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Undirected graphical models

e Undirected graph G = (V, E)
e Joint distribution of (Xi,...,X,), where [V| =p
Xy Xy
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Undirected graphical models

@ Undirected graph G = (V, E)
e Joint distribution of (X1,...,X,), where [V| =p
Xi X3

o Markov property:

(st) FE = X LL Xe | X5,y
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Undirected graphical models

e Undirected graph G = (V, E)
e Joint distribution of (Xi,...,Xp), where |V|=p

@ More generally, X4 1L Xg | Xs when S C V separates A from B
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Directed graphical models

@ Directed acyclic graph G = (V, E)
X4

A

be
A

Xj uis XNondesc(j) | XPa(j)? VJ

@ Markov property:
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Structure learning

e Goal: Edge recovery from n samples: {(X:l(i),XQ(i), . ,X,gi))}".’:l
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Structure learning

e Goal: Edge recovery from n samples: {(X1 ,X2( ) X( ))}’ )

e High-dimensional setting: p >> n, assume deg(G) < d
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Structure learning

e Goal: Edge recovery from n samples: {(X:l(i),XQ(i), . ,X,gi))}".’:l
e High-dimensional setting: p >> n, assume deg(G) < d

@ Sources of corruption: non-i.i.d. observations, contamination by
noise/missing data
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Structure learning

Goal: Edge recovery from n samples: {(X:l(i),XQ(i), . ,X,gi))}".’:l

High-dimensional setting: p > n, assume deg(G) < d

Sources of corruption: non-i.i.d. observations, contamination by
noise/missing data

Note: Structure learning generally harder for directed graphs
(topological order unknown)
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Graphical Lasso

@ When (Xi,...,Xp) ~ N(0,X), well-known fact:

(I Ve =0 < (s,t)¢ E
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Graphical Lasso

@ When (Xi,...,Xp) ~ N(0,X), well-known fact:

(I D=0 <= (s,t) ¢ E
e Establishes statistical consistency of graphical Lasso (Yuan & Lin '07):

C in { trace(£0) — logdet(9) + A Y O,
€ arg min race(L0) — log det(©) + ;I ¢
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Some observations
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Some observations

@ Only sample-based quantity is v

e in { trace(20) — log det by
@Earggltl% race(X0©) — log det(©) + §|@5t|
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Some observations

@ Only sample-based quantity is v

e in { trace(20) — log det by
@Earggltl% race(X0©) — log det(©) + §|@5t\

o Although graphical Lasso is penalized Gaussian MLE, can always be
used to estimate © from X:

()t =arg mein {trace(Z*@) — log det(@)}
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Some observations

@ Only sample-based quantity is v

e in { trace(20) — log det by
@Earggltng race(X0©) — log det(©) + §|@5t\

o Although graphical Lasso is penalized Gaussian MLE, can always be
used to estimate © from X:

()t =arg mein {trace(Z*@) — log det(@)}

e We extend graphical Lasso to discrete-valued data (undirected
case) and linear structural equation models (directed case)
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Theory for graphical Lasso

N | |
1T = T lmax < 4/ 22 and Ay /28
n n
~ |
16— ©" s = (ﬁ +)\>

then
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Theory for graphical Lasso

= I I
1T = T lmax < 4/ 22 and Ay /28
n n
~ |
18 — ©flmax 3 (W’i”m)

@ Deviation condition holds w.h.p. for various ensembles (e.g.,
sub-Gaussian)

then
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Theory for graphical Lasso

~ | |
1T = T lmax < 4/ 22 and Ay /28
n n
~ |
||e—e*umaxs<\/ 6P +A)

@ Deviation condition holds w.h.p. for various ensembles (e.g.,
sub-Gaussian)

then

o Thresholding © at level '°gp yields correct support
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Outline

© Generalized inverse covariances
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Non-Gaussian distributions

o (Liuetal. '09, '12): (Xi,...,X,) follows nonparanormal distribution
if (A(X1),...,f(Xp)) ~ N(0,X), and f;'s monotone and
differentiable
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Non-Gaussian distributions
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Non-Gaussian distributions

o (Liuetal. '09, '12): (Xi,...,X,) follows nonparanormal distribution
if (A(X1),...,f(Xp)) ~ N(0,X), and f;'s monotone and
differentiable

o Then (i,j) ¢ Eiff ©; =0

@ In general non-Gaussian setting, relationship between entries of
© = X! and edges of G unknown
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Discrete graphical models

@ Assume X;'s take values in a discrete set: {0,1,...,m— 1}
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Discrete graphical models

