations
and their jobs and describe the task planning algorithm for a
team of mobile workstations. The temporal planning problem
for mobile workstations combines both features of job shop
scheduling problems (JSP) and traveling salesman problem
(TSP), but there is little work in the literature that tackles both
JSP and TSP simultaneously. Our first algorithm is a complete
search algorithm which returns an optimal temporal plan with
minimum makespan, and our second algorithm conducts a local
search in the space of task graphs so as to quickly return
suboptimal temporal plans. According to our experiments,
when the number of jobs is small, our second algorithm can
generate near-optimal temporal plans, and when the number
of jobs is large, our algorithm can generate much shorter plans
than SGPlan 5 and a version of job shop scheduling algorithms.

I. INTRODUCTION

Mobility is essential in many tasks that service robots
are designed to perform. Attaching a robot to a mobile
platform is currently the most prevalent way to endow
robots with mobility. Some mobile platforms allow users to
attach any equipment to them easily. For example, a mobile
platform called Patin by Flower Robotics' allows users to
install household appliances such lamps and air cleaners on
it. However, few research have considered attaching more
sophisticated devices that can perform some production tasks
while the mobile platform is moving. For examples, robots
in Robocup@Home can get some tasks done only when the
robots stop at locations with necessary appliances. Likewise,
robots in Robocup@Work robots can only operate machines
at stationary workstations. In this paper, we consider attach-
ing production machinery to a mobile platform and study the
implication in the scheduling of tasks for service robots. We
call these robots mobile workstations, which can produce
or process goods while delivering the goods. We argue
that this mode of operation offers a new way to save time
substantially. For example, consider the scenario in Fig. 1 in
which you want to get a cup of coffee. If the coffee machine
is located far from your office, you can save time by ordering
the coffee machine to make a cup of coffee and then ask a

'School ~of Electrical and Computer Engineering, Ulsan
National Institute of Science and Technology, Ulsan, South Korea.
{dohee, chiu}@unist.ac.kr

"http://www.flower-robotics.com/patin

Clob2 b3

Latte \ Latte ‘ \Suer)
. \ e/) e
(Job1:) J_)J_ 10| @ 0L)

\ Latte (|u ST LT Bean)
e 70 am
|,—‘ 7 ‘ oY | N
O"'/”\l‘ =TT T - Milk "
.) {® TU @ -I'\)]"\f . 4 N 7/

Fig. 2: A mobile microwave
robot.

Fig. 3: A mobile
printer robot.

robot to deliver it to you. However, you can save even more
time if the robot equips with a coffee maker that can do two
jobs simultaneously: brewing a cup of coffee and delivering it
to your office. By overlapping production time and delivery
time, mobile workstations can substantially save time and
serve a larger number of customers.

Mobile workstations generalize the concept of mobile
coffee making robots to any mobile robots with production
machinery. For example, Fig. 2 and Fig. 3 show our hardware
implementation of two different mobile workstations, one for
microwave cooking and the other for printing. Our model
of mobile workstations and our task planning algorithms
are general enough to encompass all these machines. The
success of these mobile workstations depends on careful
timings of its production and its movement such that the
production time and movement time are overlapped as much
as possible. We consider the temporal planning problem of
multiple mobile workstations: given N mobile workstations
and M jobs, how can we assign the jobs and schedule the
actions for the workstations such that the entire group of
workstations can finish the jobs in the least amount of time?
The minimization of the makespan makes sense especially
when there are several mobile workstations that can work in
parallel. Whenever a job is added to or removed from the
job queue, our system will rerun the planning algorithm for
replanning such that the optimality can be maintained.

