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Undirected graphical models

Undirected graph G = (V ,E )

Joint distribution of (X1, . . . ,Xp), where |V | = p

X1

X2

X3

Xp
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Undirected graphical models

Undirected graph G = (V ,E )

Joint distribution of (X1, . . . ,Xp), where |V | = p

X1

X2

X3

Xp

Markov property:

(s, t) /∈ E =⇒ Xs ⊥⊥ Xt | X\{s,t}
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Undirected graphical models

Undirected graph G = (V ,E )

Joint distribution of (X1, . . . ,Xp), where |V | = p

X1

X2

X3

Xp

A
B

S

More generally, XA ⊥⊥ XB | XS when S ⊆ V separates A from B
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Directed graphical models

Directed acyclic graph G = (V ,E )

X1 X2

X3

Xp

Markov property:

Xj ⊥⊥ XNondesc(j) | XPa(j), ∀j
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Structure learning

Goal: Edge recovery from n samples:
{

(X
(i)
1 ,X

(i)
2 , . . . ,X

(i)
p )
}n
i=1

High-dimensional setting: p � n, assume deg(G ) ≤ d

Sources of corruption: non-i.i.d. observations, contamination by
noise/missing data

Note: Structure learning generally harder for directed graphs
(topological order unknown)
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Graphical Lasso

When (X1, . . . ,Xp) ∼ N(0,Σ), well-known fact:

(Σ−1)st = 0 ⇐⇒ (s, t) /∈ E

Establishes statistical consistency of graphical Lasso (Yuan & Lin ’07):

Θ̂ ∈ arg min
Θ�0



trace(Σ̂Θ)− log det(Θ) + λ

∑

s 6=t

|Θst |




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Some observations

Only sample-based quantity is Σ̂:

Θ̂ ∈ arg min
Θ�0



trace(Σ̂Θ)− log det(Θ) + λ

∑

s 6=t

|Θst |





Although graphical Lasso is penalized Gaussian MLE, can always be
used to estimate Θ̂ from Σ̂:

(Σ∗)−1 = arg min
Θ

{
trace(Σ∗Θ)− log det(Θ)

}

We extend graphical Lasso to discrete-valued data (undirected
case) and linear structural equation models (directed case)
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Theory for graphical Lasso

If

‖Σ̂− Σ∗‖max -

√
log p

n
and λ %

√
log p

n
,

then

‖Θ̂−Θ∗‖max -

(√
log p

n
+ λ

)

Deviation condition holds w.h.p. for various ensembles (e.g.,
sub-Gaussian)

Thresholding Θ̂ at level
√

log p
n yields correct support
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Non-Gaussian distributions

(Liu et al. ’09, ’12): (X1, . . . ,Xp) follows nonparanormal distribution
if (f1(X1), . . . , fp(Xp)) ∼ N(0,Σ), and fj ’s monotone and
differentiable

Then (i , j) /∈ E iff Θij = 0

In general non-Gaussian setting, relationship between entries of
Θ = Σ−1 and edges of G unknown
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Discrete graphical models

Assume Xi ’s take values in a discrete set: {0, 1, . . . ,m − 1}

Our results:

Establish relationship between augmented inverse covariance
matrices and edge structure

New algorithms for structure learning in discrete graphs
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An illustrative example

Binary Ising model:

Pθ(x1, . . . , xp) ∝ exp


∑

s∈V
θsxs +

∑

(s,t)∈E

θstxsxt


 ,

θ ∈ Rp+(p2), (x1, . . . , xp) ∈ {0, 1}p
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An illustrative example

Ising models with θs = 0.1, θst = 2

X1

X2 X3

X4

Θchain =




9.80 −3.59 0 0

−3.59 34.30 −4.77 0

0 −4.77 34.30 −3.59

0 0 −3.59 9.80




X1

X2 X3

X4

Θloop =




51.37 −5.37 −0.17 −5.37
−5.37 51.37 −5.37 −0.17
−0.17 −5.37 51.37 −5.37
−5.37 −0.17 −5.37 51.37




Θ is graph-structured for chain, but not loop

P. Loh (UC Berkeley) Beyond the graphical Lasso June 26, 2014 14 / 40



An illustrative example

Ising models with θs = 0.1, θst = 2

X1

X2 X3

X4

Θchain =




9.80 −3.59 0 0

−3.59 34.30 −4.77 0

0 −4.77 34.30 −3.59

0 0 −3.59 9.80




X1

X2 X3

X4

Θloop =




51.37 −5.37 −0.17 −5.37
−5.37 51.37 −5.37 −0.17
−0.17 −5.37 51.37 −5.37
−5.37 −0.17 −5.37 51.37




