
Intelligent Service Robotics (2019) 12:137–148
https://doi.org/10.1007/s11370-018-00271-6

ORIG INAL RESEARCH PAPER

Challenges and implemented technologies used in autonomous drone
racing

Hyungpil Moon1 · Jose Martinez-Carranza2 · Titus Cieslewski3 ·Matthias Faessler3 · Davide Falanga3 ·
Alessandro Simovic3 · Davide Scaramuzza3 · Shuo Li4 ·Michael Ozo4 · Christophe De Wagter4 ·
Guido de Croon4 · Sunyou Hwang5 · Sunggoo Jung5 · Hyunchul Shim5 · Haeryang Kim6 ·Minhyuk Park6 ·
Tsz-Chiu Au6 · Si Jung Kim7

Received: 15 October 2018 / Accepted: 16 December 2018 / Published online: 24 January 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Autonomous drone racing (ADR) is a challenge for autonomous drones to navigate a cluttered indoor environment without
relying on any external sensing in which all the sensing and computing must be done with onboard resources. Although no
team could complete the whole racing track so far, most successful teams implemented waypoint tracking methods and robust
visual recognition of the gates of distinct colors because the complete environmental information was given to participants
before the events. In this paper, we introduce the purpose of ADR as a benchmark testing ground for autonomous drone
technologies and analyze challenges and technologies used in the two previous ADRs held in IROS 2016 and IROS 2017.
Five teams which participated in these events present their implemented technologies that cover modified ORB-SLAM, robust
alignment method for waypoints deployment, sensor fusion for motion estimation, deep learning for gate detection andmotion
control, and stereo-vision for gate detection.

Keywords Autonomous drone · Drone racing · Autonomous flight · Autonomous navigation

B Hyungpil Moon
hyungpil@skku.edu

Jose Martinez-Carranza
carranza@inaoep.mx

Davide Scaramuzza
sdavide@ifi.uzh.ch

Guido de Croon
g.c.h.e.decroon@tudelft.nl

Hyunchul Shim
hcshim@kaist.ac.kr

Tsz-Chiu Au
chiu@unist.ac.kr

Si Jung Kim
si.kim@unlv.edu

1 Sungkyunkwan University, Seoburo 2066, Jangan-gu, Suwon,
Korea

2 Instituto Nacional de Astrofisica Optica y Electronica
(INAOE), Puebla, Mexico

3 University of Zurich, Zurich, Switzerland

4 Micro Air Vehicle Laboratory, Faculty of Aerospace
Engineering, TU Delft, Delft, The Netherlands

1 Introduction

The autonomous drone racing (ADR) was inaugurated in
IROS 2016 Daejeon, Korea, and continued in IROS 2017
Vancouver, Canada. These ADRs were to help advancing
the pilotless autonomous navigation of an unmanned aerial
vehicle in indoor racing tracks which contained five testing
elements: a high-speed flight on a straight path through open
gates, sharp turns, horizontal zigzag path, a spiral upward
path through closed gates, and a dynamic obstacle. As a brief
summary of the two competitions, therewere 4 open gates, 22
closed gates, and total 26 including one dynamic gate inADR
at IROS2016 (ADR2016). To facilitate the localization, each
track gate had a QR code that contained the identification
number of the gate in ADR 2016. The racing track in ADR
at IROS 2017 (ADR 2017) was revised: the open gates were
replaced by treelike obstacles and the 360-degree spiral-up

5 KAIST, Daejeon, Korea

6 UNIST, Ulsan, Korea

7 UNLV, Las Vegas, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11370-018-00271-6&domain=pdf
http://orcid.org/0000-0002-1091-0716


138 Intelligent Service Robotics (2019) 12:137–148

gates inADR2016was replaced by 90-degree spiral-up gates
(Fig. 1). The new treelike open gates were for testing faster
flight in a straight path and the number of closed gates was
reduced to 9 including one dynamic gate. The detailed infor-
mation of the ADR track is available online.1

The map information was given to participants prior to
the competitions, and the racing track was prepared as close
to the CAD model as possible in the two competitions.
Therefore, the main purpose of these settings was to test
the autonomous navigation capability of drones whose sens-
ing and computing resources are all onboard. Technically,
the challenges were stable flight control, robust detection
of gates, registration of gates in the path planning, track-
ing control, and detection of the dynamic obstacle. Although
the individual problem may be considered easily solvable
for computationally and sensor-rich systems, ADR is not the
case due to the limited resources.

In 2016, 11 teams registered the competition, but only
three teams (Team KIRD of KAIST Korea, Team MAV-lab
of TU Delft, Netherlands, and Team University of Zurich
(UZH) ASL/ADRL, Switzerland) finally competed in the
arena. The event summary of ADR 2016 can be found
in [1].

In 2017, 14 teams registered the competition and 7 teams
(Team KAIST Korea, Team MAV-lab of TU Delft, Nether-
lands, Team QuetzalC++ of INAOE, Mexico, Team First
Commit of enthusiasts in Bay area, Team Drone bot of
UNIST, Korea, Team Robotics and Perception Group of
Univ. of Zurich, Switzerland, Team LOBODRONE of Univ.
NewMexico,USA) came to the competition, but only 5 teams
finally competed in the arena. In 2017, teams were more
experienced and organized, and implementedmore advanced
technologies for the competition. The team first commit
reached gate 8 (which is the fourth closed gate) at 01:56.5.
Team MAV-lab reached gate 7 at 00:25.7. Team Robotics
and Perception Group reached gate 8 at 00:35.8. Team Quet-
zalC++ reached gate 9 at 03:11.6 and won the competition.

