
PASSCoDe: Parallel ASynchronous Stochastic dual Co-ordinate Descent

Cho-Jui Hsieh CJHSIEH@CS.UTEXAS.EDU
Hsiang-Fu Yu ROFUYU@CS.UTEXAS.EDU
Inderjit S. Dhillon INDERJIT@CS.UTEXAS.EDU

Department of Computer Science, The University of Texas, Austin, TX 78721, USA

Abstract
Stochastic Dual Coordinate Descent (DCD) is
one of the most efficient ways to solve the fam-
ily of `2-regularized empirical risk minimiza-
tion problems, including linear SVM, logistic
regression, and many others. The vanilla im-
plementation of DCD is quite slow; however,
by maintaining primal variables while updating
dual variables, the time complexity of DCD can
be significantly reduced. Such a strategy forms
the core algorithm in the widely-used LIBLIN-
EAR package. In this paper, we parallelize the
DCD algorithms in LIBLINEAR. In recent re-
search, several synchronized parallel DCD algo-
rithms have been proposed, however, they fail
to achieve good speedup in the shared mem-
ory multi-core setting. In this paper, we pro-
pose a family of parallel asynchronous stochas-
tic dual coordinate descent algorithms (PASS-
CoDe). Each thread repeatedly selects a ran-
dom dual variable and conducts coordinate up-
dates using the primal variables that are stored in
the shared memory. We analyze the convergence
properties of DCD when different locking/atomic
mechanisms are applied. For implementation
with atomic operations, we show linear conver-
gence under mild conditions. For implementa-
tion without any atomic operations or locking,
we present a novel error analysis for PASSCoDe
under the multi-core environment, showing that
the converged solution is the exact solution for
a primal problem with a perturbed regularizer.
Experimental results show that our methods are
much faster than previous parallel coordinate de-
scent solvers.

1. Introduction
Given a set of instance-label pairs (ẋi, ẏi), i = 1, · · · , n,
ẋi ∈ Rd, ẏi ∈ R, we focus on the following empirical risk

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

minimization problem with `2-regularization:

min
w∈Rd

P (w) :=
1
2
‖w‖2 +

n∑
i=1

`i(wTxi), (1)

where xi = ẏiẋi, `i(·) is the loss function and ‖ · ‖ is
the 2-norm. A large class of machine learning problems
can be formulated as the above optimization problem. Ex-
amples include Support Vector Machines (SVMs), logis-
tic regression, ridge regression, and many others. Prob-
lem (1) is usually called the primal problem, and can
be solved by Stochastic Gradient Descent (SGD) (Zhang,
2004; Shalev-Shwartz et al., 2007), second order meth-
ods (Lin et al., 2007), or primal Coordinate Descent (CD)
algorithms (Chang et al., 2008; Huang et al., 2010).

Instead of solving the primal problem, another class of al-
gorithms solves the following dual problem of (1):

min
α∈Rn

D(α) :=
1
2

∥∥∥∥∥
n∑
i=1

αixi

∥∥∥∥∥
2

+
n∑
i=1

`∗i (−αi), (2)

where `∗i (·) is the conjugate of the loss function `i(·), de-
fined by `∗i (u) = maxz(zu− `i(z)). If we define

w(α) =
∑n

i=1
αixi, (3)

then it is known thatw(α∗) = w∗ and P (w∗) = −D(α∗)
wherew∗,α∗ are the optimal primal/dual solutions respec-
tively. Examples include hinge-loss SVM, square hinge
SVM and `2-regularized logistic regression.

Stochastic Dual Coordinate Descent (DCD) has become
the most widely-used algorithm for solving (2), and it is
faster than primal solvers (including SGD) in many large-
scale problems. The success of DCD is mainly due to the
trick of maintaining the primal variables w based on the
primal-dual relationship (3). By maintainingw in memory,
(Hsieh et al., 2008; Keerthi et al., 2008) showed that the
time complexity of each coordinate update can be reduced
from O(nnz) to O(nnz/n), where nnz is the number of
nonzeros in the training dataset. Several DCD algorithms
for different machine learning problems are currently im-
plemented in LIBLINEAR (Fan et al., 2008) which is now
widely used in both academia and industry. The success of
DCD has also catalyzed a large body of theoretical stud-
ies (Nesterov, 2012; Shalev-Shwartz & Zhang, 2013).

PASSCoDe: Parallel ASynchronous Stochastic dual Co-ordinate Descent

In this paper, we parallelize the DCD algorithm in a shared
memory multi-core system. There are two threads of
work on parallel coordinate descent. The focus of the
first thread is synchronized algorithms, including synchro-
nized CD (Richtárik & Takáč, 2012; Bradley et al., 2011)
and synchronized DCD algorithms (Pechyony et al., 2011;
Yang, 2013; Jaggi et al., 2014). However, choosing the
block size is a trade-off problem between communication
and convergence speed, so synchronous algorithms usually
suffer from slower convergence. To overcome this prob-
lem, the other thread of work focuses on asynchronous CD
algorithms in multi-core shared memory systems (Liu &
Wright, 2014; Liu et al., 2014). However, none of the exist-
ing asynchronous CD algorithms maintains both the primal
and dual variables. As a result, the recent asynchronous
CD algorithms end up being much slower than the state-of-
the-art serial DCD algorithms that maintain bothw and α,
as in the LIBLINEAR software. This leads to a challenging
question: how to maintain both primal and dual variables
in an asynchronous and efficient way?