Θ is graph-structured for chain, but not loop

P. Loh (UC Berkeley) Beyond the graphical Lasso June 26, 2014 14 / 40



An illustrative example

Ising models with θs = 0.1, θst = 2

X1

X2 X3

X4

Θchain =




9.80 −3.59 0 0

−3.59 34.30 −4.77 0

0 −4.77 34.30 −3.59

0 0 −3.59 9.80




X1

X2 X3

X4

Θloop =




51.37 −5.37 −0.17 −5.37
−5.37 51.37 −5.37 −0.17
−0.17 −5.37 51.37 −5.37
−5.37 −0.17 −5.37 51.37




Θ is graph-structured for chain, but not loop

P. Loh (UC Berkeley) Beyond the graphical Lasso June 26, 2014 14 / 40



An illustrative example

X1

X2 X3

X4

︸ ︷︷ ︸

X1

X2 X3

X4 X1

X2 X3

X4

︸ ︷︷ ︸
Θ graph-structured Θ not graph-structured

However, letting Γaug = Cov(X1,X2,X3,X4,X1X3)−1 for loop:

Γaug ∝




115 −2 109 −2 −114

−2 5 −2 0 1
109 −2 114 −2 −114

−2 0 −2 5 1
−114 1 −114 1 119



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Notation

Assume (X1, . . . ,Xp) ∈ {0, . . . ,m − 1}p

For any subset U ⊆ V , associate vector φU of sufficient statistics

Ex: When m = 2 and U = {1, 2}, φU = (x1, x2, x1x2)

Ex: When U = {1}, φU = (I {x1 = 1}, . . . , I {x1 = m − 1})

In general: Clique C ∈ C has (m − 1)|C | indicators of nonzero states
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Augmented covariance matrices

Triangulate G

Form junction tree with separator sets

Let S+ = nodes + separator sets

X1

X2 X3

X4

X1

X2 X3

X4

123

134

13

h
X1

X2

X3

X4

X1X3

X1 X2 X3 X4 X1X3

Cov(�S+)

h

G

triangulated junction tree augmented matrix

Theorem

The inverse covariance matrix of {φU : U ∈ S+} from any junction tree
triangulation is graph-structured: ΓA,B 6= 0 iff A,B are contained in a
common clique
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Example: Binary Ising model

X1

X2 X3

X4 X1

X2 X3

X4

123

134

13

h
X1

X2

X3

X4

X1X3

X1 X2 X3 X4 X1X3

Cov(�S+)

h

G triangulated junction tree augmented matrix

Γ = (Cov(φS+))−1 ∝




115 −2 109 −2 −114

−2 5 −2 0 1
109 −2 114 −2 −114

−2 0 −2 5 1
−114 1 −114 1 119




Statistics included in φS+ depend on triangulation

X1

X2 X3

X4 X1

X2 X3

X4
124

234

24

h
X1

X2

X3

X4

X2X4

X1 X2 X3 X4 X2X4

Cov(�S+)

h
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Consequences for trees

When ∃ triangulation with singleton separator sets, S+ = {1, . . . , p}

Corollary

When G has only singleton separators, inverse covariance matrix of
sufficient statistics on nodes is graph-structured

X1

X2 X3

X4

(Cov(X1, . . . ,Xp))−1
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Proof sketch

Based on exponential family representation of pdf:

qθ(x1, . . . , xp) = exp

(∑

C∈C
〈θC , I C 〉 − Φ(θ)

)

(covθ[I (X )])−1 = ∇2Φ∗(µ), where

Φ∗(µ) := sup
θ∈RD

{〈µ, θ〉 − Φ(θ)}

Relationship between Φ∗ and entropy:

−Φ∗(µ) = H(qθ(µ)(x)) = −
∑

x

qθ(µ)(x) log qθ(µ)(x)
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)

(covθ[I (X )])−1 = ∇2Φ∗(µ), where

Φ∗(µ) := sup
θ∈RD

{〈µ, θ〉 − Φ(θ)}

Relationship between Φ∗ and entropy:

−Φ∗(µ) = H(qθ(µ)(x)) = −
∑

x

qθ(µ)(x) log qθ(µ)(x)
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Proof sketch

Junction tree theorem:

q(x1, . . . , xp) =

∏
C∈C qC (xC )∏
S∈S qS(xS)

,

so
H(q) =

∑

C∈C
HC (qC )−

∑

S∈S
HS(qS)

Then take Hessian
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Structure learning

Plug in sample covariance matrix of augmented vector to graphical
Lasso, then compute supp(Θ̂)

Θ̂ ∈ arg min
Θ�0



trace(Σ̂Θ)− log det(Θ) + λ

∑

s 6=t

|Θst |





When graph has singleton separators, ordinary graphical Lasso suffices

Corollary

For binary Ising models with singleton separators, the graphical Lasso
succeeds w.h.p. when n % d2 log p

Group graphical Lasso for m > 2, similar theoretical guarantees
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Problem

However, augmented vector depends on structure of graph . . .
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X4 X1

X2 X3

X4
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G triangulated junction tree augmented matrix
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Beyond graphical Lasso

Nodewise method: recovers neighborhood N(s) for any fixed s ∈ V

Form junction tree by fully-connecting all nodes in V \s

s

N(s)

s

N(s)

s [ N(s) V \s

N(s)

