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@ Goal: Reveal functional connections between regions of the brain.
(Sun et al, 2009; Smith et al, 2011; Varoquaux et al, 2010; Ng et al, 2011)
e p = 228,483 voxels.

Figure from (Varoquaux et al, 2010)
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@ Gene regulatory network discovery:
(Schafer & Strimmer 2005; Andrei & Kendziorski 2009; Menendez et
al, 2010; Yin and Li, 2011)

o Financial Data Analysis:

o Model dependencies in multivariate time series (Xuan & Murphy, 2007).
o Sparse high dimensional models in economics (Fan et al, 2011).

@ Social Network Analysis / Web data:

o Model co-authorship networks (Goldenberg & Moore, 2005).
e Model item-item similarity for recommender system(Agarwal et al, 2011).

o Climate Data Analysis (Chen et al., 2010).
e Signal Processing (Zhang & Fung, 2013).
@ Anomaly Detection (lde et al, 2009).

Cho-Jui Hsieh The University of Texas at Austin



e Given: ni.id. samples {y,...,¥n}, ¥; € RP, y; ~ N(p, X),
@ An example — Chain graph: y; = 0.5y;_1 + N(0,1)
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e Conditional independence is reflected as zeros in ¥ ~1:

ZEI =0 < y; and y; are conditionally independent given other variables.
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@ Goal: Estimate the inverse covariance matrix in the high dimensional
setting: p(# variables) > n(# samples)
@ Add /7 regularization — a sparse inverse covriance matrix is preferred.

@ The /1-regularized Maximum Likelihood Estimator:

y 1= in { —logdet X + tr(SX) +\|| X1} = in f(X
arg min { —log de X+ tr(SX)+Al i} = arg min £(X),

negative log likelihood

where [|Xl1 =327 | Xjl.
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@ Goal: Estimate the inverse covariance matrix in the high dimensional
setting: p(# variables) > n(# samples)

@ Add /7 regularization — a sparse inverse covriance matrix is preferred.

@ The /1-regularized Maximum Likelihood Estimator:

X>0

¥ 1 = argmin { — logdet X + tr(5X) +AIX[1} = arg)rpi% f(X),
Vv >
negative log likelihood
where [ X[y =377y Xl

@ The problem appears hard to solve:

e Non-smooth log-determinant program.
e Number of parameters scale quadratically with number of variables.
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@ Block coordinate ascent (Banerjee et al, 2007), Graphical Lasso (Friedman et
al, 2007).

e VSM, PSM, SINCO, IPM, PQN, ALM (2008-2010).
ALM solves p = 1000 in 300 secs.

@ QUIC: Newton type method (Hsieh et al, 2011)
Solves p = 1000 in 10 secs, p = 10,000 in half hour.

@ All the above methods require O(p?) memory, cannot solve problems with
p > 30, 000.

@ Need for scalability: FMRI dataset has more than 220,000 variables
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@ Block coordinate ascent (Banerjee et al, 2007), Graphical Lasso (Friedman et
al, 2007).

e VSM, PSM, SINCO, IPM, PQN, ALM (2008-2010).
ALM solves p = 1000 in 300 secs.

@ QUIC: Newton type method (Hsieh et al, 2011)
Solves p = 1000 in 10 secs, p = 10,000 in half hour.

@ All the above methods require O(p?) memory, cannot solve problems with
p > 30, 000.

@ Need for scalability: FMRI dataset has more than 220,000 variables
e BraQUIC (2013):
p = 1,000,000 (1 trillion parameters) in 22.9 hrs with 32 GBytes memory

(using a single machine with 32 cores).
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@ Main Ingredients:

© Second-order Newton-like method (QUIC)
— quadratic convergence rate.

@ Memory-efficient scheme using block coordinate descent (BigQUIC)
— scale to one million variables.

© Approximate Hessian computation (BigQUIC)
— super-linear convergence rate.
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@ Split smooth and non-smooth terms: f(X) = g(X) + h(X), where
g(X) = —logdet X + tr(SX) and h(X) = A|| X]|1.
e Form quadratic approximation for g(X; + A):

Ex.(8) =tr((S — Wi)A) + (1/2) vec(A) T (Ws @ Wi) vec(A)
— log det X; + tr(SX¢),

where W; = (X;)™! = aix log det(X) |x=x,-

@ Define the generalized Newton direction:
D; = arg mAin gx. (A) + A X: + A1

@ Solve by coordinate descent (Hsieh et al, 2011) or other methods (Olsen et al, 2012).
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@ Use coordinate descent to solve:
arg mDin{gX(D) + M| X + D|1}-
@ Closed form solution for each coordinate descent update:
Djj «— —c+ S(c — b/a,\/a),

where S(z, r) = sign(z) max{|z| — r,0} is the soft-thresholding
function, a = VV,J2 + WiWj, b=5;—-W;; +w,-Tij, and ¢ = Xj; + Dj;.
@ The main cost is in computing w,-Tij,

where w;, w; are i-th and j-th columns of W = XL
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QUIC: QUadratic approximation for sparse Inverse Covariance estimation

Input: Empirical covariance matrix S, scalar J, initial Xp.
Fort=0,1,...

@ Variable selection: select a free set of m < p? variables.
@ Use coordinate descent to find descent direction:

D, = arg mina fx,(X: + A) over set of free variables, (A Lasso problem.)