In this paper, we propose the first asynchronous dual co-
ordinate descent (PASSCoDe) algorithm which addresses
the issue of primal variable maintenance in the shared
memory multi-core setting. We carefully discuss and
analyze three versions of PASSCoDe: PASSCoDe-Lock,
PASSCoDe-Atomic, and PASSCoDe-Wild. In PASSCoDe-
Lock, convergence is always guaranteed but the overhead
for locking makes it even slower than serial DCD. In
PASSCoDe-Atomic, the primal-dual relationship (3) is en-
forced by atomic writes to the shared memory; while
PASSCoDe-Wild proceeds without any locking and atomic
operations, as a result of which the relationship (3) between
primal and dual variables can be violated due to memory
conflicts. Our contributions can be summarized below:

• We propose and analyze a family of asynchronous
parallelization of the most efficient DCD algorithm:
PASSCoDe-Lock, PASSCoDe-Atomic, PASSCoDe-
Wild.
• We show linear convergence of PASSCoDe-Atomic

under certain conditions.
• We present an error analysis for PASSCoDe-Wild and

show that the converged solution is the exact solu-
tion of a primal problem with a perturbed regular-
izer. Therefore the performance is close-to-optimal
on most datasets. To best of our knowledge, this is
the first attempt to analyze a parallel machine learn-
ing algorithm with memory conflicts using backward
error analysis, which is a standard tool in numerical
analysis (Wilkinson, 1961).
• Experimental results show that our algorithms

(PASSCoDe-Atomic and PASSCoDe-Wild) are much
faster than existing methods. For example, on the
webspam dataset, PASSCoDe-Atomic took 2 seconds
and PASSCoDe-Wild took 1.6 seconds to achieve 99%
accuracy using 10 threads, while CoCoA (Jaggi et al.,

2014) took 11.5 seconds using the same number of
threads (LIBLINEAR took 10 seconds using 1 thread
to achieve the same accuracy).

2. Related Work
Stochastic Coordinate Descent. Coordinate descent is
a classical optimization technique that has been well stud-
ied (Bertsekas, 1999; Luo & Tseng, 1992). Recently it has
enjoyed renewed interest due to the success of “stochastic”
coordinate descent in real applications (Hsieh et al., 2008;
Nesterov, 2012). In terms of theoretical analysis, the con-
vergence of (cyclic) coordinate descent has been studied for
a long time (Luo & Tseng, 1992; Bertsekas, 1999), while
recently (Beck & Tetruashvili, 2013; Wang & Lin, 2014)
showed global linear convergence under certain conditions.

Stochastic Dual Coordinate Descent. Many papers
(Hsieh et al., 2008; Yu et al., 2011; Shalev-Shwartz &
Zhang, 2013) have shown that solving the dual problem
using coordinate descent algorithms is faster on large-scale
datasets. The success of DCD strongly relies on exploit-
ing the primal-dual relationship (3) to speed up the gradi-
ent computation in the dual space. DCD has become the
state-of-the-art solver implemented in LIBLINEAR (Fan
et al., 2008). In terms of convergence of the dual objec-
tive function, standard theoretical guarantees for coordi-
nate descent can be directly applied. Taking a different
approach, (Shalev-Shwartz & Zhang, 2013) presented the
convergence rate in terms of the duality gap.

Parallel Stochastic Coordinate Descent. In order to
conduct coordinate updates in parallel, (Richtárik & Takáč,
2012) studied an algorithm where each processor updates
a randomly selected block (or coordinate) simultaneously,
and (Bradley et al., 2011) proposed a similar algorithm
for `1-regularized problems. (Scherrer et al., 2012) stud-
ied parallel greedy coordinate descent. However, the above
synchronized methods usually face a trade-off in choosing
the block size. If the block size is small, the load balanc-
ing problem leads to slow running time. If the block size
is large, the convergence speed becomes much slower (the
algorithm can even diverges). These problems can be re-
solved by developing an asynchronous algorithm. Asyn-
chronous coordinate descent has been studied by (Bert-
sekas & Tsitsiklis, 1989), but they require the Hessian to be
diagonal dominant in order to establish convergence. Re-
cently, (Liu et al., 2014; Liu & Wright, 2014) proved linear
convergence of asynchronous stochastic coordinate descent
algorithms under the essential strong convexity condition
and a “bounded staleness” condition, where they consider
both consistent and inconsistent read models. (Avron et al.,
2014) showed linear rate of convergence for the asyn-
chronous randomized Gauss-Seidel updates, which is a
special case of coordinate descent on linear systems.

Parallel Stochastic Dual Coordinate Descent. For solv-
ing the one variable subproblem (Eq. (5)) in dual coordinate

PASSCoDe: Parallel ASynchronous Stochastic dual Co-ordinate Descent

descent, each coordinate updates only requires the global
primal variable vector w and one local dual variable αi,
thus algorithms only need to synchronizew. Based on this
observation, (Yang, 2013) proposed to update several coor-
dinates or blocks simultaneously and update the global w,
while (Jaggi et al., 2014) showed that each block can be
solved with other approaches under the same framework.
However, both these parallel DCD methods are synchro-
nized algorithms.