In the following sections, the methodologies of partici-
pating teams are presented. Since the flight control for con-
ventional quadrotors is considered as a solved problem, the
dynamic modeling and control issue is not discussed in this
paper. In Sect. 2, drone hardware systems of successful teams
are described. In Sect. 3, the strategies of team INAOE (the
winner ofADR2017) are presented. They implementedway-
point tracking with ORB-SLAM without an explicit scaling
measure. In Sect. 4, team Robotics and Perception Group of
UZH presents their waypoint tracking method using onboard
depth sensor information. In Sect. 5, team MAV-LAB of TU
Delft presents high-level navigation method using a state
machine and low-level sensor fusionmethod for position and

1 ADR 2016: http://rise.skku.edu/home/iros2016racing.html, ADR
2017: http://ris.skku.edu/iros2017racing/.

velocity estimation. Team KAIST and team UNIST present
a deep learning application for the gate detection in Sect. 6
and for end-to-end learning in Sect. 7, respectively.

2 Aerial vehicles

Team INAOE used the Parrot® Bebop 2.0 Drone (Fig. 2a).
This vehicle can transmit inertial and visual data via WiFi.
Visual data are captured from an onboard camera with an
image resolution of 840 × 480 pixels transmitted at 30Hz;
inertial data are captured with an onboard inertial measure-
ment unit (IMU) transmitting at 5Hz; altitude measurements
are transmitted at 20Hz. Communication and programming
of control commands with the Bebop 2.0 are possible thanks
to the Software Development Kit (SDK) known as bebop
autonomy, released by the Parrot® company and made avail-
able as a ROS (robotic operating system) package. However,
programs cannot be directly run with resources on the vehi-
cle. It should be noticed that the competition rules requested
processing onboard exclusively; therefore, participatingwith
the Bebop 2.0 was not an option. To enable onboard process-
ing, team INAOE adapted an Odroid computer model XU4,
equipped with an octa-core processor running at 2.0GHz,
with 2 GB in RAM, and with aWiFi module. To compensate
for the weight added by mounting the Odroid on the vehicle,
the battery case was removed. The Odroid was also powered
by the vehicle’s battery. Figure 2a shows the Bebop 2.0 with
team INAOE’s adaptations, which were accepted as valid to
participate in the competition. Linux version Ubuntu 16 LTS
ran as the operating system on the Odroid. The ROS also ran
on the Odroid for software communication and implementa-
tion, including INAOE’s metric monocular SLAM solution.

Team UZH RPG’s drone is shown in Fig. 2b which is a
DJI F330 frame,whileCM2208/2000Cobramotorswith stiff
six inches propellers provided actuation. It is equipped with
(1) the Qualcomm Snapdragon Flight board equipped with
a large field-of-view camera used for visual-inertial odome-
try, used for state estimation, (2) the Intel RealSense RGB-D
camera, connected to the Up-Board computer through USB,
(3) the Up-Board computer, used for planning, control, and
map alignment, and (4) the Lumenier F4 AIO flight con-
troller. The two onboard computers communicated through
UART to provide UZH’s high-level position control system
with the state estimate of the vehicle. The output of such high-
level control, namely the reference collective thrust and body
rates, was sent to a Lumenier F4 AIO flight controller, which
was responsible for motor control. The quadrotor had a take-
off weight of 950 g and motor-to-motor diagonal of 330 mm.

TeamTUDelft used a Parrot® Bebop 1 (shown in Fig. 2c).
It is a 33 × 38 × 3.6 cm drone (with the outer hull) that is
equipped with a downward facing narrow-view camera and a
forward facing fish-eye camera, an inertial measurement unit

123

http://rise.skku.edu/home/iros2016racing.html
http://ris.skku.edu/iros2017racing/.


Intelligent Service Robotics (2019) 12:137–148 139

Fig. 1 a Top view of the schematic representation of the arena for the autonomous drone racing, the green arrows indicate the direction in which
the drones had to fly through the gates; b Examples of the gates placed across the arena

Fig. 2 Drone hardwares. a INAOE’s ParrotTM Bebop 2, b UZH RPG’ drone, c TU Delft’s ParrotTM Bebop 1

123



140 Intelligent Service Robotics (2019) 12:137–148

Fig. 3 Geometric configuration used by team INAOE to generate a
synthetic depth image, which is coupled with an RGB image, captured
with the onboard camera, to be used by ORB-SLAM in its RGB-D
version, thus obtaining pose estimates with metric

(gyros, accelerometers, magnetometers), a pressure meter,
and a downward facing sonar. For the race, team TU Delft
fully replaces the standard software onboard of the Bebop
with the Paparazzi autopilot code [2]. The Paparazzi soft-
ware2 controls all aspects of the drone, from reading and
processing all sensor data and images to controlling the
rotors. All the processing for the drone race took place on
the Parrot P7 dual-core CPU Cortex 9 (max 2GHz).

3 INAOE’s approach: monocular metric
visual SLAM for autonomous flight

INAOE’s strategy to address the competition challenge was
based on twomain components: (1) PID controllers to control
height, heading and forward/sideways motions; (2) drone’s
localization based on a metric monocular SLAM. Team
INAOE did not use or build a 3D map of the arena before
its participation in the race. Instead, INAOE used a relative
waypoint system where the controller would navigate the
drone toward a waypoint whose position was relative to the
previous one.

