BIG & QUIC: Sparse Inverse Covariance Estimation for a Million Variables

Cho-Jui Hsieh The University of Texas at Austin

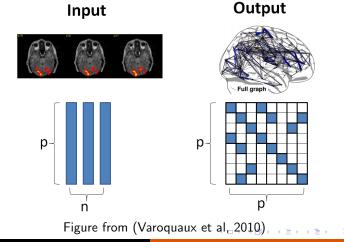
NIPS Lake Tahoe, Nevada Dec 8, 2013

Joint work with M. Sustik, I. Dhillon, P. Ravikumar and R. Poldrack

Cho-Jui Hsieh The University of Texas at Austin BIG & QUIC: Sparse Inverse Covariance Estimation

FMRI Brain Analysis

Goal: Reveal functional connections between regions of the brain. (Sun et al, 2009; Smith et al, 2011; Varoquaux et al, 2010; Ng et al, 2011)
p = 228, 483 voxels.



Other Applications

• Gene regulatory network discovery:

(Schafer & Strimmer 2005; Andrei & Kendziorski 2009; Menendez et al, 2010; Yin and Li, 2011)

- Financial Data Analysis:
 - Model dependencies in multivariate time series (Xuan & Murphy, 2007).
 - Sparse high dimensional models in economics (Fan et al, 2011).
- Social Network Analysis / Web data:
 - Model co-authorship networks (Goldenberg & Moore, 2005).
 - Model item-item similarity for recommender system(Agarwal et al, 2011).
- Climate Data Analysis (Chen et al., 2010).
- Signal Processing (Zhang & Fung, 2013).
- Anomaly Detection (Ide et al, 2009).

Inverse Covariance Estimation

- Given: *n* i.i.d. samples $\{\mathbf{y}_1, \ldots, \mathbf{y}_n\}$, $\mathbf{y}_i \in R^p$, $\mathbf{y}_i \sim \mathcal{N}(\mu, \Sigma)$,
- An example Chain graph: $y_j = 0.5y_{j-1} + \mathcal{N}(0, 1)$

$$\Sigma = \left(\begin{array}{ccccc} 1.33 & 0.67 & 0.33 & 0.17 \\ 0.67 & 1.33 & 0.67 & 0.33 \\ 0.33 & 0.67 & 1.33 & 0.67 \\ 0.17 & 0.33 & 0.67 & 1.33 \end{array} \right), \ \Sigma^{-1} = \left(\begin{array}{cccccc} 1 & -0.5 & 0 & 0 \\ -0.5 & 1.25 & -0.5 & 0 \\ 0 & -0.5 & 1.25 & -0.5 \\ 0 & 0 & -0.5 & 1 \end{array} \right)$$

• Conditional independence is reflected as zeros in Σ^{-1} :

 $\Sigma_{ij}^{-1} = 0 \Leftrightarrow y_i$ and y_j are conditionally independent given other variables.

L1-regularized inverse covariance selection

- Goal: Estimate the inverse covariance matrix in the high dimensional setting: p(# variables) ≫ n(# samples)
- Add l_1 regularization a sparse inverse covriance matrix is preferred.
- The ℓ_1 -regularized Maximum Likelihood Estimator:

$$\Sigma^{-1} = \arg\min_{X \succ 0} \left\{ \underbrace{-\log \det X + \operatorname{tr}(SX)}_{\text{negative log likelihood}} + \lambda \|X\|_1 \right\} = \arg\min_{X \succ 0} f(X),$$

where $||X||_1 = \sum_{i,j=1}^n |X_{ij}|$.

L1-regularized inverse covariance selection

- Goal: Estimate the inverse covariance matrix in the high dimensional setting: p(# variables) ≫ n(# samples)
- Add l_1 regularization a sparse inverse covriance matrix is preferred.
- The ℓ_1 -regularized Maximum Likelihood Estimator:

$$\Sigma^{-1} = \arg\min_{X \succ 0} \left\{ \underbrace{-\log \det X + \operatorname{tr}(SX)}_{\text{negative log likelihood}} + \lambda \|X\|_1 \right\} = \arg\min_{X \succ 0} f(X),$$

where $||X||_1 = \sum_{i,j=1}^n |X_{ij}|$.

