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FMRI Brain Analysis

Goal: Reveal functional connections between regions of the brain.
(Sun et al, 2009; Smith et al, 2011; Varoquaux et al, 2010; Ng et al, 2011)

p = 228, 483 voxels.

Figure from (Varoquaux et al, 2010)
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Other Applications

Gene regulatory network discovery:

(Schafer & Strimmer 2005; Andrei & Kendziorski 2009; Menendez et
al, 2010; Yin and Li, 2011)

Financial Data Analysis:

Model dependencies in multivariate time series (Xuan & Murphy, 2007).
Sparse high dimensional models in economics (Fan et al, 2011).

Social Network Analysis / Web data:

Model co-authorship networks (Goldenberg & Moore, 2005).
Model item-item similarity for recommender system(Agarwal et al, 2011).

Climate Data Analysis (Chen et al., 2010).

Signal Processing (Zhang & Fung, 2013).

Anomaly Detection (Ide et al, 2009).
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Inverse Covariance Estimation

Given: n i.i.d. samples {y1, . . . , yn}, yi ∈ Rp, yi ∼ N (µ,Σ),

An example – Chain graph: yj = 0.5yj−1 +N (0, 1)

Σ =

 1.33 0.67 0.33 0.17
0.67 1.33 0.67 0.33
0.33 0.67 1.33 0.67
0.17 0.33 0.67 1.33

 , Σ−1 =

 1 −0.5 0 0
−0.5 1.25 −0.5 0

0 −0.5 1.25 −0.5
0 0 −0.5 1


Conditional independence is reflected as zeros in Σ−1:

Σ−1
ij = 0⇔ yi and yj are conditionally independent given other variables.
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L1-regularized inverse covariance selection

Goal: Estimate the inverse covariance matrix in the high dimensional
setting: p(# variables)� n(# samples)

Add `1 regularization – a sparse inverse covriance matrix is preferred.

The `1-regularized Maximum Likelihood Estimator:

Σ−1 = arg min
X�0

{
− log det X + tr(SX )︸ ︷︷ ︸

negative log likelihood

+λ‖X‖1

}
= arg min

X�0
f (X ),

where ‖X‖1 =
∑n

i ,j=1 |Xij |.

The problem appears hard to solve:

Non-smooth log-determinant program.
Number of parameters scale quadratically with number of variables.
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Scalability

Block coordinate ascent (Banerjee et al, 2007), Graphical Lasso (Friedman et
al, 2007).

VSM, PSM, SINCO, IPM, PQN, ALM (2008-2010).

ALM solves p = 1000 in 300 secs.

QUIC: Newton type method (Hsieh et al, 2011)

Solves p = 1000 in 10 secs, p = 10, 000 in half hour.

All the above methods require O(p2) memory, cannot solve problems with
p > 30, 000.

Need for scalability: FMRI dataset has more than 220, 000 variables

BigQUIC (2013):

p = 1, 000, 000 (1 trillion parameters) in 22.9 hrs with 32 GBytes memory

(using a single machine with 32 cores).
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Our innovations

Main Ingredients:
1 Second-order Newton-like method (QUIC)

→ quadratic convergence rate.
2 Memory-efficient scheme using block coordinate descent (BigQUIC)

→ scale to one million variables.
3 Approximate Hessian computation (BigQUIC)

→ super-linear convergence rate.
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QUIC – proximal Newton method

Split smooth and non-smooth terms: f (X ) = g(X ) + h(X ), where

g(X ) = − log det X + tr(SX ) and h(X ) = λ‖X‖1.

Form quadratic approximation for g(Xt + ∆):

ḡXt (∆) = tr((S −Wt)∆) + (1/2) vec(∆)T (Wt ⊗Wt) vec(∆)

− log det Xt + tr(SXt),

where Wt = (Xt)−1 = ∂
∂X log det(X ) |X=Xt .

Define the generalized Newton direction:

Dt = arg min
∆

ḡXt (∆) + λ‖Xt + ∆‖1.

Solve by coordinate descent (Hsieh et al, 2011) or other methods (Olsen et al, 2012).
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Coordinate Descent Updates

Use coordinate descent to solve:

arg min
D
{ḡX (D) + λ‖X + D‖1}.

Closed form solution for each coordinate descent update:

Dij ← −c + S(c − b/a, λ/a),

where S(z , r) = sign(z) max{|z | − r , 0} is the soft-thresholding
function, a = W 2

ij + WiiWjj , b = Sij −Wij + wT
i Dwj , and c = Xij + Dij .

The main cost is in computing wT
i Dwj ,

where wi ,wj are i-th and j-th columns of W = X−1.
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Algorithm

QUIC: QUadratic approximation for sparse Inverse Covariance estimation

Input: Empirical covariance matrix S , scalar λ, initial X0.

For t = 0, 1, . . .
1 Variable selection: select a free set of m� p2 variables.
2 Use coordinate descent to find descent direction:

Dt = arg min∆ f̄Xt (Xt + ∆) over set of free variables, (A Lasso problem.)
3 Line Search: use an Armijo-rule based step-size selection to get α s.t.

Xt+1 = Xt + αDt is

positive definite,
satisfies a sufficient decrease condition f (Xt + αDt) ≤ f (Xt) + ασ∆t .

(Cholesky factorization of Xt + αDt)
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Difficulties in Scaling QUIC

Consider the case that p ≈ 1million, m = ‖Xt‖0 ≈ 50million.