@ Assume X;'s take values in a discrete set: {0,1,...,m— 1}

Our results:

@ Establish relationship between augmented inverse covariance
matrices and edge structure

@ New algorithms for structure learning in discrete graphs
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An illustrative example

@ Binary Ising model:

Py(x1,...,%p) o exp ZGSXS + Z Osexsxt |
seV (s,t)EE

P. Loh (UC Berkeley) Beyond the graphical Lasso June 26, 2014 13 / 40



An illustrative example

@ Binary Ising model:

Py(x1,...,%p) o exp Zﬁsxs + Z Osexsxt |
seV (s,t)EE

0eRPTE), (x1,...,%) € {0,1}
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An illustrative example

@ Ising models with s = 0.1, 054 =2

X X4
X, Xs
X X4
Xs X3
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An illustrative example

@ Ising models with s = 0.1, 054 =2

X

Xo

P. Loh (UC Berkeley)

X4

X4

X3

9.80 —3.59
—3.59 34.30

@cain:

" 0 477
0 0
51.37 —5.37

o - —5.37 51.37

lop ™ | _0.17 —5.37
—5.37 —0.17

Beyond the graphical Lasso
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An illustrative example

@ Ising models with s = 0.1, 054 =2

X

Xo

X4

X4

X3

9.80 —3.59
—3.59 34.30

@cain:

" 0 477
0 0
51.37 —5.37

o - —5.37 51.37

lop ™ | _0.17 —5.37
—5.37 —0.17

@ O is graph-structured for chain, but not loop

P. Loh (UC Berkeley)
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An illustrative example
X]I IX4 ;I X]I IX4 X]I IX4
X2 XS X2 X3 X2 X3

© graph-structured © not grap‘l;—structured
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An illustrative example

X]I IX4 ;} X X,
Xo X3 X2 X3
© graph-structured © not graph-structured

o However, letting I',,, = Cov(X1, X, X3, Xg, X1.X3) ™! for loop:

115 -2 109 -2 114

-2 5 -2 0 1
Mg o< | 109 -2 114 -2 -114
-2 0 -2 5 1

-114 1 114 1 119
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Notation

e Assume (Xi,...,X,) €{0,...,m—1}"
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e Assume (Xi,...,X,) €{0,...,m—1}"

@ For any subset U C V/, associate vector ¢y of sufficient statistics
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e Assume (Xi,...,X,) €{0,...,m—1}"

@ For any subset U C V/, associate vector ¢y of sufficient statistics

@ Ex: When m=2and U = {1,2}, ¢y = (x1, %2, x1x2)
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Assume (Xq,...,Xp) € {0,...,m—1}F

For any subset U C V/, associate vector ¢ of sufficient statistics

Ex: When m =2 and U = {1,2}, ¢y = (x1, x2, x1x2)
Ex: When U = {1}, oy = (I{x1 =1},....I{xy = m—1})
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Assume (Xq,...,Xp) € {0,...,m—1}F

For any subset U C V/, associate vector ¢ of sufficient statistics

Ex: When m =2 and U = {1,2}, ¢y = (x1, x2, x1x2)
Ex: When U = {1}, oy = (I{x1 =1},....I{xy = m—1})

In general: Clique C € C has (m — 1)/l indicators of nonzero states
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Augmented covariance matrices

X5 X3
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Augmented covariance matrices

@ Triangulate G

G triangulated
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Augmented covariance matrices

@ Triangulate G

@ Form junction tree with separator sets

X X,
.X2 X3
G triangulated  junction tree
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Augmented covariance matrices

@ Triangulate G
@ Form junction tree with separator sets

@ Let ST = nodes + separator sets

X1 X2 X3 X4 X1X3

X X, X,
Xo
X, Cov(ds+)
Xa
X2 X3 X1X3
G triangulated  junction tree augmented matrix
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Augmented covariance matrices

@ Triangulate G
@ Form junction tree with separator sets

@ Let ST = nodes + separator sets

X1 X2 X3 X4 X1X3

X X, X,
Xo
X; Cov(ds+)
Xa
X2 X3 X1X3
G triangulated  junction tree augmented matrix

The inverse covariance matrix of {¢y : U € ST} from any junction tree
triangulation is graph-structured: T o g # 0 iff A, B are contained in a
common clique
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Example: Binary Ising model