© Line Search: use an Armijo-rule based step-size selection to get « s.t.
Xt+1 = Xt —+ OlDt iS

@ positive definite,
o satisfies a sufficient decrease condition f(X: + aD;) < f(X:) + acA..
(Cholesky factorization of X; + aD;)
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Consider the case that p ~ 1million, m = || X;||o &~ 50million.

e Coordinate descent requires X; and W = X; 1,
o needs O(p?) storage
e needs O(mp) computation per sweep, where m = || X¢||o
@ Line search (compute determinant using Cholesky factorization).

o needs O(p?) storage
(p

o needs O(p?) computation
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@ Assume we can store M columns of W in memory.

o Coordinate descent update (/,}): compute w. Dw;.

o If w;, w; are not in memory: recompute by CG:
Xw; =e;: O(Tcg) time.
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W1, Wy, W3, Wy stored in memory.

Wiy Wiz W5 Wiy

Memory Cache
(M=4)
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Cache hit, do not need to recompute w;, w;.

Wiy Wig) Wigy Wiy

Update (1,4) Memory Cache
NEEd W(l)l W(4) (M=4)
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Cache miss, recompute w;, w;.

WiyWig Wi Wy Wi W

LILJ

Update (6,9) Memory Cache
NEEd W(G)l W(g) (M=4)
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@ Want to find update sequence that minimizes number of cache misses:
probably NP Hard.
@ Our strategy: update variables block by block.

@ The ideal case: there exists a partition {51, ..., Sk} such that all free
sets are in diagonal blocks:

Free Set

@ Only requires p column evaluations.
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o If the block partition is not perfect:

extra column computations can be characterized by boundary nodes.

e Given a partition {S1, ..., Sk}, we define boundary nodes as

B(Sq)={jlj€ Sqand 3i€S;,z#qgs.t. Fj =1},

where F is adjacency matrix of the free set.

.

b

Free Set

boundary
nodes
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@ The number of columns to be computed in one sweep is
p+ > |B(Sq)l-
q

@ Can be upper bounded by

p+Z|B I <p+d>, >, Fj

z#qi€S;,j€ES,

@ Use Graph Clustering (METIS or Graclus) to find the partition.
e Example: on fMRI dataset (p = 0.228 million) with 20 blocks,

random partition: need 1.6 million column computations.

graph clustering: need 0.237 million column computations.
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@ Block co-ordinate descent with clustering,
o needs O(p?) — O(m + p?/k) storage
o needs O(mp) — O(mp) computation per sweep, where m = || X¢||o
@ Line search (compute determinant of a big sparse matrix).
o needs O(p?) storage
(p

e needs O(p?) computation
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@ Given sparse matrix A = X; + aD, we need to

@ Check its positive definiteness.
@ Compute log det(A).

Our approach computes log det(A) in O(mp) time.

Cholesky factorization in QUIC requires O(p3) computation.

a b’
IfA_<b c )

o det(A) = det(C)(a— b’ C~'b)
o Ais positive definite iff C is positive definite and (a — b’ C~1b) > 0.

C is sparse, so can compute C~ b using Conjugate Gradient (CG).

Time complexity: Tcg = O(mT), where T is number of CG iterations.
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@ Block co-ordinate descent with clustering,
o needs O(p?) — O(m + p?/k) storage
o needs O(mp) — O(mp) computation per sweep, where m = || X¢||o
@ Line search (compute determinant of a big sparse matrix).
e needs O(p?)— O(p) storage
(p

e needs O(p®) — O(mp) computation
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BicQUIC

Input: Samples Y/, scalar A, initial Xjp.
Fort=0,1,...
@ Variable selection: select a free set of m < p? variables.
@ Construct a partition by clustering.
© Run block coordinate descent to find descent direction:
D: = arg mina fx,(X: + A) over set of free variables.
© Line Search: use an Armijo-rule based step-size selection to get « s.t.
Xf-‘rl = Xt + aDt IS
@ positive definite,
o satisfies a sufficient decrease condition f(X: + aD;) < f(X:) + acA..
(Schur complement with conjugate gradient method. )
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o Recall W = X1,
@ When each w; is computed by CG (Xw; = e;):
o The gradient V;g(X) = S — Wj; on free set can be computed once and
stored in memory.
o Hessian (w/ Dw; in coordinate updates) needs to be repeatedly
computed.
@ To reduce the time overhead, Hessian should be computed
approximately.

@ Theorem: the convergence rate is quadratic if
| X — el| = O([VSF(Xe)]) , where

Viig(X) + sign(Xj)A if Xjj # 0,

S _
va(X) B {sign(v,-jg(X)) max(|V;g(X)| —A,0) if X;; =0.
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Figure: BIGQUIC can solve one million dimensional problems.
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BicQUIC is faster even for medium size problems.

Objective value diff (log scale)
o i
o =]

10 . .

—-&-BigQUIC (32 cores)
-5-BigQUIC (1 core)
—--QuIC

~a- ALM

O Glasso

0 0.5 1

time (sec)

Figure: Comparison on FMRI data with a p = 20000 subset (maximum dimension

that previous methods can handle).
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@ 228,483 voxels, 518 time points.
@ A\ = 0.6 = average degree 8, BIGQUIC took 5 hours.

A = 0.5 = average degree 38, BIGQUIC took 21 hours.
e Findings:

o Voxels with large degree were generally found in the gray matter.
e Can detect meaningful brain modules by modularity clustering.
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o BIcQUIC: Memory efficient quadratic approximation method for
sparse inverse covariance estimation.

@ Our contributions:
e Computing Newton direction:
o Coordinate descent — block coordinate descent with clustering.
o Memory complexity: O(p?) — O(m + p*/k).
e Time complexity: O(mp) — O(mp).
o Line search (computing determinant of a big sparse matrix)

o Cholesky factorization — Schur complement with conjugate gradient
method.
o Memory complexity: O(p?) — O(p).
o Time complexity: O(p*) — O(mp).
e Inexact Hessian computation with super-linear convergence.
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