Our planning problem is a NP-hard problem since it
subsumes two difficult NP-hard problems: the job shop

scheduling problem (JSP) and the traveling salesman prob-
lem (TSP). The JSP and the TSP are famous problems
and a large body of work for solving each of them has
been accumulated. However, there are not many works in
the existing planning and scheduling literature that focus
exclusively on solving both JSP and TSP simultaneously
within one framework. Therefore, we tackle this problem
by devising a new algorithm which searches in the space
of task graphs whose nodes corresponding to the production
and movement actions. After finding the optimal task graph
with the shortest critical path, our algorithm converts the task
graph into a temporal plan. However, like many temporal
planning problems, a complete algorithm for generating an
optimal plan will run in exponential time (unless P = NP) and
cannot practically solve any problems with a dozen of jobs.
Hence, our second algorithm conducts a local search in the
space of task graphs so as to quickly generate a suboptimal
temporal plan for a large number of jobs. We conducted
experiments to compare our algorithms with SGPlan 5, one
of the best domain-independent temporal planners [1], [2]
that uses Planning Domain Definition Language (PDDL) [3],
which is expressive enough to define our problem. There is
no domain dependent planner to solve our problem, but we
also compared our algorithms with the JSP solver in Google
Optimization Tools? using a set of test problems that the JSP
solver can solve. Our experimental results show that our local
search algorithm outperforms both SGPlan 5 and Google’s
JSP solver. More importantly, our algorithm can generate
temporal plans whose makespans are not much worse than
the optimal solutions when the problem size is small.

This paper is organized as follows. After presenting the
related work, we describe our model of mobile workstations
and their jobs. Then we define the multiagent planning
problem and present an algorithm to solve the problem.
After that we present our experimental results comparing
our algorithm with the best temporal planner in the literature.
Finally, we present the summary and the future work.

II. RELATED WORK

Our idea is partially inspired by the recent advances in
warehouse robots, notably the automated guided vehicles
(AGVs) developed by Amazon Robotics (formerly Kiva
Systems), that have revolutionized the operations of large dis-
tribution centers of online retailers. These warehouse robots
lift storage pods in warehouses and move them to human
workers for packing [4]. We think that further time saving
can be attained if packing can start early when a pod begins
to move. While this idea may not be realistic in warehouse
settings due to various physical constraints, we explore the
idea in other settings such as service robots. Scheduling
algorithms are crucial in Kiva systems, which draws a grid
in a warehouse and uses A* search to generate paths in
the 2D grid while minimizing the travel time. In [5], Kiva
systems reported the algorithms used for resource allocations
and solving the corresponding global optimization problem.

2https://developers.google.com/optimization/
scheduling/job_shop

In recent years there were several competitions on
robotics in manufacturing settings. One noticeable event is
Robocup@Work, which targets the use of robots in work-
related scenarios [6]. In Robocup@Work, mobile manipula-
tors deal with tasks ranging from manufacturing, automation,
and parts handling up to general logistics (e.g., [7]). A
more recent competition is the RoboCup Logistics League,
which also focuses on in-factory logistics applications, with
a stronger emphasis on planning. In this competition, robots
fetch raw materials from input storages, transport them be-
tween stationary machines, operate the machines, and deliver
the final products. The IEEE Virtual Manufacturing Automa-
tion Challenge (VMAC) is a competition about controlling
multiple AGVs to transport various goods between several
input and output locations in the warehouse environment [8].
Our concept of mobile workstations is partially inspired by
the fact that machines in these competitions cannot move.

Subsumed within our task planning problem is the pickup
and delivery problem (PDP), which has been studied in
various settings [9]. As a subclass of vehicle routing prob-
lems, objects or people have to be picked up and delivered
quickly [10]. Like the traveling salesman problems (TSPs),
these problems are NP-hard, and there is no efficient algo-
rithm to solve them optimally. There are heuristic solutions
such as the one-to-one method [11] and Load LIFO [12]. [13]
studied a generalized version of PDPs that includes various
characteristics found in many practical PDPs. Clearly, our
problem is even more complicated than General PDPs be-
cause we are solving two difficult problems—PDP and task
planning—at once. The taxi dispatch problem is similar to
PDPs, except that there are time limits about how long a
customer can wait for a taxi [14], [15]. However, our work
does not consider the deadlines for the task completion.