X1 X2 X3 X4 X1X3

X1
Xo
X, | Cov(gst)
Xa
2 X1X3
triangulated  junction tree augmented matrix

15 -2 100 -2 -114
2 5 -2 0 1
(Cov(ppg+)) ™ o | 100 —2 114 —2 —114
2 0 -2 5 1
~114 1 114 1 119
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Example: Binary Ising model

X1 X2 X3 X4 X1X3

Xy
Xo
X3 Cov(gs+)
Xa
X1X3
G triangulated  junction tree augmented matrix

@ Statistics included in ¢s+ depend on triangulation

X1 Xo X3 Xy XoXy

Xy
Xs
X3 COV(¢S+)
Xy
Xo Xy

June 26, 2014 18 / 40
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Consequences for trees

@ When 3 triangulation with singleton separator sets, ST = {1,..., p}
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Consequences for trees

@ When 3 triangulation with singleton separator sets, ST = {1,..., p}

When G has only singleton separators, inverse covariance matrix of
sufficient statistics on nodes is graph-structured
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Consequences for trees

@ When 3 triangulation with singleton separator sets, ST = {1,..., p}

When G has only singleton separators, inverse covariance matrix of
sufficient statistics on nodes is graph-structured

X X4
‘ ‘ (Cov(X, ..., Xp))!
Xy X;
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Proof sketch

@ Based on exponential family representation of pdf:

go(x1, -, Xp) = exp (ch, Ic)— <D(9)>

cec
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Proof sketch

@ Based on exponential family representation of pdf:

go(x1, -, Xp) = exp (ch, Ic)— <D(9)>

cec

o (covg[L(X)])~t = V2&* (i), where

®*(p) == sup {(u, 0) — ®(0)}
HeRD
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Proof sketch

@ Based on exponential family representation of pdf:

go(x1, -, Xp) = exp (ch, Ic)— <D(9)>

cec
o (covg[L(X)])~t = V2&* (i), where

®*(p) == sup {(u, 0) — ®(0)}
HeRD

@ Relationship between ®* and entropy:

—* (1) = H(dp(u)(x)) = qu(u) x) log o, (x)
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Proof sketch

@ Junction tree theorem:

_ e 9clxc)
Ao, %p) = [Ises as(xs)’

SO

H(q) =Y _ Hc(gc) = > Hs(as)

ceC Ses
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Proof sketch

@ Junction tree theorem:

_ e 9clxc)
Ao, %p) = [Ises as(xs)’

H(q) =Y _ Hc(gc) = > Hs(as)

ceC Ses

@ Then take Hessian
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Structure learning

@ Plug in sample covariance matrix of augmented vector to graphical
Lasso, then compute supp(©)

e in { trace(20) — log det A
@Eargg&u& race(X0©) — log det(©) + §|@5t\
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Structure learning

@ Plug in sample covariance matrix of augmented vector to graphical
Lasso, then compute supp(©)

e in { trace(20) — log det A
@Eargg&u& race(X0©) — log det(©) + §|@5t\

@ When graph has singleton separators, ordinary graphical Lasso suffices
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Structure learning

@ Plug in sample covariance matrix of augmented vector to graphical
Lasso, then compute supp(©)

e in { trace(20) — log det A
@Eargg&u& race(X0©) — log det(©) + ;@st\

@ When graph has singleton separators, ordinary graphical Lasso suffices

For binary Ising models with singleton separators, the graphical Lasso
succeeds w.h.p. when n = d?log p
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Structure learning

@ Plug in sample covariance matrix of augmented vector to graphical
Lasso, then compute supp(©)

e in { trace(20) — log det A
@Eargg&u& race(X0©) — log det(©) + ;@st\

@ When graph has singleton separators, ordinary graphical Lasso suffices

For binary Ising models with singleton separators, the graphical Lasso
succeeds w.h.p. when n = d?log p

@ Group graphical Lasso for m > 2, similar theoretical guarantees
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Problem

o However, augmented vector depends on structure of graph ...

X, X4
X2 X3
G triangulated  junction tree
X1 X4
X2 Xd

P. Loh (UC Berkeley)

Beyond the graphical Lasso

X, Xo X3 X, X1 Xs
X

Xo

X3 COV(¢$+)

X4

X1X3

augmented matrix
X1 Xz X3 X4 X2X4

Cov(ps+)

June 26, 2014
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Beyond graphical Lasso

o Nodewise method: recovers neighborhood N(s) for any fixed s € V
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Beyond graphical Lasso

o Nodewise method: recovers neighborhood N(s) for any fixed s € V

@ Form junction tree by fully-connecting all nodes in V\s

G triangulated
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Beyond graphical Lasso

o Nodewise method: recovers neighborhood N(s) for any fixed s € V

@ Form junction tree by fully-connecting all nodes in V\s

G triangulated junction tree
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Inference for general graphs