3.1 Metric mono-SLAM assuming a planar ground

Autonomous navigation of a drone in the indoor competition
arena posed a challenging scenario. External methods for
localization of the drone, such as motion capture systems or
fiducial markers, were not allowed. To overcome this restric-
tion, team INAOE decided to use a visual SLAMmethod for
localization of the drone.

Given that the Bebop 2.0 has an onboard monocular cam-
era,ORB-SLAM[3]was employed to obtain the camera pose

2 http://wiki.paparazziuav.org/.

and 3D point estimateswith the caveat that ORB-SLAMgen-
erates without metric when used with a monocular camera.
However, INAOE’s solution based on the waypoint system
described before relies on the relative position of the way-
points given in meters. To address the scale problem, team
INAOE exploited the fact that the ground in the arena was
planar. Thus, by assuming a planar ground, and by knowing
the camera angle and drone’s height, a synthetic depth image
was generated by resolving a ray-plane intersection geome-
try. The synthetic depth image was coupled with incoming
RGB frames and used in the RGB-D version of ORB-SLAM,
which generates metric pose estimates. Two functionalities
offered by the Bebop 2.0 were exploited for the race compe-
tition: (1) the onboard camera in the Bebop 2.0 is a fish-eye
camera whose field of view is foveated, via software, to pro-
duce a rectangular image, and this foveation means that the
camera may point forward at an angle of zero degrees or look
downwards at an angle of up to − 85◦, and such angle can
be controlled via the Bebop’s SDK; the resulting image is
also gyro-stabilized; (2) the Bebop 2.0 provides altitude via
barometric and ultrasound for lower altitudes, and these alti-
tude measurements tend to be accurate within centimeters
depending on the ground material.

The above features were combined with metric for the
pose estimates. For the latter, team INAOE extended their
previous work [4] to generate synthetic depth images based
on the line–plane intersection problem by formulating a geo-
metric configuration where it is assumed that the ground is
planar. In addition, the Bebop’s altimeter is used to obtain
an estimate of the camera’s height h; the camera angle read
through the SDK is used to calculate the angle at which a
vector n would be located with respect to the origin in the
camera’s coordinate system with length h. This vector n is
perpendicular to the planar ground; hence, it can be used
to know a point lying on this planar ground with normal n.
Therefore, for each pixel at coordinates (x, y) on the image,
a vector l departing from the camera’s optical center (x0, y0)
and passing through the pixel at (x, y) will intersect the pla-
nar ground for some scalar α. Figure 3 illustrates a side view
of this geometric configuration for the case when the bebop’s
camera is foveated to the angle of − 30◦ with respect to the
horizon. The line–plane intersection equations are used to
find α, thus obtaining the 3D point at which l intersects the
ground plane by calculating:

l =
[
x0 − x

f
,
y0 − y

f
, 1

]�
(1)

θ = −(90 − 30) (2)

n = [0, h · sin(−θ), h · cos(−θ)]� (3)

α = n� · n
l� · n . (4)

Hence, α is the depth corresponding to the pixel (x, y).

123

http://wiki.paparazziuav.org/.


Intelligent Service Robotics (2019) 12:137–148 141

3.2 Autonomous navigation approach

The dimensions and approximate positions of the gates were
known in advance; therefore, team INAOE defined a set of
waypoints with the format wi = [

hi j , ψi j , Li j , Fi j
]
, which

indicates that once the drone has successfully reached the
waypoint wi , it has to change its height and heading, and it
has to fly forward or sideways toward the next waypoint w j

where the decision on having to fly forward or sideways was
indicated by the field Fi j . In this sense, hi j is the reference
height in meters, ψi j is the reference heading in degrees, Li j

is the reference length in meters, and Fi j may take one of
three values: 0—fly forward; 1—fly sideways to the left; 2—
fly sideways to the right. Waypoints were distributed along
the arena forming a trajectory such that the drone had to
follow a straight line from gate 1 to 4, then fly through gate
5 by changing orientation and height, and from 6 to 9, move
sideways and then forward to fly through the corresponding
gates. Similar waypoints were planned for gate 10 to 13.

Three PID (proportional-integral-differential) controllers
were implemented to control height, heading (yaw con-
troller), and forward/sideways motion (pitch and roll con-
troller) in sequence once the drone reached a waypoint while
the current height and yaw angle was measured with the
drone’s altitude and IMU sensors. The forward/sideways
motion controller would fly the vehicle forward/sideways,
aiming at reaching the desired length; this length was mea-
sured as the magnitude of the drone’s position obtained
with INAOE’s metric monocular SLAM. In addition, dur-
ing the forward/sideways motion and from gate 5 onwards,
the gate detection based on color segmentation was used to
detect the gate’s pole base, whose position relative to the
image center generates an error that was used to correct
drift in the direction of the drone with respect to the current
gate.

Team INAOE evaluated their metric monocular SLAM
approach using the Vicon motion capture system in indoor
environments with a planar ground. It was found that the
pose error is of 2% on average. Figure 4 shows examples
of INAOE’s whole system carrying out gate detection and
metric mapping.

3.3 Discussion and limitations

INAOE’s drone managed to fly through 9 gates in its first
time slot and 5 gates in its second time slot. The 9th gate was
reached at the time of 3min with 11.6 s; however, INAOE’s
drone speed was estimated to be of 0.7m/s. The reason why
the drone took more time in its flight was due to the yaw
controller, which spent considerable time in reaching the yaw
reference, for instance, right at the outset, the controller spent
25 s to reach the first yaw reference. This was due to a non-
optimal tuning of the yaw controller and possibly also due to
the low frequency of the IMU (5Hz).