To the best of our knowledge, this paper is the first to pro-
pose and analyze asynchronous parallel stochastic dual co-
ordinate descent methods. By maintaining a primal so-
lution w while updating dual variables, our algorithm is
much faster than the previous asynchronous coordinate de-
scent methods of (Liu & Wright, 2014; Liu et al., 2014)
for solving the dual problem (2). Our algorithms are also
faster than synchronized dual coordinate descent meth-
ods (Pechyony et al., 2011; Yang, 2013; Jaggi et al., 2014)
since the latest value of w can be accessed by all the
threads. In terms of theoretical contribution, the incon-
sistent read model in (Liu & Wright, 2014) cannot be di-
rectly applied to our algorithm because each update on αi is
based on the sharedw vector. We show linear convergence
for PASSCoDe-Atomic, and study the properties of the con-
verged solution for the wild version of our algorithm (with-
out any locking and atomic operations). Our algorithm has
been successfully applied to solve the collaborative ranking
problem (Park et al., 2015).

3. Algorithms
3.1. Stochastic Dual Coordinate Descent

We first describe the Stochastic Dual Coordinate Descent
(DCD) algorithm for solving the dual problem (2). At
each iteration, DCD randomly picks a dual variable αi
and updates it by minimizing the one variable subprob-
lem arg minδD(α + δei). Without exploiting the struc-
ture of the quadratic term, solving each subproblem re-
quires O(nnz) operations, where nnz is the total number
of nonzero elements in the training data, which can be sub-
stantial. However, if w(α) that satisfies (3) is maintained
in memory, the subproblem D(α+ δei) can be written as

D(α+ δei) =
1
2
‖w + δxi‖2 + `∗i (−(αi + δ)),

and the optimal solution can be computed by

δ∗ = arg min
δ

1
2

(δ +
wTxi
‖xi‖2

)2 +
1
‖xi‖2

`∗i (−(αi + δ)).

Note that all ‖xi‖ can be pre-computed and regarded as
constants. For each coordinate update we only need to
solve a simple one-variable subproblem, and the main com-
putation is in computing wTxi, which requires O(nnz/n)
time. For SVM problems, the above subproblem has a
closed form solution, while for logistic regression prob-
lems it has to be solved by an iterative solver (see (Yu et al.,

2011) for details). The DCD algorithm, which is part of the
popular LIBLINEAR package, is described in Algorithm 1.

Algorithm 1 Stochastic Dual Coordinate Descent (DCD)
Input: Initial α and w =

∑n
i=1 αixi

1: while not converged do
2: Randomly pick i
3: Update αi ← αi + ∆αi, where

∆αi ← arg min
δ

1
2
‖w+ δxi‖2 + `∗i (−(αi+ δ)) (4)

4: Update w by w ← w + ∆αixi
5: end while

3.2. Asynchronous Stochastic Dual Coordinate Descent
To parallelize DCD in a shared memory multi-core system,
we propose a family of Parallel ASynchronous Stochastic
dual CO-ordinate Descent (PASSCoDe) algorithms. PASS-
CoDe is very simple but effective. Each thread repeatedly
run the updates (steps 2 to 4) in Algorithm 1 using the lat-
est w and α stored in a shared memory. The threads do
not need to coordinate or synchronize their iterations. The
details are shown in Algorithm 2.

Although PASSCoDe is a simple extension of DCD in the
shared memory setting, there are many options in terms of
locking/atomic operations for each step, and these choices
lead to variations in speed and convergence properties, as
we will show in this paper.

Algorithm 2 Parallel Asynchronous Stochastic dual Co-
ordinate Descent (PASSCoDe)
Input: Initial α and w =

∑n
i=1 αixi

Each thread repeatedly performs the following updates:
step 1: Randomly pick i
step 2: Update αi ← αi + ∆αi, where

∆αi ← arg min
δ

1
2
‖w+δxi‖2+`∗i (−(αi+δ)) (5)

step 3: Update w by w ← w + ∆αixi

Note that the ∆αi obtained by subproblem (5) is exactly the
same as (4) in Algorithm 1 if only one thread is involved.
However, when there are multiple threads, the w vector
may not be the latest one since some other threads may not
have completed the writes in step 3. We now present three
variants of DCD.

PASSCoDe-Lock. To ensure w =
∑
i αixi for the latest

α, we have to lock the “active” variables between step 1
and 2 in Algorithm 2:

step 1.5: lock variables in Ni := {wt | (xi)t 6= 0}.

The locks are then released after step 3. With this lock-
ing mechanism, PASSCoDe-Lock is serializable, i.e., there

PASSCoDe: Parallel ASynchronous Stochastic dual Co-ordinate Descent

Table 1. Scaling of PASSCoDe algorithms. We present the run
time (in seconds) for each algorithm on the rcv1 dataset with 100
sweeps, and the speedup of each method over the serial DCD al-
gorithm (2x means it is two times faster than the serial algorithm).

Number of threads Lock Atomic Wild
2 98.03s / 0.27x 15.28s / 1.75x 14.08s / 1.90x
4 106.11s / 0.25x 8.35s / 3.20x 7.61s / 3.50x

10 114.43s / 0.23x 3.86s / 6.91x 3.59s / 7.43x

Table 2. The performance of PASSCoDe-Wild using ŵ or w̄ for
prediction. Results show that ŵ yields much better prediction
accuracy, which justifies our theoretical analysis in Section 4.2.