@ By theorem, inverse covariance matrix over nodes and sufficient
statistics of N(s) exposes neighbors of s

S

v

N(s)
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Inference for general graphs

@ By theorem, inverse covariance matrix over nodes and sufficient
statistics of N(s) exposes neighbors of s

sufficient statistics of
d-wise subsets of V \ s

@ Same result holds for matrix augmented by all d-subsets of V\s
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Nodewise algorithm

@ For each s € V:
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Nodewise algorithm

@ For each s € V:

o Regress sufficient statistics of X, against sufficient statistics of all
subsets of V\s of size < d, using Lasso

P. Loh (UC Berkeley) Beyond the graphical Lasso June 26, 2014 26 / 40



Nodewise algorithm

@ For each s € V:

o Regress sufficient statistics of X, against sufficient statistics of all
subsets of V\s of size < d, using Lasso

—

o Threshold entries of regression vector to obtain N(s)
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Nodewise algorithm

@ For each s € V:

o Regress sufficient statistics of X, against sufficient statistics of all
subsets of V\s of size < d, using Lasso

—

o Threshold entries of regression vector to obtain N(s)

@ Combine estimates ﬁ(?) with AND/OR to recover edges of graph
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Nodewise algorithm

@ For each s € V:

o Regress sufficient statistics of X, against sufficient statistics of all
subsets of V\s of size < d, using Lasso

—

o Threshold entries of regression vector to obtain N(s)

@ Combine estimates ﬁ(?) with AND/OR to recover edges of graph

@ Method succeeds w.h.p. for n == 29 log p
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Nodewise algorithm

@ For each s € V:

o Regress sufficient statistics of X, against sufficient statistics of all
subsets of V\s of size < d, using Lasso

—

o Threshold entries of regression vector to obtain N(s)

@ Combine estimates ﬁ(?) with AND/OR to recover edges of graph

Method succeeds w.h.p. for n >~ 29log p

Can incorporate noisy/missing data into Lasso-based regression
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Simulations for nodewise method

success prob vs. sample size for Erdos—Renyi grapl success prob vs. sample size for grid graph

1 T T y -+ *— 1 T %

0.8 1 0.8f 1

0.6 1

success prob, avg over 500 trials
success prob, avg over 500 trials

——p=64 || —e—p=64
——p=128 ——p=144
——p=256 ——p=256
00 100 200 300 400 500 600 GO 200 400 600 800 1000 1200
n/log p n/log p
Erdos-Renyi graph, d =~ 3 grid-shaped graph, d =4
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Outline

© Linear structural equation models
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Linear structural equation models

/ X2 Markov property:
)(j AL XNondesc(j) ‘ XPa(j)
linear SEM:

X = bjTXpa(j) + €5, € AL Xpa(j)
p
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Linear structural equation models

/ X2 Markov property:
)(j AL XNondesc(j) ‘ XPa(j)
linear SEM:

X = bjTXpa(j) + €5, € AL Xpa(j)
p

e X=B"X+¢, X,ecRPand B € RP*P strictly upper triangular
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Linear structural equation models

/ X2 Markov property:
)(j AL XNondesc(j) ‘ XPa(j)
linear SEM:

X = bjTXpa(j) + €5, € AL Xan)
p

e X=B"X+¢, X,ecRPand B € RP*P strictly upper triangular

e Goal: Learn support of B (Bjx # 0 iff j — k is edge in DAG)
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Inverse covariance matrix

e Denote Cov(e) = diag(o?,...,02) and © = Cov(X) !
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Inverse covariance matrix

e Denote Cov(e) = diag(o?,...,02) and © = Cov(X) !

The inverse covariance matrix of X is given by
Ojk = —0';2Bjk ol Zde_szszg, Vj < k
0>k

—2 -2 pR2 :
0>

P. Loh (UC Berkeley) Beyond the graphical Lasso
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Inverse covariance matrix

e Denote Cov(e) = diag(o?,...,02) and © = Cov(X) !