Furthermore, the image segmentation was also used to
mask the gates and remove them from the synthetic depth
image in order to avoid incorrect initialization of feature and
map corruption. The gate detection was also used to correct
the drone’s heading in those caseswhere it begandriftingwith
respect to the gate. However, the contribution of this error in
the controllers was tuned with a low gain to avoid unstable
controlling. This controller will be improved in future work.

4 UZH’s approach: CADmodel-based
localization

The strategy for team UZH was based on the availability
of a CAD model of the race track to assign suitable way-
points along the track and used onboard visual odometry to
drive the quadrotor through the race. The main challenge in

Fig. 4 Snapshots that illustrate the performance of team INAOE using their metric monocular SLAM system during the race; gate detection is also
carried out using color segmentation

123



142 Intelligent Service Robotics (2019) 12:137–148

UZH’s approach was to robustly align the track reference
frame, where the waypoints were placed, with the odome-
try reference frame. To solve this problem, an onboard depth
sensor was used altogether with map alignment by minimiz-
ing the distance between the expected point cloud of the race
track and the one provided by the sensor.

4.1 Nomenclature

Let W be the world reference frame and G the reference
frame of a gate in the track. Without the loss of generality, it
is assumed the origin of G to be placed at the center of the
aperture of each gate. The position and the orientation of G
with respect toW are defined byWpG andRWG , respectively.
Let O be the odometry reference frame. The position and the
orientation of the quadrotor’s body frame B with respect to
W are defined by WpB and RWB , respectively. The relative
transformationTWO betweenW and O is represented by the
translation vector tWO and the rotation matrixRWO . Finally,
let G be the reference frame of a gate in the track.

4.2 Strategy

As previously mentioned, the strategy of team UZH relied
on the availability of a CAD model of the race track. More
specifically, such model provided the position WpG and the
orientation RWG of each gate in the frame W . Therefore, it
was possible to define waypoints in that frame such that the
quadrotor could fly through them to perform the race. For
the straight section, four waypoints were selected: two in the
center of the aperture of gates 1 and 3, respectively; two on
the left of gate 2 and 4, along the straight line connecting the
previous two waypoints. For the rest of the track, a waypoint
was placed in the center of the aperture of each gate to be
traversed (cf. Fig. 1). Additionally, for each waypoint, the
velocity vector was defined such that the gate was traversed
orthogonally.While flying from onewaypoint to the next, the
heading of the quadrotor was controlled such that an onboard
depth camera always faced the next gate to be traversed.

Using the approach described above, it was possible to
fully define a sequence of waypoints the robot was supposed
to navigate through in order to accomplish the race. How-
ever, such waypoints were defined in the reference frame
W , while the robot, thanks to an onboard visual-inertial
odometry pipeline, was aware of its position, orientation,
and velocity with respect to the odometry frame O . An ini-
tial guess of the transformation TWO = (tWO ,RWO) was
obtained during the test days by fixing the starting position
of the drone, i.e., the origin of O , and manually measuring
TWO . Nevertheless, small errors in the relative orientation
between the two frames, as well as drift in the visual-inertial
odometry, could potentially lead to crashes with the gates or
the protection nets around the track. This made it necessary

to improve the initial guess of TWO by estimating it online
in order to correctly align the odometry frame with the world
frame.

4.2.1 Frames alignment

To perform the frame alignment, team UZH used an itera-
tive closest point (ICP) algorithm [5]. UZH’s quadrotor was
equippedwith a front-looking depth camera providing a point
cloud PC� = {

pC�i ∈ R
3
}
, expressed in the true camera

frame C�, of the surroundings of the vehicle. Also, a point
cloud QW = {

qWi ∈ R
3
}
, expressed in the world frame, of

the race track was obtained from the CAD model. Based on
these two point clouds, the current VO pose estimate TOB

and the current alignment estimate TWO , ICP was used to
estimate the true pose T�

WB . First, the point cloud observa-
tion that is expected for PC� given the current estimate was
obtained as follows:

Q̃C = ((TWO · TOB · TBC )−1 · QW ) ∩ FC , (5)

where FC ⊂ R3 is the view frustum [6] of the depth cam-
era, representing the camera-centered volume in which it can
accurately detect depths. Given two point clouds PA and
PB , ICP returns a relative transform TAB that best satis-
fies PA ∼ TAB · PB . Thus, by passing PC� and Q̃C to
ICP, it is obtained an estimate for the camera frame cor-
rection TC�C that aligns the measured and expected point
clouds. Given this, in theory TWC = TWC� could be directly
solved for an updated TWO , but this would be prone to
noise in ICP. Thus, estimates for TC�C were accumulated
over the k most recent ICP measurements. Therefore, let
{T1

OB,T2
OB , . . . ,Tk

OB} be the corresponding odometry pose
estimates and {T1

C�C ,T2
C�C , . . . ,Tk

C�C } the corresponding
camera pose correction estimates provided by ICP. Then,
{Ti

WC = TWO ·Ti
OB ·TBC } and {Ti

WC� = Ti
WC · (Ti

C�C )−1}
are the corresponding estimated and “true” camera poses.
Given this, TWO is updated using nonlinear least squares
such that it minimizes the distance between estimated and
“true” camera positions:

TWO ← argmin
k∑

i=1

ωi

∣∣∣
∣∣∣piWC − piWC�

∣∣∣
∣∣∣ , (6)

where ωi is a time decay which assigns higher weight to
newer measurements. Two precautions were taken to avoid
degenerateTWO : firstly, (6) was constrained in roll and pitch
by restricting TWO to rotate only in yaw. This can be done
given that the VIO system can observe gravity and thus has
no drift in roll and pitch; secondly, TWO is only updated
according to the above formula if there is sufficient baseline
between p1OB and pkOB . Otherwise, (6) is not constrained in
yaw.

