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* |Introduction to speech recognition
* Motivations for sparse models

 Maximum likelihood training of sparse
models

* ML training of sparse banded models
* Discriminative training of sparse models

e Conclusions
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Speech Recognition & its Applications

1. Automatic Speech Recognition (ASR):
e Convert speech wave into text automatically

2. Applications:
e Office/business systems:
e Manufacturing
e Telecommunications
 Mobile telephony
* Home Automation
* Navigation

ECE/HKUST Weibin Zhang 3



History of ASR

 Technical Point of View
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ASR Research -- Overview

e Statistical approaches lead in all area.

* Still big gap between human and machine
performance...however

e Useful systems have been built which are
changing the way we interact with the world

...within five years people will discard their keyboards and interact with
computers using touch-screens and voice controls...
Bill Gates, Feb 2008
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Statistical speech recognition system
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Statistical speech recognition system

* Language Model:

— P(“recognize speech”) >> P(“wreck a nice beach”)
* Dictionary:

— Wreck r e Kk

— Beach b i th

* Acoustic Model:
— P(O|”recognize speech”)
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Statistical speech recognition system
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Acoustic modeling

* Left-to-right hidden Markov models (HMMs)
e GMM-HMM based acoustic models

7 p(otlsj) — Zm ijN(Ot:”jm: 2:jm)

e O = {Clij, b](Ot)} — {aij; Cim> ujm; zjm}
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Evaluation of ASR system

 Word error rate (WER) = 1 — accuracy

S+D+1
N |

* Real time factor (RTF)

WER =

decoding time

RTF =

duration of the utterance
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Covariance modeling
Full covariance Diagonal covariance
matrices . matrices
 Better if data is , .
l sufficient ]© SRS ]@
, More | " Features are \
| computation @ independent ]C

| esiyoerfic @ L MoreSaussin | g
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Covariance modeling

Sparse banded inverse covariance matrices ( )

Less Training data

Alleviate over-fitting

Less computation

1

Ve

(—%(x - #)X - u))

Reasonable model assumption (decorrelated features)

parameter type | number of parameters | percentage
transitions 1100 ~ 0
weights 5686 0.2
means 221,754 4.7
precision matrices 4 435,080 95.1
total 4,663,620 100
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ML training of sparse models

 Maximum likelihood (ML) training

AN

® = argmax{log(P(0|0))}
0

 The proposed new objective function
L(®) = log(P(0|0)) | X2 Ym=1 PlICimll4
* Auxiliary function:

Q(0;0") =X, X P(q,m|0’,0)log(P(q,m, 0]0)) — 3;2; Y-y PlICimllx

* Properties of the auxiliary function:
- L(©) - L(O') =2Q(6;0') —Q(0;0")
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Maximizing the auxiliary function

T

P(q’ m, 0|@) = 1_[ aQtG‘tHCthtermt (Of)

t=1

Forward and backward probabilities

Conditional independent assumptions of HMM

 The precision matrices can be updated using
Cim = argmax{logdetC;,, — trace($;;, Cim) — A||Cim|l1}

Cim>0
2 . : :
— A= y_p and §;,, is the sample covariance matrix.
mm
— Convex optimization or other more efficient methods (e.g. graphical
lasso)
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Experiments on the WSJ data

* Experimental setup
— Training, development and testing data sets

data set #speakers | #tutterances | hours | vocab size
train(si84) 83 7134 14.5 8014
dev(Nov'92) 10 205 0.67 1270
eval(Nov'93) 8 330 0.41 988

— Standard bigram language model

— Feature vector: 39-dimension MFCC

— 39 phonemes for English (393 triphones)
— 2843 tied HMM states
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Tuning results on the dev. data set
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WER on the testing data set

e QOur result of 8.77% WER is comparable to the
8.6% WER reported in (Ko & Mak, 2011) using
a similar testing configuration, but using 70
hours of training data

Full 10.5
Diagonal 10 9.84
Sparse 4 8.77 10.9% Yes
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Sparse banded models

Sparse models Sparse models Sparse banded
feature reorder models
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Training of sparse banded models

* Weighted lasso: f(C;,,,) = —||H * Ci, |11
e Hk,|) =0 = C;,,(k, 1) =0

Sparse

banded
DI
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Importance of the feature order

* O~N(u,2);C =X C;; =0 = 0;and o; are
conditionally independent (Cl), given other
variables.

* Rearrange the feature order so that o; and o; are
Clif[i—j| > b

 Three orders are investigated:

— HTK order : my--- my3Amy --- Am;3AAmy --- AAmy 5
— Knowledge-based order : m;Am;AAm, --- m;3Am;3AAM 3
— Data-driven order : m{AAm, --- Am;Amy
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Results on the development data
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Results on the test data

Full 10.5

Diagonal 10 9.84 -—-- -—--
Sparse 4 8.77 10.9% Yes
Band8 4 8.91 9.5 Yes
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Decoding time
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* Sparse banded modes are the fastest since: 1) smaller searching beam-
widths; 2) less model parameters.

Model | #Gaussian components | #total model parameters
diagonal 10 2,491,090
full 1 2,580,719
sparse 2 5,169,440
band8 2 2,041,898
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Discriminative training

 MMI objective function:
0 = Argmax{log P(w,.|0, ®)}
0

 New Objective function

S—1 «—M
L(®) =logPW,10,0)= > > pl|Cinlls
1=2 m=1
* A valid weak-sense auxiliary function is
Q(0; ®)=Q"(0; 0)-Q4(®; ®')  same as ML training
.|_QS (@; @’) Ensure stability
+QI(® @’) Improve generalization
ZS 1 M _1P| |Clm| | Resularization term
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Results on the WSJ testing data

Full 11.68 9.18
Diagonal 10 0.84 9.04
Diagonal+ STC 10 9.26 8.66

Sparse 4 8.55 8.05
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Summary

* Sparse models are effective in dealing with the
problems that conventional diagonal and full
covariance models face: computation, incorrect
model assumptions and over-fitting when
training data is insufficient.

* We derive the overall training process under the
HMM framework using both maximum likelihood
training and discriminative training.

* The proposed sparse models subsume the
traditional diagonal and full covariance models as
special cases.
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Thank you!
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