The inverse covariance matrix of X is given by

@jk = —0';2Bjk S Zde_szszg, Vj < k
0>k
©j=07"+Y 0,°B%, Vi
0>

® —> Oj # 0 only when j — k is an edge or j, k are parents to ¢
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Consequence for structure learning

o Faithfulness assumption:

—0 B+ > 0, °BjeBig =0
0>k

only if By = 0 and BjyByy = 0 for all £ > k
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Consequence for structure learning

o Faithfulness assumption:

—0 B+ > 0, °BjeBig =0
0>k

only if By = 0 and BjyByy = 0 for all £ > k

e Under faithfulness assumption, M(G) = supp(©)
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Consequence for structure learning

o Faithfulness assumption:

—0 B+ > 0, °BjeBig =0
0>k

only if By = 0 and BjyByy = 0 for all £ > k

e Under faithfulness assumption, M(G) = supp(©)

o Apply graphical Lasso to estimate moralized graph
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Graphical Lasso for preprocessing

@ Score-based approaches for learning DAG may be sped up with
superstructure of skeleton or moralized graph (Perrier et al. '08,
Ordyniak & Szeider '12)
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Graphical Lasso for preprocessing

@ Score-based approaches for learning DAG may be sped up with
superstructure of skeleton or moralized graph (Perrier et al. '08,
Ordyniak & Szeider '12)

@ For linear SEM, first apply graphical Lasso to learn moralized graph
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Graphical Lasso for preprocessing

@ Score-based approaches for learning DAG may be sped up with
superstructure of skeleton or moralized graph (Perrier et al. '08,
Ordyniak & Szeider '12)

@ For linear SEM, first apply graphical Lasso to learn moralized graph

e Can also accommodate systematically corrupted data (next section)
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Outline

@ Corrupted data
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Systematically corrupted data

@ Observe corrupted samples {(Zl(i), Zz(i), . .,Zéi)) ", where Z() is
noisy version of X (/)
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Systematically corrupted data

o Observe corrupted samples {(Zl(i), Zz(i), .. .,Zéi)) 7_,, where Z0 s
noisy version of X (/)
@ Examples:
o Additive noise: Z() = X + W, w 1 x@
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Systematically corrupted data

@ Observe corrupted samples {(Zl(i), Zz(i), . .,Zéi)) ", where Z() is
noisy version of X
@ Examples:
o Additive noise: Z() = X + W, w 1 x@
e Missing data:
20 _ Xj(') with prob. 1 —«
J * with prob. «a
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Systematically corrupted data

@ Observe corrupted samples {(Zl(i), Zz(i), . .,Zéi)) ", where Z() is
noisy version of X (/)

@ Examples:
o Additive noise: Z() = X + W, w 1 x@
e Missing data:
Z0) _ Xj(') with prob. 1 — «
J * with prob. «a

@ Goal: Structure learning based on {(Zl(i),Zz(i), e Z,gi)) "y
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Modified graphical Lasso

o Idea: Construct surrogate for Y based on corrupted samples
{z0yn,
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Modified graphical Lasso

o Idea: Construct surrogate for Y based on corrupted samples
{z0yn,

o Additive noise:

~ 77z
> = — Y
n
@ Missing data: Let
. z) )
Z-(') _ )i f ZJ observed
! 0 otherwise,

use

P. Loh (UC Berkeley) Beyond the graphical Lasso June 26, 2014 35/ 40



Theory for graphical Lasso

_ | |
IZ = T lmax < 1/ 8P and A=) BP
n n
. |
18 = ©"flmax (N/inﬂ>

then
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Theory for graphical Lasso

_ | |
IZ = T lmax < 1/ 8P and A=) BP
n n
. |
18 = ©"flmax (N/inﬂ>

@ Can establish deviation condition w.h.p. for modified estimators with
corrupted data

then
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Simulation study

@ Graphical Lasso for dinosaur graph: probability of success for
recovering 15 edges vs. rescaled sample size (with missing data)

success prob vs. sample size for dino graph with missing data
1 .

o
©
:

o
)
T

o
IS
:

success prob, avg over 1000 trials
o
()

0 100 200 300 400 500
n/log p
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Summary

@ Significance of inverse covariance matrix for non-Gaussian data

o For discrete variables, inverse of augmented covariance matrix is graph
structured
e For linear SEMs, support of inverse covariance is moralized graph
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Significance of inverse covariance matrix for non-Gaussian data
o For discrete variables, inverse of augmented covariance matrix is graph
structured
e For linear SEMs, support of inverse covariance is moralized graph

@ Use graphical Lasso to estimate (augmented) inverse
@ Nodewise method for general discrete-valued graphs
@ Modifications for corrupted data
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@ Computationally tractable method for structure learning in general
discrete graphs

@ Robustness results: Inverse covariance matrix of approximately
Gaussian and/or approximately tree-structured graphs

@ More general analysis of inverse covariances via exponential family
representation
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