Our planning problem is related to the job shop scheduling
problem (JSP), which is a famous optimization problem that
concerns with the assignment of jobs to machines while
minimizing the makespan. There are many efficient solvers
for JSP (e.g., [16], [17]). The difference between JSP and
our problem is that the mobility of machines, if any, is
ignored in JSP. Although Beck, Prosser, and Selensky [18]
proposed a way to formulate a vehicle routing problem
(VRP) as a JSP, and vice versa, they did not attempt to
combine both VRP and JSP into a single problem as we
did. Another difference is that each job in JSP consists of
the number of operations, which have to be processed in
total order and each operation must be carried by specific
machines [19]. In our problem, each subtask of a job can
be assigned to different mobile workstations in a partial
order. When compared with simultaneous task and motion
planning (STAMP), our work focuses on task planning and
path planning rather than motion planning.

III. MOBILE WORKSTATIONS AND THEIR JOBS

We define the task planning model of mobile workstations
as a directed tree that consists of Nj, input nodes, Nprocess
process node, and N, output node, where Nin > 0, Nprocess >
0, and Nyt > 0. The input nodes represent the raw material

Input Process Output

N
C J}lode O// Bean

Node 3:
Coffee
Maker

— . Sugar
Node 1 >~

//"”7”"\\ j
(Node2)

Fig. 4: A model of the mobile workstation for coffee making.

Latte Node4>>

Job 1: Job 2:

Input Process Output Input Process Output

Job 3:

Input Process Output

Fig. 5: Three jobs for the mobile coffee making robots

gathering devices such as robot arms, the process nodes
represent the production machinery such as coffee makers
and printers, and the output nodes represent the hardware for
product delivery. As an example, a model of mobile coffee
making robots is shown in Fig. 4. The incoming edges of
the process node represent prerequisites for the production.
It is possible to extend the model in Fig. 4 to have two or
more process nodes as well as two or more output nodes,
which means that the mobile coffee making robot is capable
of producing two or more different products at the same time.
To simplify our discussion, we focus on mobile workstations
that have one process node and one output node only.
Clearly, different models of mobile workstations accept
different types of jobs. The jobs for mobile printer robots
are different from the jobs for mobile coffee making robots.
Fortunately, all scheduling algorithms need to know is 1) the
dependency of the subtasks in a job and 2) the timing of each
subtask. Thus we can ignore the difference between different
types of jobs and define a general model of jobs for mobile
workstations. No matter what types of mobile workstations
you are talking about, a job for a mobile workstation will first
be translated into a graph similar to those in Fig. 5, which
are jobs for the model of mobile coffee making robots in
Fig. 4. In this paper, we call such graph a job. A job is a
graph that is the same as the model of the corresponding
mobile workstations, except that each node are augmented
with information such as 1) where to fetch the raw materials,
2) where to deliver the product, and 3) the maximum duration
of each task in the model. For instance, each job in Fig. 5 is
just like the model in Fig. 4, except that 1) each node contains
a number which is the maximum duration of the action; and
2) the input and output nodes contain the locations where the
actions should take place. In Job 1 in Fig. 5, the robot needs
to spend at most 30s at Room 6 to grab some coffee bean, 40s
at Room 7 to grab some sugar, and 20s at Room 15 to grab
some milk. Note that our model allows the raw materials to
be located at different locations, though it does not need to be

the case in the real world. After that, the robot has to spend
at most 250s to make a cup of latte. Then it has to spend at
most 30s at Room 0 to deliver the latte. As you can see, the
maximum duration of the same nodes in different jobs can
be different. For example, Job 3 may have requested a large
cup of latte, hence the robot needs to spend more time to
brew coffee. We assume a workstation cannot move when it
is fetching or delivering an object.

