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Abstract
The kernel support vector machine (SVM)
is one of the most widely used classification
methods; however, the amount of computa-
tion required becomes the bottleneck when
facing millions of samples. In this paper,
we propose and analyze a novel divide-and-
conquer solver for kernel SVMs (DC-SVM).
In the division step, we partition the kernel
SVM problem into smaller subproblems by
clustering the data, so that each subproblem
can be solved independently and efficiently.
We show theoretically that the support vec-
tors identified by the subproblem solution are
likely to be support vectors of the entire ker-
nel SVM problem, provided that the problem
is partitioned appropriately by kernel cluster-
ing. In the conquer step, the local solutions
from the subproblems are used to initialize a
global coordinate descent solver, which con-
verges quickly as suggested by our analysis.
By extending this idea, we develop a mul-
tilevel Divide-and-Conquer SVM algorithm
with adaptive clustering and early prediction
strategy, which outperforms state-of-the-art
methods in terms of training speed, testing
accuracy, and memory usage. As an exam-
ple, on the covtype dataset with half-a-million
samples, DC-SVM is 7 times faster than LIB-
SVM in obtaining the exact SVM solution
(to within 10−6 relative error) which achieves
96.15% prediction accuracy. Moreover, with
our proposed early prediction strategy, DC-
SVM achieves about 96% accuracy in only 12
minutes, which is more than 100 times faster
than LIBSVM.

1. Introduction
The support vector machine (SVM) (Cortes & Vapnik,
1995) is probably the most widely used classifier in var-
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ied machine learning applications. For problems that
are not linearly separable, kernel SVM uses a “kernel
trick” to implicitly map samples from input space to a
high-dimensional feature space, where samples become
linearly separable. Due to its importance, optimiza-
tion methods for kernel SVM have been widely stud-
ied (Platt, 1998; Joachims, 1998), and efficient libraries
such as LIBSVM (Chang & Lin, 2011) and SVMLight
(Joachims, 1998) are well developed. However, the ker-
nel SVM is still hard to scale up when the sample size
reaches more than one million instances. The bot-
tleneck stems from the high computational cost and
memory requirements of computing and storing the
kernel matrix, which in general is not sparse. By ap-
proximating the kernel SVM objective function, ap-
proximate solvers (Zhang et al., 2012; Le et al., 2013)
avoid high computational cost and memory require-
ment, but suffer in terms of prediction accuracy.

In this paper, we propose a novel divide and con-
quer approach (DC-SVM) to efficiently solve the ker-
nel SVM problem. DC-SVM achieves faster conver-
gence speed compared to state-of-the-art exact SVM
solvers, as well as better prediction accuracy in much
less time than approximate solvers. To accomplish this
performance, DC-SVM first divides the full problem
into smaller subproblems, which can be solved inde-
pendently and efficiently. We theoretically show that
the kernel kmeans algorithm is able to minimize the
difference between the solution of subproblems and of
the whole problem, and support vectors identified by
subproblems are likely to be support vectors of the
whole problem. However, running kernel kmeans on
the whole dataset is time consuming, so we apply a
two-step kernel kmeans procedure to efficiently find
the partition. In the conquer step, the local solutions
from the subproblems are “glued” together to yield
an initial point for the global problem. As suggested
by our analysis, the coordinate descent method in the
final stage converges quickly to the global optimal.

Empirically, our proposed Divide-and-Conquer Kernel
SVM solver can reduce the objective function value
much faster than existing SVM solvers. For example,
on the covtype dataset with half a million samples, DC-
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SVM can find a globally optimal solution (to within
10−6 accuracy) within 3 hours on a single machine
with 8 GBytes RAM, while the state-of-the-art LIB-
SVM solver takes more than 22 hours to achieve a simi-
larly accurate solution (which yields 96.15% prediction
accuracy). More interestingly, due to the closeness of
the subproblem solutions to the global solution, we can
employ an early prediction approach, using which DC-
SVM can obtain high test accuracy extremely quickly.
For example, on the covtype dataset, by using early
prediction DC-SVM achieves 96.03% prediction accu-
racy within 12 minutes, which is more than 100 times
faster than LIBSVM (see Figure 3e for more details).

The rest of the paper is outlined as follows. We pro-
pose the single-level DC-SVM in Section 3, and extend
it to the multilevel version in Section 4. Experimental
comparison with other state-of-the-art SVM solvers is
shown in Section 5. The relationship between DC-
SVM and other methods is discussed in Section 2, and
the conclusions are given in Section 6. Extensive ex-
perimental comparisons are included in the Appendix.

2. Related Work
Since training SVM requires a large amount of mem-
ory, it is natural to apply decomposition methods
(Platt, 1998), where each time only a subset of vari-
ables are updated. To speedup the decomposition
method, (Pérez-Cruz et al., 2004) proposed a double
chunking approach to maintain a chunk of important
samples, and the shrinking technique (Joachims, 1998)
is also widely used to eliminate unimportant samples.

To speed up kernel SVM training on large-scale
datasets, it is natural to divide the problem into
smaller subproblems, and combine the models trained
on each partition. (Jacobs et al., 1991) proposed a way
to combine models, although in their algorithm sub-
problems are not trained independently, while (Tresp,
2000) discussed a Bayesian prediction scheme (BCM)
for model combination. (Collobert et al., 2002) par-
tition the training dataset arbitrarily in the begin-
ning, and then iteratively refine the partition to ob-
tain an approximate kernel SVM solution. (Kugler
et al., 2006) applied the above ideas to solve multi-
class problems. (Graf et al., 2005) proposed a multi-
level approach (CascadeSVM): they randomly build a
partition tree of samples and train the SVM in a “cas-
cade” way: only support vectors in the lower level of
the tree are passed to the upper level. However, no
earlier method appears to discuss an elegant way to
partition the data. In this paper, we theoretically show
that kernel kmeans minimizes the error of the solution
from the subproblems and the global solution. Based
on this division step, we propose a simple method to
combine locally trained SVM models, and show that
the testing performance is better than BCM in terms
of both accuracy and time (as presented in Table 1).
More importantly, DC-SVM solves the original SVM

problem, not just an approximated one. We compare
our method with Cascade SVM in the experiments.