Prediction Accuracy (%) by
threads ŵ w̄ LIBLINEAR

news20 4 97.1 96.1 97.18 97.2 93.3

covtype 4 67.8 38.0 66.38 67.6 38.0

rcv1 4 97.7 97.5 97.78 97.7 97.4

webspam 4 99.1 93.1 99.18 99.1 88.4

kddb 4 88.8 79.7 88.88 88.8 87.7

is a update sequence such that serial DCD generates the
same solution as PASSCoDe-Lock. Unfortunately, threads
will spend too much time to update due to the locks, so
PASSCoDe-Lock is very slow compared to the non-locking
version (and even slower than the serial version of DCD).
See Table 1 for details.

PASSCoDe-Atomic. The above locking scheme is to en-
sure that each thread updates αi based on the latest w val-
ues. However, as shown in (Niu et al., 2011; Liu & Wright,
2014), the effect of using slightly stale values is usually
small in practice. Therefore, we propose an atomic algo-
rithm called PASSCoDe-Atomic that avoids locking all the
variables in Ni simultaneously. Instead, each thread just
reads the currentw values from memory without any lock-
ing. In practice (see Section 5) we observe that the con-
vergence speed is not significantly effected by using these
“unlocked” values of w. However, to ensure that the limit
point of the algorithm is still the global optimizer of (1), the
equation w∗ =

∑
i α
∗
ixi has to be maintained. Therefore,

we apply the following “atomic writes” in step 3:

step 3: For each j ∈ N(i)
Update wj ← wj + ∆αi(xi)j atomically

PASSCoDe-Atomic is much faster than PASSCoDe-Lock as
shown in Table 1 since the atomic write for a single variable
is much faster than locking all the variables. However, the
convergence of PASSCoDe-Atomic cannot be guaranteed
by tools used in the past, but we observe empirical con-
vergence. To bridge this gap between theory and practice,
we prove linear convergence of PASSCoDe-Atomic under
certain conditions in Section 4.

Locks Atomic Ops Nothing
Scaling: Poor Good
Serializability: Perfect Poor

Figure 1. Spectrum for the choice of mechanism to avoid memory
conflicts for PASSCoDe.

PASSCoDe-Wild. Finally, we consider Algorithm 2
without any locks and atomic operations. The result-
ing algorithm, PASSCoDe-Wild, is faster than PASSCoDe-
Atomic and PASSCoDe-Lock and can achieve almost linear
speedup. However, due to the memory conflicts in step 3,
some of the “updates” to w could be over-written by other
threads. As a result, the ŵ and α̂ do not satisfy Eq (3):

ŵ 6= w̄ :=
∑

i
α̂ixi, (6)

where ŵ, α̂ are the primal and dual variables output by the
algorithm, and w̄ defined in (6) is computed from α̂. It is
easy to see that α̂ is not the optimal solution of (2). Hence,
in the prediction phase it is not clear whether one should
use ŵ or w̄. In Section 4 we show that ŵ is actually the
optimal solution of a perturbed primal problem (1), where
the loss function is the same and the regularization term
is slightly perturbed. As a result, the prediction should be
done using ŵ, and this also yields much better accuracy in
practice, as shown in Table 2.

We summarize the behavior of the three algorithms in Fig-
ure 1. Using locks, the algorithm PASSCoDe-Lock is seri-
alizable but very slow (even slower than the serial DCD). In
the other extreme, the wild version without any locking and
atomic operation has very good speedup, but the behavior
can be different from serial DCD. Theoretically, we pro-
vide a convergence guarantee for PASSCoDe-Atomic, and
show that PASSCoDe-Wild converges to the solution with
the same loss function with a perturbed regularizer.

3.3. Implementation Details

Deadlock Avoidance. Without a proper implementation,
a deadlock can arise in PASSCoDe-Lock because a thread
needs to acquire all the locks associated with Ni. A simple
way to avoid deadlock is by associating an ordering for all
the locks such that each thread follows the same ordering
to acquire the locks.

Random Permutation. In LIBLINEAR, the random sam-
pling (step 2) of Algorithm 1 is replaced by the index from
a random permutation, such that each αi can be selected in
n steps instead of n log n steps in expectation. Random
permutation can be easily implemented asynchronously
for Algorithm 2 as follows: Initially, given p threads,
{1, . . . , n} is randomly partitioned into p blocks. Then,
each thread can asynchronously generate the random per-
mutation on its own block of variables.

Shrinking Heuristic. For loss such as hinge and squared-
hinge, the optimalα∗ is usually sparse. Based on this prop-
erty, a shrinking strategy was proposed by (Hsieh et al.,

PASSCoDe: Parallel ASynchronous Stochastic dual Co-ordinate Descent

2008) to further speed up DCD. This heuristic is also im-
plemented in LIBLINEAR. The idea is to maintain an ac-
tive set by skipping variables which tend to be fixed. This
heuristic can also be implemented in Algorithm 2 by main-
taining an active set for each thread.

Thread Affinity. The memory design of most mod-
ern multi-core machines is non-uniform memory access
(NUMA), where a core has faster memory access to its local
memory socket. To reduce possible latency due to the re-
mote socket access, we should bind each thread to a phys-
ical core and allocate data in its local memory. Note that
the current OpenMP does not support this functionality for
thread affinity; a library such as libnuma can be used to
enforce thread affinity.