IV. THE TEMPORAL PLANNING PROBLEM

A server is dedicated to handle all job requests. Upon
receiving a job, the server will store the job in a job queue.
When the job queue is updated due to the addition or removal
of jobs, a planning algorithm will be used to update the
current temporal plans for all mobile workstations. Suppose
there are N mobile workstations and M jobs in the job queue.
The planning algorithm generates a temporal plan 7, which
consists of four kinds of durative actions:

e Fetch(o,l;d)—get an object o at a location [;
e Process(0,01,02,...,0,;d)—make an object o from the
objects 01, 02, ..., Op;
e Deliver(o,l;d)—deliver an object o at a location /; and
e Move(/;d)—move to location .
In all of these actions, d is the maximum duration, which is
the longest time a robot takes to perform the action.

A temporal plan 7 is a schedule of these actions. Formally,
7 is a list of pairs, each of them is (¢,a) where ¢ is the
beginning time for the execution of the action a. Figure 6
shows a plan for the three jobs in Figure 5. Some parameters
of the actions in this plan are omitted since they can be
inferred from Figure 5. The makespan of this plan is 610s.
This temporal plan is optimal, in the sense that there is no
other temporal plan whose makespan is less than 610s.

V. PLANNING ALGORITHMS

Given N workstations and M jobs, we compute a temporal
plan that minimizes the makespan. A forward exhaustive
search algorithm is not efficient enough to find a plan even
for a small number of jobs. Hence, we devise a new graph
search algorithm based on a task graph G = (V,E), in which
each vertex in V represents a task and each edge in E
represents the temporal ordering of two tasks. An edge
(vi,v2) € E means the task at v; must finish before the
task at vo. When there is no edge between two vertices, the
tasks can be handled in parallel because there is no other
indirect dependency between them. Figure 7 shows the task
graph for the three jobs in Figure 5, whose output nodes
are connected to a new vertex represented as the diamond
shape. A supertree is a subtree denoted by the black arrows in
Figure 7. A task graph can be constructed from a supertree by
adding (1) exclusive-task edges and (2) movement vertices
and movement edges. There are many ways to add these
edges and vertices (see below), thus many different task
graphs can be derived from a supertree. The critical path of a
task graph is the longest path from the root to a vertex, where

FETCH

Node 0 (Bean)

Room 9]
~ FercH H
g Node 1 (Sugar) frm 10 i
i Node 2 (Milk) E
3
4] » PROCESS l
%4 Node 3 (Latte) E] los3) |
DELIVER
= Node4 po.
Movement
FETCH FETCH
~ Node 0 (Bean) | Room 6 | Room
c H FETCH
g Node 1 (Sugar) .‘ FercH ooy
S Node 2 (Milk) k >,
2 PROCESS PI:O:ESS
g Node 3 (Latte) s oo | -
DELIVER DELIVER|
Node 4 (Room 1) Room 0
MOVE | MOVE | ____| MOVE| _____| Move] MOVE | | Move MOVE MOVE
Timeline | | | } } } }
(second) o 100 200 300 400 500 600

Fig. 6: An optimal temporal plan for the three jobs in Figure 5.

RN \ ‘ \
. ;0 \ Lo | I [
\ | 1 |
\ IN T | [[' [HE— \
\ IS ! | ' I [i v Lo \
NN foN ; \ L 1 1 \
@ ‘ \ ‘ ‘ I-I l I-‘ -I \
¥ , L

Workstation 2: ¢ Workstation 1: (_

Fig. 7: A task graph for the jobs in Figure 5

the length of a path is the sum of the maximum duration of
all vertices on the path. Then we employ the critical path
method (CPM) for scheduling a set of project activities [20]:
among all possible task graphs generated from a supertree,
find one that has the shortest critical path. Our innovation is
on how to quickly enumerate all possible task graphs.