123



Intelligent Service Robotics (2019) 12:137–148 143

4.2.2 Planning

Let WpG and RWG be the position and the orientation with
respect to the frame W of a gate the quadrotor has to tra-
verse. Using the estimate of TWO obtained as described in
Sect. 4.2.1, it is possible to transform such quantities into the
odometry frame as:

OpG = Rᵀ
WO (WpG −W tWO) (7)

ROG = Rᵀ
WORWG . (8)

Let n̂ be the unit vector orthogonal to the gate (i.e., the
first column of ROG) expressed in the odometry frame, and
let OpB the position of the quadrotor in the same frame. The
position error is defined at time tk as e (tk) =O pB (tk) −O pG
and is decomposed into the longitudinal error elon (tk) and the
lateral error elat (tk) as:

elon (tk) = e (tk) · n̂ (9)

elat (tk) = e (tk) − elon (tk) . (10)

The velocity feedback input v is defined as:

v (tk) = Klonelon (tk) + Klatelat (tk) , (11)

where Klon and Klat are diagonal, positive definite gainmatri-
ces.

Let pdB (tk−1) , ṗdB (tk−1) , p̈dB (tk−1) be the desired posi-
tion, velocity, and acceleration (i.e., the reference quadrotor
state) at time tk−1, expressed in the odometry frame. Let
ṽ (tk) be a low-pass-filtered version of v (tk), i.e., ṽ (tk) =
αṽ (tk−1) + (1 − α) v (tk). The reference state at time tk is
computed as:

p̈dB (tk) = ṽ (tk) − ṗdB (tk)

Δt
(12)

ṗdB (tk) = ṽ (tk) (13)

pdB (tk) = pdB (tk−1) + ṽ (tk)Δt, (14)

where Δt = tk − tk−1 and α ∈ [0, 1].
Once the referencepositionpdB (tk) is known, the reference

yaw angle Ψ d (tk) (i.e., the heading of the vehicle) can be
computed, pointing toward the gate to be traversed, and the
yaw rotational speed Ψ̇ d (tk). Thanks to the fact that the depth
camera is front-looking, the direction it has to point toward
is defined by the vectoru = [

ux , uy, uz
]ᵀ =O pG − pdB (tk),

and the reference yaw angle is thatΨ d (tk) = atan2
(
uy/ux

)
.

Team UZH used the position error e to check whether
the robot reached the desired waypoint and, if this is the
case, then the drone was moved to the one for the next gate
according to the sequence determined by the rules of the

competition. If all the gates in the track have been traversed,
the quadrotor would have been commanded to safely land.

4.2.3 Control

To track the reference statexd (tk−1)=
[
pdB (tk−1), ṗdB (tk−1) ,

p̈dB (tk−1) , Ψ d (tk−1)
]ᵀ
, team UZH used the control strategy

reported in [7]. Broadly speaking, the control pipeline can
be split into a high-level and a low-level component. The
high-level controller receives as input the reference position,
velocity, acceleration, and yaw, and produces the desired col-
lective thrust and body rates. These are sent to the low-level
controller, which is responsible for body rate control (i.e.,
transforms the reference body rates into desired torques) and
computes the single-rotor thrusts necessary to achieve the
reference collective thrust and torques.

4.2.4 Dynamic obstacle

TeamUZH’s strategy for the dynamic obstacle envisaged that
the quadrotorwould stop in front of it at a predefineddistance,
in order to detect the moving bar by exploiting the point
cloud provided by the front-looking camera. Once enough
detections of the bar were obtained, the quadrotor would
plan a trajectory passing through the center of the bottom
half of the gate, such that the quadrotor would be traversing
the gate when the bar was pointing straight up. The duration
of the trajectory was computed given the knowledge of the
rotational velocity of the bar and the distance to it at the start
of the maneuver.

5 TU Delft’s approach: state-machine-based
high-level navigation

Team TU Delft’s main goal in the autonomous drone races
at IROS is to create and demonstrate small drones that are
able to move at high speed in their environment. Accord-
ing to team TU Delft, ‘small’ to them means < 50cm for
now, but an approach that can downscale even to < 15cm
drones will be intended. Aiming for such small sizes entails
important limitations in onboard sensing and processing,
and, consequently, the artificial intelligence and control algo-
rithms used onboard [8]. Specifically, it means to focus on
monocular navigation and computationally extremely effi-
cient algorithms for robotic vision and control.

5.1 High-level navigation

The drone has to successfully pass through the gates in the
exact order as determined by the drone race organization.
Hence, the drone needs to navigate autonomously to specific

123



144 Intelligent Service Robotics (2019) 12:137–148

Fig. 5 TU Delft’s gate detection consisted of two strategies running at
the same time. a When the entire gate is visible in the image, a snake-
gate detector was designed and used. b In parallel, a vertical histogram

of colors-based approach would select the most likely vertical edges of
the closest gate. This allows tracking to continue even when part of the
gate was occluded. c TU Delft drone passing a gate autonomously

places in the environment. For navigation, team TU Delft
chose not to employ highly accurate but computationally
complex SLAM or visual odometry (VO) methods. Instead,
they opted for a state machine where each state represented
the behavior during a part of the track. For example, the first
state had the drone takeoff, pitch forward, and thenfly straight
for the first 12m of the track. After covering 12m, the next
state had the drone turn 90◦ to the right and subsequently
pass through the closest gate in view. All states consisted
of linked sub-behaviors, such as climbs, descents, coordi-
nated turns, sideways motion, and gate pass-throughs. These
sub-behaviors required rough odometry estimates and the
determination of the position and orientation of the gates—
as will be detailed in the next subsection.