4. Convergence Analysis
In this section we formally analyze the convergence proper-
ties of PASSCoDe. Note that all the proofs can be found in
the Appendix. We assign a global counter j for all the asyn-
chronous updates based on the time of completion of step
2 (Eq. (5)) of Algorithm 2, and the index i(j) denotes the
component selected at the j-th update. Let {α1,α2, . . . }
be the sequence generated by our algorithms, and

∆αj = αj+1
i(j) − α

j
i(j).

The update ∆αj at iteration j is obtained by solving

∆αj ← arg min
δ

1
2
‖ŵj + δxi(j)‖2 + `∗i(j)(−(αi(j) + δ)),

where ŵj is the current w in the memory. We use wj =∑
i α

j
ixi to denote the “accurate” w at iteration j.

In PASSCoDe-Lock, wj = ŵj is ensured by locking the
variables. However, in PASSCoDe-Atomic and PASSCoDe-
Wild, ŵj 6= wj because some of the updates would not
have been written into the shared memory. To capture this
phenomenon, we define Zj to be the set of all “updates to
w” before iteration j:

Zj := {(t, k) | t < j, k ∈ N(i(t))},
where N(i(t)) := {u |Xi(t),u 6= 0} is the set of all nonzero
features in xi(t). We define U j⊆Zj to be the updates that
have already been written into ŵj . Therefore, we have

ŵj = w0 +
∑

(t,k)∈Uj
(∆αt)Xi(t),kek.

4.1. Linear Convergence of PASSCoDe-Atomic

In PASSCoDe-Atomic, we assume all the updates before the
(j − τ)-th iteration have been written into ŵj , therefore,
Assumption 1. The set U j satisfies Zj−τ ⊆ Uj ⊆ Zj .
Now we define some constants used in our theoretical anal-
ysis. Note that X ∈ Rn×d is the data matrix, and we use
X̄ ∈ Rn×d to denote the normalized data matrix where
each row is x̄Ti = xTi /‖xi‖. We then define

Mi = max
S⊆[d]

‖
∑
t∈S

X̄:,tXi,t‖, M = max
i
Mi,

where [d] := {1, . . . , d} is the set of all the feature indices,
and X̄:,t is the t-th column of X̄ . We also define Rmin =
mini ‖xi‖2, Rmax = maxi ‖xi‖2, and Lmax to be the
Lipschitz constant such that ‖∇D(α1) − ∇D(α2)‖ ≤
Lmax‖α1 − α2‖ for all α1,α2 within the level set {α |
D(α) ≤ D(α0)}. We assume that Rmax = 1 and there is
no zero training sample, so Rmin > 0.

To prove the convergence of asynchronous algorithms, we
first show that the expected step size does not increase
super-linearly by the following Lemma 1.
Lemma 1. If τ is small enough such that

(6τ(τ + 1)2eM)/
√
n ≤ 1, (7)

then PASSCoDe-Atomic satisfies the following inequality:

E(‖αj−1 −αj‖2) ≤ ρE(‖αj −αj+1‖2), (8)

where ρ = (1 + 6(τ+1)eM√
n

)2.

We use a similar technique as in (Liu & Wright, 2014) to
prove this lemma with two major differences:

• Their “inconsistent read” model assumes ŵj =∑
i α̇ixi for some α̇. However, in our case ŵj may

not be written in this form due to incomplete updates
in step 3 of Algorithm 2.

• In (Liu & Wright, 2014), each coordinate is updated
by γ∇tf(α) with a fixed step size γ. We consider the
case that each subproblem (4) is solved exactly.

To show linear convergence, we assume the objective func-
tion satisfies the following property:
Definition 1. The objective function (2) admits a global
error bound if there is a constant κ such that for all α,

‖α− PS(α)‖ ≤ κ‖T (α)−α‖, (9)

where PS(·) is the Euclidean projection to the set S of op-
timal solutions, and T : Rn→Rn is defined by

Tt(α) = arg min
u

D(α+ (u− αt)et) ∀t = 1, . . . , n,

where et is the standard t-th unit vector. We say that the
algorithm satisfies a global error bound from the beginning
if (9) holds for all iterates {αj}j=1,2,... generated by the
algorithm.

This definition is a generalized version of Definition 6 in
(Wang & Lin, 2014). We show that many machine learning
problems satisfy this assumption (see Appendix 7).
Theorem 1. Support Vector Machines (SVM) with hinge
loss or square hinge loss satisfy a global error bound (9).
DCD for the `2-regularized logistic regression satisfies a
global error bound from the beginning.

Next we explicitly state the linear convergence guarantee
for PASSCoDe-Atomic.

PASSCoDe: Parallel ASynchronous Stochastic dual Co-ordinate Descent

Theorem 2. Assume the objective function (2) admits a
global error bound from the beginning and the Lipschitz
constant Lmax is finite in the level set. If (7) holds and

1 ≥ 2Lmax
Rmin

(
1 +

eτM√
n

)(
τ2M2e2

n

)
then PASSCoDe-Atomic has a global linear convergence
rate in expectation, that is,

E[D(αj+1)]−D(α∗) ≤ η
(
E[D(αj)]−D(α∗)

)
, (10)

where α∗ is the optimal solution and

η = 1− κ

Lmax

(
1− 2Lmax

Rmin

(
1 +

eτM√
n

)(
τ2M2e2

n

))
.