- The problem appears hard to solve:
 - Non-smooth log-determinant program.
 - Number of parameters scale quadratically with number of variables.

A I > A I > A

Scalability

- Block coordinate ascent (Banerjee et al, 2007), Graphical Lasso (Friedman et al, 2007).
- VSM, PSM, SINCO, IPM, PQN, ALM (2008-2010).
 ALM solves p = 1000 in 300 secs.
- QUIC: Newton type method (Hsieh et al, 2011)

Solves p = 1000 in 10 secs, p = 10,000 in half hour.

- All the above methods require $O(p^2)$ memory, cannot solve problems with p > 30,000.
- Need for scalability: FMRI dataset has more than 220,000 variables

伺 ト イ ヨ ト イ ヨ ト

Scalability

- Block coordinate ascent (Banerjee et al, 2007), Graphical Lasso (Friedman et al, 2007).
- VSM, PSM, SINCO, IPM, PQN, ALM (2008-2010).
 ALM solves p = 1000 in 300 secs.
- QUIC: Newton type method (Hsieh et al, 2011)

Solves p = 1000 in 10 secs, p = 10,000 in half hour.

- All the above methods require $O(p^2)$ memory, cannot solve problems with p > 30,000.
- Need for scalability: FMRI dataset has more than 220,000 variables
- BIGQUIC (2013):

p = 1,000,000 (1 trillion parameters) in 22.9 hrs with 32 GBytes memory (using a single machine with 32 cores).

高 とう きょう く ほ とう ほう

Our innovations

- Main Ingredients:
 - Second-order Newton-like method (QUIC)
 - \rightarrow quadratic convergence rate.
 - Ø Memory-efficient scheme using block coordinate descent (BigQUIC)
 - \rightarrow scale to one million variables.
 - Approximate Hessian computation (BigQUIC)
 - \rightarrow super-linear convergence rate.

- **B** - **N** - **B** - **N**

QUIC - proximal Newton method

• Split smooth and non-smooth terms: f(X) = g(X) + h(X), where

$$g(X) = -\log \det X + \operatorname{tr}(SX)$$
 and $h(X) = \lambda \|X\|_1.$

• Form quadratic approximation for $g(X_t + \Delta)$:

$$ar{g}_{X_t}(\Delta) = \operatorname{tr}((S - W_t)\Delta) + (1/2)\operatorname{vec}(\Delta)^T (W_t \otimes W_t)\operatorname{vec}(\Delta) \ - \log \det X_t + \operatorname{tr}(SX_t),$$

where
$$W_t = (X_t)^{-1} = \frac{\partial}{\partial X} \log \det(X) \mid_{X = X_t}$$
.

• Define the generalized Newton direction:

$$D_t = \arg\min_{\Delta} \bar{g}_{X_t}(\Delta) + \lambda \|X_t + \Delta\|_1.$$

• Solve by coordinate descent (Hsieh et al, 2011) or other methods (Olsen et al, 2012).

b) A (B) b) A (B) b)

Coordinate Descent Updates

• Use coordinate descent to solve:

$$\arg\min_{D} \{ \bar{g}_X(D) + \lambda \| X + D \|_1 \}.$$

• Closed form solution for each coordinate descent update:

$$D_{ij} \leftarrow -c + \mathcal{S}(c - b/a, \lambda/a),$$

where $S(z, r) = \operatorname{sign}(z) \max\{|z| - r, 0\}$ is the soft-thresholding function, $a = W_{ij}^2 + W_{ii}W_{jj}$, $b = S_{ij} - W_{ij} + \mathbf{w}_i^T D\mathbf{w}_j$, and $c = X_{ij} + D_{ij}$.