The advantage of the developed state-machine-based
high-level navigation is that it is computationally extremely
efficient and can easily accept changes in gate positions. The
disadvantage is that the drone will not be able to recover if
its position is too far off from the expected nominal position.

5.2 Low-level sensing and control

The sub-behaviors mentioned above required two main
pieces of information: the position and orientation of the
drone with respect to the gate and the velocity of the drone.

The gate is detected by means of a ‘snake-gate’ algorithm
that only processes small parts of the image. The detection is
fully color based, whichmeans a reliance on the orange gates
being visible in the small and blurry 315× 160 pixel images
(Fig. 5). The detected corners of a gate, in combination with
its known geometry, allow the drone to determine its position
and orientation with respect to the gate. This provides the
drone with the necessary position offsets to pass through
gates, but also gives very accurate velocity estimates when a

gate is in sight. The fact that gate detections are actively used
to guide the drone also means that moving the gates slightly
forms no problem for the navigation, as long as the gate is
visible from the position where the drone expected to be able
to see a gate, typically 3m in front of the gate.

There are large parts of the track where the drone would
not see a gate,while it still needs velocity estimates for odom-
etry and control. At IROS 2017, team TU Delft aimed to
reach a considerable speed with the drone. Initial tests at
higher speeds showed that the standard solution of combining
sonar with optical flow from the bottom camera significantly
degraded due to the blur in the images, even with abundant
texture on the floor. Hence, teamTUDelft opted for not using
the bottom camera and instead rely on knowledge of the drag
of the airframe to estimate the velocity. The drag is estimated
by means of a drag model that uses the accelerometer mea-
surements as inputs.

Both the position and velocity estimations from the gate
detection and the velocity estimates from the drag model are
combined in an extended Kalman filter (EKF), which also
estimated the biases of the accelerometers.

5.3 Results

The gates as initially foreseen in the competition were hardly
visible in the 315 × 160 pixel onboard images of the drone
in the low-light condition of the basement hall where the
competitionwas held. Prior to the competition, the organizers
adjusted the gates to be more visible by adding bright orange
tape to the gates. From that point on, the team focused on the
fine-tuning of the control strategy.While in the initial practice
runs, team TU Delft passed through 7 and then even 8 gates
quite easily, for some reason, the drone would start steering
erratically after passing gate 6 and sometimes even gate 5. It

123



Intelligent Service Robotics (2019) 12:137–148 145

was not possible to find the cause of this phenomenon before
the competition.

During the competition, TU Delft’s drone flew through
7 gates in 25s, which made it the fastest drone on the
track. However, other teams managed to gate 8 and 9, which
resulted in the fourth place of the team. Later in the track,
the drone made mistakes such as detecting a gate success-
fully but then steering in completely the wrong direction.
Post-competition analysis showed that there was a bug in the
bias estimation of the Kalman filter, leading to diverging bias
and velocity estimation after the drone had turned 180◦. Any
time the drone would fly in the initial direction again, the
filter would quickly converge again, which explains why the
problem was not observed during the testing in a smaller test
area before the competition. These unstable biases caused
the incorrect decisions on the part of the drone, steering the
wrong direction, while the gate detections—as apparent from
the onboard imagery in Fig. 5—were correctly detected.

6 KAIST approach: detection-based strategy

The key idea of team KAIST’s approach was to detect the
nearest gate using a single onboard camera and fly through
it while using the information of the general layout of the
arena. The rest of this section describes the key points of team
KAIST’s strategy and discusses their strengths and weak-
nesses.

6.1 Strategy

TeamKAIST’s approach is pivoted on the reliable gate detec-
tion. When the center of the nearest gate is detected, a
waypoint-based guidance algorithm allows for the drone to
fly through the center. After passing the gate, based on the
given map, it looks for the next gate using the given map.
Therefore, an accurate gate detection is the key point in the
strategy of team KAIST. In IROS 2016, Team KAIST used a
color-based detection method [9], which was found too sen-
sitive to illumination changes. Therefore, for more reliable
detection, Jung et al. introduced ADRNet [10], which is a
deep learning-based detection method. The following sub-
section briefly presents ADRNet and LOS guidance.

6.1.1 Gate detection using ADRNet

For ADR, it is required to detect the gate using onboard
sensors in real time. A novel deep convolutional neural net-
work detection model, named ADRNet, was proposed for
the real-time image processing. ADRNet is based on the SSD
(single-shot multibox detector) [11] architecture. To improve
speed, the base network structurewas changed fromVGG-16
[12] to AlexNet [13]-like network with seven convolutional

layers and removed two high-level feature layers. Anchor
box sizes and feature extraction points were also modified
to improve accuracy. ADRNet achieved inference speed of
28.95 fps (frames per second) on a NVIDIA TX2 embed-
ded board. The detection rate of ADRNet on a gate detection
dataset was 85.2%, and average precision was 0.755.

6.1.2 LOS guidance

A line-of-sight (LOS) guidance algorithm was adopted for
precise maneuver through the gate center. This algorithm is
frequently used for fixed-wing aircraft landing. This algo-
rithm is slightly modified for quadrotor dynamics, which has
decoupled dynamics between roll and yaw axis [10].