4.2. Error Analysis for PASSCoDe-Wild

In PASSCoDe-Wild, assume the sequence {αj} converges
to α̂ and {wj} converges to ŵ. Now we show that the dual
solution α̂ and the corresponding primal variables w̄ =∑n
i=1 α̂ixi are actually the dual and primal solutions of a

perturbed problem:
Theorem 3. α̂ is the optimal solution of a perturbed dual
problem

α̂ = arg min
α

D(α)−
∑n

i=1
αiε

Txi, (11)

and w̄ =
∑
i α̂ixi is the solution of the corresponding pri-

mal problem:

w̄ = arg min
w

1
2
wTw +

∑n

i=1
`i((w − ε)Txi), (12)

where ε ∈ Rd is given by ε = w̄ − ŵ.

The proof is in Appendix 9.1. Note that ε is the error caused
by the memory conflicts. From Theorem 3, w̄ is the opti-
mal solution of the “biased” primal problem (12), however,
in (12) the actual model that fits the loss function should be
ŵ = w̄− ε. Therefore after the training process we should
use ŵ to predict, which is the w we maintained during the
parallel coordinate descent updates. Replacingw byw−ε
in (12), we have the following corollary :
Corollary 1. ŵ computed by PASSCoDe-Wild is the solu-
tion of the following perturbed primal problem:

ŵ = arg min
w

1
2

(w + ε)T (w + ε) +
n∑
i=1

`i(wTxi) (13)

The above corollary shows that the computed primal solu-
tion ŵ is actually the exact solution of a perturbed problem
(where the perturbation is on the regularizer). This strategy
(of showing that the computed solution to a problem is the
exact solution of a perturbed problem) is inspired by the
backward error analysis technique commonly employed in
numerical analysis (Wilkinson, 1961)1. Bounding the size
of the perturbation is a topic of future research.

1J. H. Wilkinson received the Turing Award in 1970, partly for
his work on backward error analysis

Table 3. Data statistics. ñ is the number of test instances. d̄ is the
average nnz per instance.

n ñ d d̄ C

news20 16,000 3,996 1,355,191 455.5 2
covtype 500,000 81,012 54 11.9 0.0625
rcv1 677,399 20,242 47,236 73.2 1
webspam 280,000 70,000 16,609,143 3727.7 1
kddb 19,264,097 748,401 29,890,095 29.4 1

5. Experimental Results
We conduct several experiments and show that the pro-
posed methods PASSCoDe-Atomic and PASSCoDe-Wild
have superior performance compared to other state-of-the-
art parallel coordinate descent algorithms. We consider
five datasets: news20, covtype, rcv1, webspam, and
kddb. Detailed information is shown in Table 3. To have
a fair comparison, we implement all methods in C++ us-
ing OpenMP as the parallel programming framework. All
the experiments are performed on an Intel multi-core dual-
socket machine with 256 GB memory. Each socket is
associated with 10 computation cores. We explicitly en-
force that all the threads use cores from the same socket
to avoid inter-socket communication. Our code is avail-
able in http://www.cs.utexas.edu/˜rofuyu/
exp-codes/passcode-icml15-exp/. We focus
on solving SVM with hinge loss in the experiments, but
the algorithms can be applied to other objective functions.

Serial Baselines.

• DCD: we implement Algorithm 1. Instead of sam-
pling with replacement, a random permutation is used
to enforce random sampling without replacement.

• LIBLINEAR: we use the implementation in
http://www.csie.ntu.edu.tw/˜cjlin/
liblinear. This implementation is equivalent to
DCD with the shrinking strategy.

Compared Parallel Implementation.

• PASSCoDe: We implement the proposed three vari-
ants of Algorithm 2 using DCD as the building block:
Wild, Atomic, and Lock.

• CoCoA: We implement a multi-core version of Co-
CoA (Jaggi et al., 2014) with βK = 1 and DCD as
its local dual method.

• AsySCD: We follow the description in (Liu & Wright,
2014; Liu et al., 2014) to implement AsySCD with step
length γ = 1

2 and the shuffling period p = 10 as sug-
gested in (Liu et al., 2014).

5.1. Convergence in terms of iterations.

The primal objective function value is used to determine the
convergence. Note that we still use P (ŵ) for PASSCoDe-
Wild, although the true primal objective should be (13). As
long as ŵT ε remains small enough, the trends of (13) and

http://www.cs.utexas.edu/~rofuyu/exp-codes/passcode-icml15-exp/
http://www.cs.utexas.edu/~rofuyu/exp-codes/passcode-icml15-exp/
http://www.csie.ntu.edu.tw/~cjlin/liblinear
http://www.csie.ntu.edu.tw/~cjlin/liblinear

PASSCoDe: Parallel ASynchronous Stochastic dual Co-ordinate Descent

P (ŵ) are similar.

Figures 2(a), 3(a), 5(a), 4(a), 6(a) show the convergence re-
sults of PASSCoDe-Wild, PASSCoDe-Atomic, CoCoA, and
AsySCD with 10 threads in terms of the number of itera-
tions. The result for LIBLINEAR is also included for refer-
ence. We make the following observations:

• Convergence of three PASSCoDe variants are almost
identical and very close to the convergence behavior
of serial LIBLINEAR on three large sparse datasets
(rcv1, webspam, and kddb).

• PASSCoDe-Wild and PASSCoDe-Atomic converge
significantly faster than CoCoA.