Exclusive-Task Edges: Consider a supertree 7 formed by
joining a set of M jobs: Ji,Ja,...,Jy. We uniquely label the
vertex for a node i in a job J; by (i,). First, we partition
the set of jobs into N partitions: p0 ={J1,J2,...,In}, such
that all jobs in J; will be assigned to the workstation k. In
each partition J;, we add a set of edges to T to represent the
constraints that a process node of the workstation k cannot
perform two different jobs simultaneously. These mutually
exclusive constraints can be encoded by a set of directed
edges connecting the vertices (i, j) for every process node i
and for every J; € J; . For each process node i, let p(ll.’k) =
(J1:J2,---Jj,|) be a permutation of the indices of the jobs in
Ji. Then we add an exclusive-task edge connecting (i, j,) to
(i, jx+1), for 1 <x < |Ji|. For example, in Figure 7, the blue
line is an exclusive-task edge ((3,2),(3,1)) that enforces the
ordering that the vertex (3,1) must be performed after (3,2).

Movement Vertices and Movement Edges: We add a set
of movement vertices and movement edges to T to represent
the path of the workstation k. In T, all vertices for the input
nodes and the output nodes in partition J; are associated with

the locations the workstation k should visit. Moreover, the
workstation must stay at these locations for a given duration
to fetch or deliver an object. Let {vi,vs,...,v,} be the set
of all vertices of the input nodes and output nodes of the
jobs in J, I, be the location of vy, for 1 <x <r, and [y be
the initial location of the workstation k. Given a permutation
p,f = (s1,52,...,5,) of the first r positive integers, we add a

new vertex v?}O"f) between v;; and vy, ,, for 1 <s <r, and

8i08Sig]

move move
vertex Vo and an edge (v(lo,lsl)’vfl) as well as the edges
L, Vihove and (Vv7°7 Vs,.,) to T. These movement
(VS' ’ V(IsialsH])) (v(l.iinlsi+|)7 Sit)

vertices and movement edges are the hexagons and the red
edges in Figure 7, respectively. The maximum duration of

a movement vertex v’('l‘o"lf) is the time the robot takes to
Si7Si1

move from [; to [, ;.

Our complete search algorithm computes the shortest
critical path by enumerating all possible tuples of form
(Poa{(P(l,',@,p,g)}lgng), which describes the set of all new
vertices and edges in 7. For each tuple, we use a depth-first
search to compute the length of the critical path. Then we
identify the tuple that gives the shortest critical path. Notice
that p,? must be a fopological ordering in order to maintain
the temporal dependencies between the input or output
nodes. The running time of this enumeration algorithm is
OMN x M! x r! x (V| + |E|)), where N is the number of
workstations, M is the number of jobs and r = |V|p| is the

total number of input and output nodes in the supertree.

While this complete search algorithm guarantees to return
an optimal solution, this is not a practical algorithm due
to its exponential running time. In fact, like TSPs, our
problem is NP-hard, meaning that any complete algorithm
has little hope to return an optimal solution for any large
problems in a reasonable time. Therefore, we devise a
local search algorithm that can quickly solve large prob-
lems suboptimally. The pseudo-code of the algorithm is
shown in Algorithm 1. Instead of exhaustively enumerating
all possible job partitions, exclusive-task edges, movement
vertices, and movement edges, the local search randomly
selects a tuple (po,{(p(li‘k),plg)}lngN) and modifies it by
randomly swapping the vertices in the permutations, with
the hope that the solution can be improved (Lines 14 and

Algorithm 1 The local-search algorithm

1: procedure LOCALSEARCH(J,J2,...,Jim)

2 Construct a supertree T from Jy,J2,...,Jm.

3 Let Dpin be a very large number and let S, be {}
4 Repeat the following Nyestart times

5: Randomly generate a permutation p° of the jobs.
6 Repeat the following Nrepeat times

7 Randomly generate permutations p<ll.,k) and plg
8

8:= (P {(p(i 4y PE) h1<ken)

9: Add exclusive-task edges to T according to p(ll.,k)
10: Add movement vertices and edges to 7" w.r.t. plf‘
11: Compute length D of critical path in T
12: If D < Dpyin then Dy := D; Spin := S
13: Remove the exclusive-task edges and the

movement vertices/edges from T

14: Randomly modify p; by swapping without

violating the topological order.