 The main cost is in computing w^T_iDw_j, where w_i, w_j are *i*-th and *j*-th columns of W = X⁻¹.

Algorithm

$\operatorname{QUIC}:$ QUadratic approximation for sparse Inverse Covariance estimation

Input: Empirical covariance matrix S, scalar λ , initial X_0 . For t = 0, 1, ...

- **(**) Variable selection: select a *free* set of $m \ll p^2$ variables.
- **2** Use coordinate descent to find descent direction:
 - $D_t = \arg \min_{\Delta} \overline{f}_{X_t}(X_t + \Delta)$ over set of free variables, (A Lasso problem.)
- Solution Search: use an Armijo-rule based step-size selection to get α s.t. $X_{t+1} = X_t + \alpha D_t$ is
 - positive definite,
 - satisfies a sufficient decrease condition f(X_t + αD_t) ≤ f(X_t) + ασΔ_t.

伺 と く ヨ と く ヨ と … ヨ

(Cholesky factorization of $X_t + \alpha D_t$)

Difficulties in Scaling QUIC

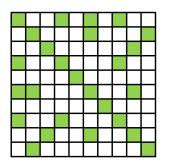
Consider the case that $p \approx 1$ million, $m = ||X_t||_0 \approx 50$ million.

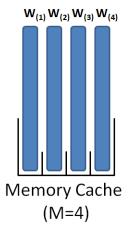
- Coordinate descent requires X_t and $W = X_t^{-1}$,
 - needs O(p²) storage
 - needs O(mp) computation per sweep, where $m = \|X_t\|_0$
- Line search (compute determinant using Cholesky factorization).
 - needs $O(p^2)$ storage
 - needs O(p³) computation

- Assume we can store M columns of W in memory.
- Coordinate descent update (i, j): compute $\mathbf{w}_i^T D \mathbf{w}_j$.
- If $\mathbf{w}_i, \mathbf{w}_j$ are not in memory: recompute by CG:

 $X\mathbf{w}_i = \mathbf{e}_i$: $O(T_{CG})$ time.

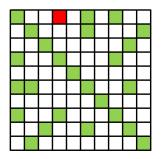
 $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4$ stored in memory.



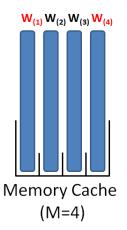


A B > A B >

Cache hit, do not need to recompute $\mathbf{w}_i, \mathbf{w}_j$.



Update (1,4) Need $W_{(1)}$, $W_{(4)}$



4 B K 4 B K

Cache miss, recompute $\mathbf{w}_i, \mathbf{w}_j$.

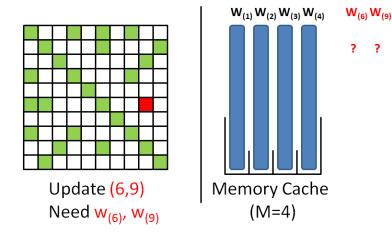
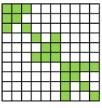


Image: A Image: A

Coordinate Updates - ideal case

- Want to find update sequence that minimizes number of cache misses: probably NP Hard.
- Our strategy: update variables block by block.
- The ideal case: there exists a partition $\{S_1, \ldots, S_k\}$ such that all free sets are in diagonal blocks:



Free Set

• Only requires *p* column evaluations.

General case: block diagonal + sparse

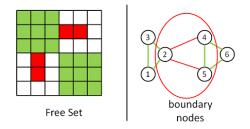
• If the block partition is not perfect:

extra column computations can be characterized by boundary nodes.

• Given a partition $\{S_1, \ldots, S_k\}$, we define boundary nodes as

$$B(S_q) \equiv \{j \mid j \in S_q ext{ and } \exists i \in S_z, z
eq q ext{ s.t. } F_{ij} = 1\},$$

where F is adjacency matrix of the free set.