• On covtype, a more dense dataset, all three algo-
rithms (PASSCoDe-Wild, PASSCoDe-Atomic, and Co-
CoA) have slower convergence.

5.2. Efficiency

Timing. To have a fair comparison, we include both ini-
tialization and computation into the timing results. For
DCD, PASSCoDe, and CoCoA, initialization requires one
pass over the entire data matrix (which is O(nnz(X))) to
compute ‖xi‖ for each instance. In the initialization stage,
AsySCD requiresO(n×nnz(X)) time andO(n2) space to
form and store the Hessian matrix Q for (2). Thus, we only
have results on news20 for AsySCD as all other datasets
are too large for AsySCD to fit Q in even 256 GB memory.
Note that we also parallelize the initialization part for each
algorithm in our implementation to have a fair comparison.

Figures 2(b), 3(b), 5(b), 4(b), 6(b) show the primal objec-
tive values in terms of time and Figures 2(c), 3(c), 5(c),
4(c), 6(c) shows the accuracy in terms of time. Note that
the x-axis for news20, covtype, and rcv1 is in log-scale.
We have the following observations:

• From Figures 2(b) and 2(c), we can see that
AsySCD is orders of magnitude slower than other ap-
proaches including parallel methods and serial refer-
ence (AsySCD using 10 cores takes 0.4 seconds to run
10 iterations, while all the other parallel approaches
take less than 0.14 seconds, and LIBLINEAR takes
less than 0.3 seconds). In fact, AsySCD is still slower
than other methods even when initialization time is ex-
cluded. This is expected because AsySCD is a paral-
lel version of a standard coordinate descent method,
which is known to be much slower than DCD for (2).
Since AsySCD runs out of memory for all the other
larger datasets, we do not show the results in other
figures.
• In most cases, both PASSCoDe approaches outper-

form CoCoA. In Figure 6(c), kddb shows better ac-
curacy performance in the early stages which can be
explained by the ensemble nature of CoCoA. In the
long term, it still converges to the accuracy obtained
by LIBLINEAR.

• For all datasets, PASSCoDe-Wild is slightly faster than
PASSCoDe-Atomic. Given the fact that both methods
show similar convergence in terms of iterations, this
phenomenon can be explained by the effect of atomic
operations. We observe that more dense the dataset,
the larger the difference between PASSCoDe-Wild and
PASSCoDe-Atomic.

5.3. Speedup
We are interested in the following evaluation criterion:

speedup :=
time taken by the target method with p threads
time taken by the best serial reference method

,

This criterion is different from scaling, where the denomi-
nator is replaced by “time taken for the target method with
single thread.” Note that a method can have perfect scal-
ing but very poor speedup. Figures 2(d), 3(d), 5(d), 4(d),
6(d) shows the speedup results, where 1) DCD is used as
the best serial reference; 2) the shrinking heuristic is turned
off for all PASSCoDe and DCD to have fair comparison; 3)
the initialization time is excluded from the computation of
speedup.

• PASSCoDe-Wild has very good speedup performance
compared to other approaches. It achieves a speedup
of about about 6 to 8 using 10 threads on all the
datasets.

• From Figure 2(d), we can see that AsySCD hardly has
any “speedup” over the serial reference, although it is
shown to have almost linear scaling (Liu et al., 2014;
Liu & Wright, 2014).

6. Conclusions and Future Work
In this paper, we present a family of parallel asynchronous
stochastic dual coordinate descent algorithms in the shared
memory multi-core setting, where each thread repeatedly
selects a random dual variable and conducts coordinate up-
dates using the primal variables that are stored in the shared
memory. We analyze the convergence properties when dif-
ferent locking/atomic mechanisms are used. For the set-
ting with atomic updates, we show linear convergence un-
der certain conditions. For the setting without any lock or
atomic write, which achieves the best speedup, we present
an error analysis to show that the primal variable obtained
by the algorithm is the exact solution for a primal problem
with a perturbed regularizer. Bounding the size of this per-
turbation is a topic of future research. Experimental results
show that our algorithms are much faster than previous par-
allel coordinate descent solvers.

Acknowledgements

This research was supported by NSF grants CCF-1320746
and CCF-1117055. C.-J.H also acknowledges support from
an IBM PhD fellowship. H.-F.Y also acknowledges sup-
port from an Intel PhD fellowship.

PASSCoDe: Parallel ASynchronous Stochastic dual Co-ordinate Descent

(a) Convergence

(b) Objective

(c) Accuracy

(d) Speedup

Figure 2. news20 dataset

(a) Convergence

(b) Objective

(c) Accuracy

(d) Speedup

Figure 3. covtype dataset

(a) Convergence

(b) Objective

(c) Accuracy

(d) Speedup

Figure 4. webspam dataset

PASSCoDe: Parallel ASynchronous Stochastic dual Co-ordinate Descent

References
Avron, H., Druinsky, A., and Gupta, A. Revisiting

asynchronous linear solvers: Provable convergence rate
through randomization. In IEEE International Parallel
and Distributed Processing Symposium, 2014.

Beck, Amir and Tetruashvili, Luba. On the convergence of
block coordinate descent type methods. SIAM Journal
on Optimization, 23(4):2037–2060, 2013.

Bertsekas, Dimitri P. Nonlinear Programming. Athena Sci-
entific, Belmont, MA 02178-9998, second edition, 1999.