15: Randomly modify p(]i‘k) by swapping.

16: Add vertices and edges to T according to Spin.

17: return the temporal plan 7 extracted from 7.

15). These random swapping is similar to the min-conflict
heuristics for local search that are used to solve the famous
N-Queens problem [21]. Multiple sampling aims to improve
the solution by repeating the inner 100p Nyepeqr times with
different swapping actions, whereas random restart reruns
the local search from N,y different initial solutions. Smin
stores the current best solution. In our experiments, both
Nrestarr and Nyepegs are less than 5. The running time of
the algorithm is O(|V|+ |E|), thus it can run very fast and
can handle problems with many jobs. The algorithm can
be transformed into an anytime algorithm by returning a
temporal plan according to Sn, at any time.

VI. EXPERIMENTAL EVALUATION

We built two robots which work as mobile workstations,
as shown in Fig. 2 and Fig. 3. We also implemented a
web-based user interface for job submission as well as the
monitoring of the mobile workstations. These robots work as
intended in one of the floors of the building in our university.
The implementation also deals with some practical issues
such as replanning after a human user rescues a robot that
gets stuck at a location. For more details, please take a look
at the supplementary video.

The evaluation of our algorithms is mainly based on sim-
ulation since this allows us to test multiple robots working
simultaneously in a much larger area. We compared our
algorithms with SGPlan 5, one of the best temporal plan-
ners [1], [2]. In addition, we compared our algorithms with
(1) a forward search algorithm that builds a temporal plan by
exhaustively assigning tasks to the nodes in increasing time,
and (2) a complete graph search algorithm that enumerates
all possible task graphs as described in Section V. Due to the
page limit we do not give a full account of these algorithms.

We wrote a simulator in Java and ran the experiments on
a Linux cluster with 20 nodes and 120 cores equipped with
Intel Core 17 CPUs running at 4GHz. We randomly generated

1000
- - SGPlan
Graph ===Forward

=
= S
S)]

Running TIme (s)

o
)
!
\
\
L]
\
!
i
"

4 8 12 16 20 24 28 32 36 40
Number of Nodes (N)
Fig. 8: Running times versus the number of nodes

7000

6000 Local - - SGPlan - {
—_ Graph ==—Forward P i

5000 L

= }
=

804000

c

[}

; 3000 =
IS A

& 2000 B

........
1000 - s I

4 8 12 16 20 24 28 32 36 40
Number of Nodes (N)
Fig. 9: Plan length versus the number of nodes

six different maps which model after the floor plans that are
common in office and hotel environments. The time to move
between two adjacent locations in a map is proportional to
the distance between the locations plus a Gaussian error term
which represents the variance of timing on different edges.
We assume the robots are small enough such that they will
not collide with each other and get stuck on the same road.

First of all, we conducted an experiment with one mobile
workstation that includes up to 40 randomly generated nodes
(including input, process, and output nodes). We randomly
generated 120 problems with various numbers of jobs. The
duration of a node is an integer randomly selected between
1s and 100s. We grouped the problem instance according to
the total number of nodes, and measured the running time
and the plan length of the solution of the algorithms. The
result is shown in Fig. 8 and Fig. 9. The error bars in these
figures are the 95% confidence intervals. Each data point in
the figures is an average of 120 values.