Graph Clustering Algorithm

• The number of columns to be computed in one sweep is

$$p+\sum_{q}|B(S_{q})|.$$

• Can be upper bounded by

$$p + \sum_{q} |B(S_q)| \leq p + \sum_{z \neq q} \sum_{i \in S_z, j \in S_q} F_{ij}.$$

- Use Graph Clustering (METIS or Graclus) to find the partition.
- Example: on fMRI dataset (p = 0.228 million) with 20 blocks, random partition: need 1.6 million column computations. graph clustering: need 0.237 million column computations.

BIGQUIC

- Block co-ordinate descent with clustering,
 - needs $O(p^2) \rightarrow O(m + p^2/k)$ storage
 - needs O(mp)
 ightarrow O(mp) computation per sweep, where $m = \|X_t\|_0$
- Line search (compute determinant of a big sparse matrix).
 - needs $O(p^2)$ storage
 - needs $O(p^3)$ computation

Line Search

- Given sparse matrix $A = X_t + \alpha D$, we need to
 - Check its positive definiteness.
 - 2 Compute $\log \det(A)$.
- Our approach computes $\log \det(A)$ in O(mp) time.
- Cholesky factorization in QUIC requires $O(p^3)$ computation.

• If
$$A = \begin{pmatrix} a & b^T \\ b & C \end{pmatrix}$$
,

•
$$\det(A) = \det(C)(a - \mathbf{b}^T C^{-1}\mathbf{b})$$

- A is positive definite iff C is positive definite and $(a \mathbf{b}^T C^{-1} \mathbf{b}) > 0$.
- C is sparse, so can compute $C^{-1}\mathbf{b}$ using Conjugate Gradient (CG).
- Time complexity: $T_{CG} = O(mT)$, where T is number of CG iterations.

ヨッ イヨッ イヨッ

BIGQUIC

- Block co-ordinate descent with clustering,
 - needs $O(p^2) \rightarrow O(m + p^2/k)$ storage
 - needs $O(mp) \rightarrow O(mp)$ computation per sweep, where $m = \|X_t\|_0$
- Line search (compute determinant of a big sparse matrix).
 - needs $O(p^2) \rightarrow O(p)$ storage
 - needs $O(p^3) \rightarrow O(mp)$ computation

伺 と く ヨ と く ヨ と … ヨ

Algorithm

BIGQUIC

Input: Samples Y, scalar λ , initial X_0 .

For t = 0, 1, ...

- **(**) Variable selection: select a *free* set of $m \ll p^2$ variables.
- **②** Construct a partition by clustering.
- Sun block coordinate descent to find descent direction:
 - $D_t = \arg \min_{\Delta} \overline{f}_{X_t}(X_t + \Delta)$ over set of free variables.
- Line Search: use an Armijo-rule based step-size selection to get α s.t. $X_{t+1} = X_t + \alpha D_t$ is
 - positive definite,
 - satisfies a sufficient decrease condition f(X_t + αD_t) ≤ f(X_t) + ασΔ_t.

- (同) (回) (回) - 回

(Schur complement with conjugate gradient method.)

BIGQUIC Convergence Analysis

- Recall $W = X^{-1}$.
- When each \mathbf{w}_i is computed by CG $(X\mathbf{w}_i = \mathbf{e}_i)$:
 - The gradient $\nabla_{ij}g(X) = S_{ij} W_{ij}$ on free set can be computed once and stored in memory.
 - Hessian (w^T_iDw_j in coordinate updates) needs to be repeatedly computed.
- To reduce the time overhead, Hessian should be computed approximately.
- Theorem: the convergence rate is quadratic if $||X\hat{\mathbf{w}}_{\mathbf{i}} \mathbf{e}_{\mathbf{i}}|| = O(||\nabla^{S} f(X_{t})||)$, where

$$abla^{S}_{ij}f(X) = egin{cases}
abla_{ij}g(X) + \operatorname{sign}(X_{ij})\lambda & ext{if } X_{ij}
eq 0, \\
\operatorname{sign}(
abla_{ij}g(X)) \max(|
abla_{ij}g(X)| - \lambda, 0) & ext{if } X_{ij} = 0. \end{cases}$$

伺い イラト イラト

Experimental results (scalability)

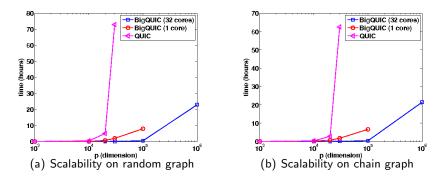


Figure: BIGQUIC can solve one million dimensional problems.