Bertsekas, Dimitri P. and Tsitsiklis, John N. Parallel and
Distributed Computation: Numerical Methods. Prentice
Hall, 1989.

Boser, Bernhard E., Guyon, Isabelle, and Vapnik, Vladimir.
A training algorithm for optimal margin classifiers. In
Proceedings of the Fifth Annual Workshop on Computa-
tional Learning Theory, pp. 144–152. ACM Press, 1992.

Bradley, Joseph K., Kyrola, Aapo, Bickson, Danny, and
Guestrin, Carlos. Parallel coordinate descent for l1-
regularized loss minimization. In ICML, 2011.

Chang, Kai-Wei, Hsieh, Cho-Jui, and Lin, Chih-Jen. Co-
ordinate descent method for large-scale L2-loss linear
SVM. Journal of Machine Learning Research, 9:1369–
1398, 2008.

Fan, Rong-En, Chang, Kai-Wei, Hsieh, Cho-Jui, Wang,
Xiang-Rui, and Lin, Chih-Jen. LIBLINEAR: a library
for large linear classification. Journal of Machine Learn-
ing Research, 9:1871–1874, 2008.

Hsieh, Cho-Jui, Chang, Kai-Wei, Lin, Chih-Jen, Keerthi,
S. Sathiya, and Sundararajan, Sellamanickam. A dual
coordinate descent method for large-scale linear SVM.
In ICML, 2008.

Huang, Fang-Lan, Hsieh, Cho-Jui, Chang, Kai-Wei, and
Lin, Chih-Jen. Iterative scaling and coordinate descent
methods for maximum entropy. Journal of Machine
Learning Research, 11:815–848, 2010.

Jaggi, Martin, Smith, Virginia, Takáč, Martin, Terhorst,
Jonathan, Hofmann, Thomas, and Jordan, Michael I.
Communication-efficient distributed dual coordinate as-
cent. In NIPS. 2014.

Keerthi, S. S., Sundararajan, S., Chang, K.-W., Hsieh, C.-
J., and Lin, C.-J. A sequential dual method for large
scale multi-class linear SVMs. In KDD, 2008.

Lin, Chih-Jen, Weng, Ruby C., and Keerthi, S. Sathiya.
Trust region Newton method for large-scale logistic re-
gression. In ICML, 2007.

Liu, J. and Wright, S. J. Asynchronous stochastic co-
ordinate descent: Parallelism and convergence proper-
ties. 2014. URL http://arxiv.org/abs/1403.
3862.

Liu, J., Wright, S. J., Re, C., and Bittorf, V. An asyn-
chronous parallel stochastic coordinate descent algo-
rithm. In ICML, 2014.

Luo, Zhi-Quan and Tseng, Paul. On the convergence of co-
ordinate descent method for convex differentiable mini-
mization. Journal of Optimization Theory and Applica-
tions, 72(1):7–35, 1992.

Nesterov, Yurii E. Efficiency of coordinate descent meth-
ods on huge-scale optimization problems. SIAM Journal
on Optimization, 22(2):341–362, 2012.

Niu, Feng, Recht, Benjamin, Ré, Christopher, and Wright,
Stephen J. HOGWILD!: a lock-free approach to paral-
lelizing stochastic gradient descent. In NIPS, pp. 693–
701, 2011.

Park, D., Neeman, J., Zhang, J., Sanghavi, S., and Dhillon,
I. S. Preference completion: Large-scale collaborative
ranking from pairwise comparison. In ICML, 2015.

Pechyony, Dmitry, Shen, Libin, and Jones, Rosie. Solving
large scale linear svm with distributed block minimiza-
tion. In NIPS 2011 Workshop on Big Learning: Algo-
rithms, Systems, and Tools for Learning at Scale. 2011.

Richtárik, Peter and Takáč, Martin. Parallel coordinate de-
scent methods for big data optimization. Mathematical
Programming, 2012. Under revision.

Scherrer, C., Tewari, A., Halappanavar, M., and Haglin,
D. Feature clustering for accelerating parallel coordinate
descent. In NIPS, 2012.

Shalev-Shwartz, S., Singer, Y., and Srebro, N. Pegasos:
primal estimated sub-gradient solver for SVM. In ICML,
2007.

Shalev-Shwartz, Shai and Zhang, Tong. Stochastic dual co-
ordinate ascent methods for regularized loss minimiza-
tion. Journal of Machine Learning Research, 14:567–
599, 2013.

Wang, Po-Wei and Lin, Chih-Jen. Iteration complexity
of feasible descent methods for convex optimization.
Journal of Machine Learning Research, 15:1523–1548,
2014.

Wilkinson, J. H. Error analysis of direct methods of matrix
inversion. Journal of the ACM, 1961.

Yang, T. Trading computation for communication: Dis-
tributed stochastic dual coordinate ascent. In NIPS,
2013.

http://arxiv.org/abs/1403.3862
http://arxiv.org/abs/1403.3862

PASSCoDe: Parallel ASynchronous Stochastic dual Co-ordinate Descent

Yu, Hsiang-Fu, Huang, Fang-Lan, and Lin, Chih-Jen. Dual
coordinate descent methods for logistic regression and
maximum entropy models. Machine Learning, 85(1-2):
41–75, October 2011.

Zhang, Tong. Solving large scale linear prediction prob-
lems using stochastic gradient descent algorithms. In
ICML, 2004.