We set a time bound of 30 minutes such that if an
algorithm cannot return a solution within the time bound,
we declare that it fails to solve the problem instance. As
shown in Fig. 8 and Fig. 9, the forward search algorithm
and the graph search algorithm cannot solve any problem
when the number of nodes is larger than 18, while the local
search algorithm and SGPlan 5 can solve all problems within
a few seconds. However, the quality of plans generated by
our local search algorithm is much better than that of SGPlan
(see Fig. 9). When the number of nodes is less than or equal
to 14, the local search algorithm can generate plans whose
length are almost the same the optimal plans generated by
the forward search algorithm and the graph search algorithm.
While we cannot tell how close the plans of the local search
algorithm to the optimal plans when the number of nodes is
larger than 14, we deduce the plans are nearly optimal, as
considering the plan length grows slowly until the number

1000

H
)
3

=
g
= 10
u u.ua:u"”"”””’
.
g ...nt"""'.
= 3
c 1
=1 a2 20 24 28 32 36 40
&«
0.1 4// -e-Jobshopl -B-Jobshop2 -f—Jobshop3
‘/y -e-Graphl -@-Graph2 -A-Graph3
vg? -a-Locall +®-Local2 «#-local3
0.01

Number of Nodes (N)
Fig. 10: Running times versus the number of nodes

4000

3500 —®—Jobshopl -=Graphl --#-Locall

“& 3000 ~B-Jobshop2 -M-Graph2 -B-Local2

~—Jobshop3 —A-Graph3 ~ ~4-Local3

<

< 2500

80

c

S 2000

=

= 1500

©

o 1000
500

0

4 8 12 16 20 24 28 32 36 40
Number of Nodes (N)

Fig. 11: Plan length versus the number of nodes

of nodes is 40 (see Fig. 9). But we do not know whether the
solutions will be close to optimal for much larger problems.

Finally, we conducted an experiment to compare our ap-
proach with a job shop scheduling algorithm. However, there
is no existing JSP solver that can handle movement actions
like our algorithms do. For fair comparisons, we created a
set of test problems in which all movement actions have
the same duration if they move to the same location. This
allows us to add the duration of movement to the duration
of each task in a job such that a JSP solver can take the cost
of movement into account without any additional effort. In
addition, when two adjacent actions in a plan generated by
a JSP solver occur the same location, we adjust the plan to
remove the duplicated movement time. The settings of this
experiment was the same as the one for SGPlan 5, except that
we used the JSP solver in Google Optimization Tools instead.
The results are shown in Fig. 10 and Fig. 11. When compared
with Fig. 8 and Fig. 9, the JSP solver performed better than
SGPlan 5 because the JSP solver does not need to solve the
TSP problem embedded in our problem while SGPlan 5 did.
However, the JSP solver did not perform as good as our local
search algorithm in terms of both the running time and the
plan length.

VII. SUMMARY AND FUTURE WORK

A mobile workstation combines a mobile platform with
production machinery to increase efficiency by overlapping
production time and delivery time. In this paper, we pre-
sented a complete, optimal, temporal planning algorithm for
mobile workstations, and described a practical but subop-
timal local-search algorithm that allows a small number of
mobile workstations to handle a lot of jobs. Our experiments
show that our local search algorithm outperforms Google’s
JSP solver as well as one of the best temporal planners called
SGPIlan 5 in terms of running time and solution quality.
Currently, the algorithm plans for the maximum durations

of actions and movements only in order to account for
the variance of timing in low-level motion control. In the
future, we intend to extend our algorithm to consider motion
planning in order to optimize the path further by taking the
precise timing of low-level control into account.

ACKNOWLEDGMENTS

This work has been taken place in the ART Lab at Ulsan
National Institute of Science & Technology. ART research
is supported by NRF (2.190315.01 and 2.180557.01).

REFERENCES

[1] Y. Chen, C.-W. Hsu, and B. W. Wah, “Sgplan: Subgoal partitioning
and resolution in planning,” Edelkamp et al.(Edelkamp, Hoffmann,
Littman, & Younes, 2004), 2004.

[2] Y. Chen, B. W. Wah, and C.-W. Hsu, “Temporal planning using
subgoal partitioning and resolution in sgplan,” Journal of Artificial
Intelligence Research (JAIR), vol. 26, pp. 323-369, 2006.

[3] M. Fox and D. Long, “PDDL2.1: An extension to PDDL for ex-
pressing temporal planning domains,” Journal of Artificial Intelligence
Research (JAIR), vol. 20, pp. 61-124, 2003.