6.2 Pros and cons

The team KAIST’s detection-based approach has a clear
advantage that it can be applied to situations with higher
uncertainties because it does not heavily depend on the pre-
scribedmap. The following subsection presents the strengths
and weaknesses of the detection-based approach.

6.2.1 Pros

ADRNet shows a robust detection performance, which is
far better than the previous approach used in IROS 2016.
A gate of ADR 2017 arena is shown in Fig. 6a. The ADR
arena was quite dim and cluttered with various background
objects. Nonetheless, ADRNet showed good gate detection
results. As data accumulate, the deep learning-based detec-
tor becomes more robust against background and lighting
conditions. With a sufficiently large dataset that has been
constructed in various occasions, ADRNet can be applied to
many places without further training. The detection results
in various conditions are shown in Fig. 6b.

6.2.2 Cons

The detection-based approach is inefficient if the environ-
ment is fully mapped. It is especially true for ADR, where
the drone needs to fly as fast as possible for a higher score.
Also, as the deep neural networks require a higher comput-
ing power, which implies a heavier computer with a larger
battery, it makes the drone slower and less maneuverable.
Another minor problem is that ADRNet needs to be retrained
if the environment is significantly different from the existing
dataset. This poses a logistics problem, which can quite neg-
atively impact the team’s performance.

In summary, the detection-based approach can perform
drone racing without a precise map or in a dynamic environ-
ment with moving gates. However, there are shortages such

123



146 Intelligent Service Robotics (2019) 12:137–148

Fig. 6 Gate detection by KAIST. a A racing gate of the ADR 2017 arena (left) and gate detection result using ADRNet (right), b gate detection
results on various backgrounds

as inefficiency of the two-step approach and too much labor
for constructing dataset.

7 UNIST’s approach: end-to-end deep
learning

Upon receiving an image from an input video stream, the
image is fed into the deep neural networks, which will
then generate control commands for different aspects of the
control, including horizontal actions, vertical actions, and
rotational actions. Notice that all three neural networks take
the same input video stream simultaneously. The output of
the neural networks is combined to form a control command
which can be understood by the internal controller of the
drone. The control command will be turned into a MAVLink
message, which can be interpreted by the flight control unit
(FCU) of the drone to control the drone directly.

Deep neural networks in the action selector were imple-
mented based on a version of Google’s Inception, which
achieved the state of the art for classification and detection
in the ImageNet Large-Scale Visual Recognition Challenge
2014 (ILSVRC2014) [14]. Thus, team UNITS recorded a
large number of video clips showing how human control a
drone to fly through a square hoop. The video clips were
recorded from the perspective of the drone. Some frames in
the video clips were labeled with human-generated control
signals which are vectors of integers, each of them denotes an
action such as turning left, turning right, and staying put. Cur-
rently, each neural network can output three different integer
values only.

As shown in Fig. 7, a drone starts at an initial position and
aims to fly through a hoop. In the two-step procedure, the
drone first flies to the center line, which is a normal vector
of the 2D plane of the hoop, and then flies toward the hoop
along the center line through the center point of the hoop.
The success of this maneuver depends on whether the drone
can carry out these two steps correctly and quickly.

Center
Point

Distance from the 
Center Point (d2)

Offset from the 
Center Line (e1)

Offset from the 
Center Point (e2)

Final
Position

Initial 
Position

Initial Distance from
the Center Line (d1)

Cen
ter

 Line

Intermediate 
Position

Fig. 7 Two-step procedure for flying through a hoop using the action
selector developed by Team UNIST

Experiments carried out compare the performance of the
drone in terms of the success rate, the distance from the center
line, and the time to fly to the center line, using two different
action selectors trained with different sizes of the training
sets. It is expected that an action selector whose DNNs are
trained using a larger training set will outperform the one
using a smaller training set.

The experimental setup is shown in Fig. 7. First of all, an
initial position of the drone in front of the hoop is randomly
picked. The initial position should be at least 2m from the
hoop, and the camera on the drone should be able to see the
hoop at the initial position so that the action selector can select
the actions based on the images in the video stream. Then, the
action selector will generate control commands to control the
drone to fly toward the center line based on what it sees about
the hoop. Each DNN in the action selector can generate three
different values. When these values are zero, it means that
the drone has reached the setpoint (i.e., the distance between
the drone and the center line is small enough), and therefore
the drone should stabilize at the current position. However,

123



Intelligent Service Robotics (2019) 12:137–148 147

(a) (b) (c)

Fig. 8 Performance of UNIST’s drone when flying toward the center
line. a The initial distance from the center line (d1) versus the success
rate of reaching the center line. b The initial distance from the center

line (d1) versus the offsets from the center line (e1). c The initial dis-
tance from the center line (d1) versus the time to reach the center line

there are situations in which the drone fails to stabilize, either
(1) it flies around the center line and cannot stabilize for a
long time, or (2) it flies away from the center line and never
comes back. Figure 8a shows the success rate of stabilization
near the center line. As can be seen, when the initial distance
from the center line (d1) increases, the success rate decreases.
However, if the size of the training set is too small (e.g., 1000),
the success rate drops rapidly; by contrast, the success rate
can always maintain over 90% when the size of the train-
ing set is 5000. Hence, the performance of DNNs plays an
important role in stabilizing the drone near the center line.