同 ト イ ヨ ト イ ヨ ト

Experimental results

 $\operatorname{BIGQUIC}$ is faster even for medium size problems.

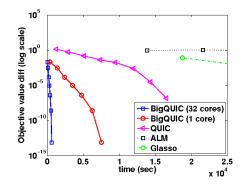


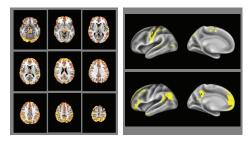
Figure: Comparison on FMRI data with a p = 20000 subset (maximum dimension that previous methods can handle).

Results on FMRI dataset

- 228,483 voxels, 518 time points.
- $\lambda = 0.6 \Longrightarrow$ average degree 8, BIGQUIC took 5 hours.

 $\lambda = 0.5 \Longrightarrow$ average degree 38, $\operatorname{BIGQUIC}$ took 21 hours.

- Findings:
 - Voxels with large degree were generally found in the gray matter.
 - Can detect meaningful brain modules by modularity clustering.



• • = • • = •

Conclusions

- BIGQUIC: Memory efficient quadratic approximation method for sparse inverse covariance estimation.
- Our contributions:
 - Computing Newton direction:
 - Coordinate descent \rightarrow **block coordinate descent with clustering.**
 - Memory complexity: $O(p^2) \rightarrow O(m + p^2/k)$.
 - Time complexity: $O(mp) \rightarrow O(mp)$.
 - Line search (computing determinant of a big sparse matrix)
 - Cholesky factorization → Schur complement with conjugate gradient method.

(4月) (4日) (4日) 日

- Memory complexity: $O(p^2) \rightarrow O(p)$.
- Time complexity: $O(p^3) \rightarrow O(mp)$.
- Inexact Hessian computation with super-linear convergence.

References

- [1] C. J. Hsieh, M. Sustik, I. S. Dhillon, P. Ravikumar, and R. Poldrack. *BIG & QUIC: Sparse inverse covariance estimation for a million variables*. NIPS (oral presentation), 2013.
- [2] C. J. Hsieh, M. Sustik, I. S. Dhillon, and P. Ravikumar. *Sparse Inverse Covariance Matrix Estimation using Quadratic Approximation*. NIPS, 2011.
- [3] C. J. Hsieh, I. S. Dhillon, P. Ravikumar, A. Banerjee. *A Divide-and-Conquer Procedure for Sparse Inverse Covariance Estimation*. NIPS, 2012.
- [4] P. A. Olsen, F. Oztoprak, J. Nocedal, and S. J. Rennie. *Newton-Like Methods for Sparse Inverse Covariance Estimation*. Optimization Online, 2012.
- [5] O. Banerjee, L. El Ghaoui, and A. d'Aspremont *Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data*. JMLR, 2008.
- [6] J. Friedman, T. Hastie, and R. Tibshirani. *Sparse inverse covariance estimation with the graphical lasso*. Biostatistics, 2008.
- [7] L. Li and K.-C. Toh. An inexact interior point method for *I1-reguarlized sparse covariance* selection. Mathematical Programming Computation, 2010.
- [8] K. Scheinberg, S. Ma, and D. Glodfarb. *Sparse inverse covariance selection via alternating linearization methods.* NIPS, 2010.
- [9] K. Scheinberg and I. Rish. *Learning sparse Gaussian Markov networks using a greedy coordinate ascent approach*. Machine Learning and Knowledge Discovery in Databases, 2010.

イロト 不得 とうせい かほとう ほ