Coordinate descent requires Xt and W = X−1
t ,

needs O(p2) storage
needs O(mp) computation per sweep, where m = ‖Xt‖0

Line search (compute determinant using Cholesky factorization).

needs O(p2) storage
needs O(p3) computation
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Coordinate Updates with Memory Cache

Assume we can store M columns of W in memory.

Coordinate descent update (i , j): compute wT
i Dwj .

If wi ,wj are not in memory: recompute by CG:

Xwi = ei : O(TCG ) time.
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Coordinate Updates with Memory Cache

w1,w2,w3,w4 stored in memory.
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Coordinate Updates with Memory Cache

Cache hit, do not need to recompute wi ,wj .
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Coordinate Updates with Memory Cache

Cache miss, recompute wi ,wj .
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Coordinate Updates – ideal case

Want to find update sequence that minimizes number of cache misses:

probably NP Hard.

Our strategy: update variables block by block.

The ideal case: there exists a partition {S1, . . . ,Sk} such that all free
sets are in diagonal blocks:

Only requires p column evaluations.
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General case: block diagonal + sparse

If the block partition is not perfect:

extra column computations can be characterized by boundary nodes.

Given a partition {S1, . . . ,Sk}, we define boundary nodes as

B(Sq) ≡ {j | j ∈ Sq and ∃i ∈ Sz , z 6= q s.t. Fij = 1},

where F is adjacency matrix of the free set.
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Graph Clustering Algorithm

The number of columns to be computed in one sweep is

p +
∑
q

|B(Sq)|.

Can be upper bounded by

p +
∑
q

|B(Sq)| ≤ p +
∑
z 6=q

∑
i∈Sz ,j∈Sq

Fij .

Use Graph Clustering (METIS or Graclus) to find the partition.

Example: on fMRI dataset (p = 0.228 million) with 20 blocks,

random partition: need 1.6 million column computations.

graph clustering: need 0.237 million column computations.
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BigQUIC

Block co-ordinate descent with clustering,

needs O(p2) → O(m + p2/k) storage
needs O(mp) → O(mp) computation per sweep, where m = ‖Xt‖0

Line search (compute determinant of a big sparse matrix).

needs O(p2) storage
needs O(p3) computation
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Line Search

Given sparse matrix A = Xt + αD, we need to
1 Check its positive definiteness.
2 Compute log det(A).

Our approach computes log det(A) in O(mp) time.

Cholesky factorization in QUIC requires O(p3) computation.

If A =

(
a bT

b C

)
,

det(A) = det(C )(a− bTC−1b)
A is positive definite iff C is positive definite and (a− bTC−1b) > 0.

C is sparse, so can compute C−1b using Conjugate Gradient (CG).

Time complexity: TCG = O(mT ), where T is number of CG iterations.
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Algorithm

BigQUIC

Input: Samples Y , scalar λ, initial X0.

For t = 0, 1, . . .
1 Variable selection: select a free set of m� p2 variables.
2 Construct a partition by clustering.
3 Run block coordinate descent to find descent direction:

Dt = arg min∆ f̄Xt (Xt + ∆) over set of free variables.
4 Line Search: use an Armijo-rule based step-size selection to get α s.t.

Xt+1 = Xt + αDt is

positive definite,
satisfies a sufficient decrease condition f (Xt + αDt) ≤ f (Xt) + ασ∆t .

(Schur complement with conjugate gradient method. )
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BigQUIC Convergence Analysis

Recall W = X−1.

When each wi is computed by CG (Xwi = ei ):

The gradient ∇ijg(X ) = Sij −Wij on free set can be computed once and
stored in memory.
Hessian (wT

i Dwj in coordinate updates) needs to be repeatedly
computed.

To reduce the time overhead, Hessian should be computed
approximately.

Theorem: the convergence rate is quadratic if
‖X ŵi − ei‖ = O(‖∇S f (Xt)‖) , where

∇S
ij f (X ) =

{
∇ijg(X ) + sign(Xij)λ if Xij 6= 0,

sign(∇ijg(X )) max(|∇ijg(X )| − λ, 0) if Xij = 0.
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Experimental results (scalability)

(a) Scalability on random graph (b) Scalability on chain graph

Figure: BigQUIC can solve one million dimensional problems.
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Experimental results

BigQUIC is faster even for medium size problems.

Figure: Comparison on FMRI data with a p = 20000 subset (maximum dimension
that previous methods can handle).
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Results on FMRI dataset

228,483 voxels, 518 time points.

λ = 0.6 =⇒ average degree 8, BigQUIC took 5 hours.

λ = 0.5 =⇒ average degree 38, BigQUIC took 21 hours.

Findings:

Voxels with large degree were generally found in the gray matter.
Can detect meaningful brain modules by modularity clustering.
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Conclusions

BigQUIC: Memory efficient quadratic approximation method for
sparse inverse covariance estimation.

Our contributions:
Computing Newton direction:

Coordinate descent → block coordinate descent with clustering.
Memory complexity: O(p2) → O(m + p2/k).
Time complexity: O(mp) → O(mp).

Line search (computing determinant of a big sparse matrix)

Cholesky factorization → Schur complement with conjugate gradient
method.
Memory complexity: O(p2) → O(p).
Time complexity: O(p3) → O(mp).

Inexact Hessian computation with super-linear convergence.
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