Among the cases in which the drone can stabilize, the dis-
tance between the drone and the center line is measured. As
shown in Fig. 7, suppose that a drone stabilizes at a posi-
tion called the intermediate position, the distance between
the drone and the center line is the offset e1 between the
intermediate position and the center line. Figure 8b shows the
offsets from the center line as the initial distance d1 increases.
Notice that there are a lot more orange dots than blue dots
because the success rate of stabilization is much higher when
the size of the training set is 5000. As can be seen, the offset
is much smaller when the training set is large. In general, the
offset slightly increases as the initial distance increases, per-
haps due to the fact that outliers occur more often when d1
is large. Hence, the performance of DNNs can greatly affect
how close the drone can stabilize near the center line.

Finally, the time the drone took to stabilize near the center
line was alsomeasured. Figure 8c shows the time to reach the
center line as the initial distance d1 increases. As expected,
the time increases linearly with d1. However, a larger train-
ing set can help to stabilize more quickly. This experiment
shows that the performance of the drone can be improved by
increasing the number of training data.

8 Conclusion

This paper introduced the aerial vehicles and approaches used
in the twoADR competitions in conjunction with IROS 2016

and IROS 2017 that both intended to test autonomous drone
navigation for a known cluttered environment. Successful
teams implemented waypoint tracking methods along with
robust gate recognition algorithms. Although autonomous
drones tend to suffer from large position errors as they
traverse the arena, accurate tracking leads to successful
flight through closed gates in most occasions. The difficul-
ties in completing the racing track, however, still remain
a challenge. In the future ADR competitions, the amount
of environmental information available to drones will be
reduced, aiming at pushing formore autonomy in drone tech-
nologies.

Acknowledgements J. Martinez-Carranza is thankful for the funding
received by the Royal Society through the Newton Advanced Fellow-
ship with reference NA140454. Team UZH thanks Elia Kaufmann,
Antoni Rosinol Vidal, and Henri Rebecq for their great help in the
software implementation and integration. Team of TU Delft would like
to thank the organizers of the Autonomous Drone Race event. Team
UNIST’s work was supported by NRF (2.180186.01 and 2.170511.01).
All authorswould like to thank the organizers of theAutonomousDrone
Racing.

References

1. Moon H, Sun Y, Baltes J, Kim SJ (2017) The IROS 2016 compe-
titions. IEEE Robot Autom Mag 24(1):20–29

2. Brisset P, Drouin A, Gorraz M, Huard P-S, Tyler J (2006) The
paparazzi solution. In: 2nd US-European competition and work-
shop on micro air vehicles (MAV)

3. Mur-Artal R, Montiel JMM, Tardós JD (2015) ORB-SLAM: a
versatile and accurate monocular slam system. IEEE Trans Robot
31(5):1147–1163

4. Rojas-Perez LO, Martinez-Carranza J (2017) Metric monocular
SLAM and colour segmentation for multiple obstacle avoidance
in autonomous flight. In: IEEE 4th workshop on research, educa-
tion and development of unmanned aerial systems (RED-UAS),
October

5. Chen Y, Medioni G (1992) Object modelling by registration of
multiple range images. Image Vis Comput 10(3):145–155

6. Foley JD,VanDamA (1982) Fundamentals of interactive computer
graphics. Addison-Wesley Longman Publishing Co., Inc., Boston

123



148 Intelligent Service Robotics (2019) 12:137–148

7. Faessler M, Franchi A, Scaramuzza D (2018) Differential flatness
of quadrotor dynamics subject to rotor drag for accurate tracking
of high-speed trajectories. IEEE Robot Autom Lett 3(2):620–626

8. de Croon G, Perçin M, Remes B, Ruijsink R, De Wagter C (2016)
The DelFly: design, aerodynamics, and artificial intelligence of a
flapping wing robot. Springer, Berlin

9. Jung S, Cho S, Lee D, Lee H, Shim DH (2017) A direct visual
servoing-based framework for the 2016 IROS Autonomous Drone
Racing Challenge. J Field Robot 35(1):146–166

10. Jung S, Hwang S, Shin H, Shim DH (2018) Perception, guidance
and navigation for indoor autonomous drone racing using deep
learning. IEEE Robot Autom Lett 3(3):2539–2544

11. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, Berg
AC (2016) SSD: single shot multibox detector. In: European con-
ference on computer vision (ECCV). Springer, pp 21–37

12. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan
D, Vanhoucke V, Rabinovich A (2015) Going deeper with convo-
lutions. In: Computer vision and pattern recognition (CVPR)

13. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classifi-
cation with deep convolutional neural networks. In: Advances in
neural information processing systems (NIPS), pp 1097–1105

14. Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2017) Inception-
v4, Inception-ResNet and the impact of residual connections on
learning. In: AAAI conference on artificial intelligence (AAAI),
pp 4278–4284

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	Challenges and implemented technologies used in autonomous drone racing
	Abstract
	1 Introduction
	2 Aerial vehicles
	3 INAOE's approach: monocular metric visual SLAM for autonomous flight
	3.1 Metric mono-SLAM assuming a planar ground
	3.2 Autonomous navigation approach
	3.3 Discussion and limitations

	4 UZH's approach: CAD model-based localization
	4.1 Nomenclature
	4.2 Strategy
	4.2.1 Frames alignment
	4.2.2 Planning
	4.2.3 Control
	4.2.4 Dynamic obstacle


	5 TU Delft's approach: state-machine-based high-level navigation
	5.1 High-level navigation
	5.2 Low-level sensing and control
	5.3 Results

	6 KAIST approach: detection-based strategy
	6.1 Strategy
	6.1.1 Gate detection using ADRNet
	6.1.2 LOS guidance

	6.2 Pros and cons
	6.2.1 Pros
	6.2.2 Cons


	7 UNIST's approach: end-to-end deep learning
	8 Conclusion
	Acknowledgements
	References