G

triangulated junction tree
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Inference for general graphs

By theorem, inverse covariance matrix over nodes and sufficient
statistics of N(s) exposes neighbors of s

s

N(s)

n
V

Same result holds for matrix augmented by all d-subsets of V \s

P. Loh (UC Berkeley) Beyond the graphical Lasso June 26, 2014 25 / 40



Inference for general graphs
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N(s)

n
V
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Nodewise algorithm

For each s ∈ V :

Regress sufficient statistics of Xs against sufficient statistics of all
subsets of V \s of size ≤ d , using Lasso

Threshold entries of regression vector to obtain N̂(s)

Combine estimates N̂(s) with AND/OR to recover edges of graph

Method succeeds w.h.p. for n % 2d log p

Can incorporate noisy/missing data into Lasso-based regression
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Simulations for nodewise method
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Outline

1 Introduction

2 Generalized inverse covariances

3 Linear structural equation models

4 Corrupted data
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Linear structural equation models

X1 X2

X3

Xp

Causal inference

X1 X2

X3

XpG

X1 X2

X3

XpM(G)

Markov property: Xj ?? XNondesc(j) | XPa(j)

Moralization procedure

Linear causal network:

Xj = bT
j XPa(j) + ✏j , ✏j ?? XPa(j)

Po-Ling Loh (UC Berkeley) Noisy high-dimensional regression January 9, 2014 37 / 41
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Markov property:

linear SEM:

X = BTX + ε, X , ε ∈ Rp and B ∈ Rp×p strictly upper triangular

Goal: Learn support of B (Bjk 6= 0 iff j → k is edge in DAG)
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Inverse covariance matrix

Denote Cov(ε) = diag(σ2
1, . . . , σ

2
p) and Θ = Cov(X )−1

Theorem

The inverse covariance matrix of X is given by

Θjk = −σ−2
k Bjk +

∑

`>k

σ−2
` Bj`Bk`, ∀j < k

Θjj = σ−2
j +

∑

`>j

σ−2
` B2

jk , ∀j

=⇒ Θjk 6= 0 only when j → k is an edge or j , k are parents to `
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Consequence for structure learning

Faithfulness assumption:

−σ−2
k Bjk +

∑

`>k

σ−2
` Bj`Bk` = 0

only if Bjk = 0 and Bj`Bk` = 0 for all ` > k

Under faithfulness assumption, M(G ) = supp(Θ)

Apply graphical Lasso to estimate moralized graph
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Graphical Lasso for preprocessing

Score-based approaches for learning DAG may be sped up with
superstructure of skeleton or moralized graph (Perrier et al. ’08,

Ordyniak & Szeider ’12)

For linear SEM, first apply graphical Lasso to learn moralized graph

Can also accommodate systematically corrupted data (next section)
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Outline

1 Introduction

2 Generalized inverse covariances

3 Linear structural equation models

4 Corrupted data
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Systematically corrupted data

Observe corrupted samples {(Z (i)
1 ,Z

(i)
2 , . . . ,Z

(i)
p )}ni=1, where Z (i) is

noisy version of X (i)

Examples:

Additive noise: Z (i) = X (i) + W (i), W (i) ⊥⊥ X (i)

Missing data:

Z
(i)
j =

{
X

(i)
j with prob. 1− α

? with prob. α

Goal: Structure learning based on {(Z (i)
1 ,Z

(i)
2 , . . . ,Z

(i)
p )}ni=1
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Modified graphical Lasso

Idea: Construct surrogate for Σ̂ based on corrupted samples
{Z (i)}ni=1

Additive noise:

Σ̂ =
ZTZ

n
− Σw

Missing data: Let

Ẑ
(i)
j =





Z
(i)
j

1−α if Z
(i)
j observed

0 otherwise,

use

Σ̂ =
ẐT Ẑ

n
− α diag

(
ẐT Ẑ

n

)
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Theory for graphical Lasso

If

‖Σ̂− Σ∗‖max -

√
log p

n
and λ %

√
log p

n
,

then

‖Θ̂−Θ∗‖max -

(√
log p

n
+ λ

)

Can establish deviation condition w.h.p. for modified estimators with
corrupted data
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Simulation study

Graphical Lasso for dinosaur graph: probability of success for
recovering 15 edges vs. rescaled sample size (with missing data)
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Summary

Significance of inverse covariance matrix for non-Gaussian data

For discrete variables, inverse of augmented covariance matrix is graph
structured
For linear SEMs, support of inverse covariance is moralized graph

Use graphical Lasso to estimate (augmented) inverse

Nodewise method for general discrete-valued graphs

Modifications for corrupted data
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Open questions

Computationally tractable method for structure learning in general
discrete graphs

Robustness results: Inverse covariance matrix of approximately
Gaussian and/or approximately tree-structured graphs

More general analysis of inverse covariances via exponential family
representation
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