[4] P.R. Wurman, R. D’ Andrea, and M. Mountz, “Coordinating hundreds
of cooperative, autonomous vehicles in warehouses,” Al Magazine,
vol. 29, no. 1, p. 9, 2008.

[5] J. Enright and P. R. Wurman, “Optimization and coordinated autonomy
in mobile fulfillment systems.” in Automated action planning for
autonomous mobile robots, 2011, pp. 33-38.

[6] G. Kraetzschmar, W. Nowak, N. Hochgeschwender, R. Bischoff,
D. Kaczor, and F. Hegger, “Robocup@ work rulebook,” 2013.

[7]1 T. Jenkel, “Mobile manipulation for the kuka youbot platform,” Ph.D.
dissertation, WORCESTER POLYTECHNIC INSTITUTE, 2013.

[8] D. Mikli¢, T. Petrovié, M. Cori(’:, Z. Piskovi¢, and S. Bogdan, “A
modular control system for warehouse automation-algorithms and
simulations in usarsim,” in Robotics and Automation (ICRA), 2012
IEEE International Conference on. 1EEE, 2012, pp. 3449-3454.

[91 G. Berbeglia, J.-F. Cordeau, I. Gribkovskaia, and G. Laporte, “Static
pickup and delivery problems: a classification scheme and survey,”
Top, vol. 15, no. 1, pp. 1-31, 2007.

[10] G. Berbeglia, J.-F. Cordeau, and G. Laporte, “Dynamic pickup and
delivery problems,” European journal of operational research, vol.
202, no. 1, pp. 8-15, 2010.

[11] K. Treleaven, M. Pavone, and E. Frazzoli, “Asymptotically optimal
algorithms for one-to-one pickup and delivery problems with applica-
tions to transportation systems,” Automatic Control, IEEE Transactions
on, vol. 58, no. 9, pp. 2261-2276, 2013.

[12] M. Cherkesly, G. Desaulniers, and G. Laporte, “A population-based
metaheuristic for the pickup and delivery problem with time windows
and lifo loading,” Computers & Operations Research, vol. 62, pp.
23-35, 2015.

[13] M. W. Savelsbergh and M. Sol, “The general pickup and delivery
problem,” Transportation science, vol. 29, no. 1, pp. 17-29, 1995.

[14] W. Hao, “Improving taxi dispatch services with real-time traffic and
customer information,” Ph.D. dissertation, Ph.D. dissertation, National
University of Singapore, 2004.

[15] K. T. Seow, N. H. Dang, and D.-H. Lee, “A collaborative multiagent
taxi-dispatch system,” Automation Science and Engineering, IEEE
Transactions on, vol. 7, no. 3, pp. 607-616, 2010.

[16] A.P. E. Coffman Jr and R. L. Graham, “Optimal scheduling for two-
processor systems,” Acta informatica, vol. 1, no. 3, pp. 200-213, 1972.

[17] W. Xia and Z. Wu, “An effective hybrid optimization approach for
multi-objective flexible job-shop scheduling problems,” Computers &
Industrial Engineering, vol. 48, no. 2, pp. 409-425, 2005.

[18] J. C. Beck, P. Prosser, and E. Selensky, “Vehicle routing and job shop
scheduling: What’s the difference?” in International Conference on
Automated Planning and Scheduling (ICAPS), 2003.

[19] P. Brucker and R. Schlie, “Job-shop scheduling with multi-purpose
machines,” Computing, vol. 45, no. 4, pp. 369-375, 1990.

[20] J.E. Kelley and M. R. Walker, “Critical-path planning and scheduling,”
in Proceedings of The Eastern Joint Computer Conference, 1959.

[21] R. Sosi¢ and J. Gu, “Efficient local search with conflict minimiza-
tion: A case study of the n-queens problem,” Knowledge and Data
Engineering, vol. 6, no. 5, pp. 661-668, 1994.