Another line of research proposes to reduce the train-
ing time by representing the whole dataset using a
smaller set of landmark points, and clustering is an ef-
fective way to find landmark points (cluster centers).
(Moody & Darken, 1989) proposed this idea to train
the reduced sized problem with RBF kernel (LTPU);
(Pavlov et al., 2000) used a similar idea as a prepro-
cessing of the dataset, while (Yu et al., 2005) further
generalized this approach to a hierarchical coarsen-
refinement solver for SVM. Based on this idea, the
kmeans Nyström method (Zhang et al., 2008) was pro-
posed to approximate the kernel matrix using land-
mark points. (Boley & Cao, 2004) proposed to find
samples with similar α values by clustering, so both
the clustering goal and training step are quite different
from ours. All the above approaches focus on mod-
eling the between-cluster (between-landmark points)
relationships. In comparison, our method focuses on
preserving the within-cluster relationships at the lower
levels and explores the between-cluster information in
the upper levels. We compare DC-SVM with LLSVM
(using kmeans Nyström) and LTPU in Section 5.

There are many other approximate solvers for the ker-
nel SVM, including kernel approximation approaches
(Fine & Scheinberg, 2001; Zhang et al., 2012; Le et al.,
2013), greedy basis selection (Keerthi et al., 2006), and
online SVM solvers (Bordes et al., 2005). Recently,
(Jose et al., 2013) proposed an approximate solver to
reduce testing time. They use multiple linear hyper-
planes for prediction, so the time complexity for pre-
diction is proportional to the dimensionality instead of
number of samples. Therefore they achieve faster pre-
diction but require more training time and have lower
prediction accuracy comparing to DC-SVM with early
prediction strategy.

3. Divide and Conquer Kernel SVM
with a single level

Given a set of instance-label pairs (xi, yi), i =
1, . . . , n,xi ∈ Rd and yi ∈ {1,−1}, the main task
in training the kernel SVM is to solve the following
quadratic optimization problem:

min
α
f(α) =

1
2
αTQα− eTα, s.t. 0 ≤ α ≤ C, (1)

where e is the vector of all ones; C is the balancing
parameter between loss and regularization in the SVM
primal problem; α ∈ Rn is the vector of dual variables;
and Q is an n × n matrix with Qij = yiyjK(xi,xj),
where K(xi,xj) is the kernel function. Note that, as
in (Keerthi et al., 2006; Joachims, 2006), we ignore the
“bias” term – indeed, in our experiments reported in
Section 5, we did not observe any improvement in test
accuracy by including the bias term. Letting α∗ de-
note the optimal solution of (1), the decision value for
a test data x can be computed by

∑n
i=1 α

∗
i yiK(x,xi).
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We begin by describing the single-level version of our
proposed algorithm. The main idea behind our di-
vide and conquer SVM solver (DC-SVM) is to divide
the data into smaller subsets, where each subset can
be handled efficiently and independently. The sub-
problem solutions are then used to initialize a coor-
dinate descent solver for the whole problem. To do
this, we first partition the dual variables into k sub-
sets {V1, . . . ,Vk}, and then solve the respective sub-
problems independently

min
α(c)

1
2

(α(c))TQ(c,c)α(c)−eTα(c), s.t. 0≤α(c)≤C, (2)

where c = 1, . . . , k, α(c) denotes the subvector {αp |
p ∈ Vc} and Q(c,c) is the submatrix of Q with row and
column indexes Vc.

The quadratic programming problem (1) has n vari-
ables, and takes at least O(n2) time to solve in prac-
tice (as shown in (Menon, 2009)). By dividing it into k
subproblems (2) with equal sizes, the time complexity
for solving the subproblems can be dramatically re-
duced to O(k · (nk )2) = O(n2/k). Moreover, the space
requirement is also reduced from O(n2) to O(n2/k2).

After computing all the subproblem solutions, we con-
catenate them to form an approximate solution for the
whole problem ᾱ = [ᾱ(1), . . . , ᾱ(k)], where ᾱ(c) is the
optimal solution for the c-th subproblem. In the con-
quer step, ᾱ is used to initialize the solver for the
whole problem. We show that this procedure achieves
faster convergence due to the following reasons: (1) ᾱ
is close to the optimal solution for the whole problem
α∗, so the solver only requires a few iterations to con-
verge (see Theorem 1); (2) the set of support vectors
of the subproblems is expected to be close to the set
of support vectors of the whole problem (see Theorem
2). Hence, the coordinate descent solver for the whole
problem converges very quickly.

Divide Step. We now discuss in detail how to
divide problem (1) into subproblems. In order for our
proposed method to be efficient, we require ᾱ to be
close to the optimal solution of the original problem
α∗. In the following, we derive a bound on ‖ᾱ−α∗‖2
by first showing that ᾱ is the optimal solution of (1)
with an approximate kernel.
Lemma 1. ᾱ is the optimal solution of (1) with kernel
function K(xi,xj) replaced by

K̄(xi,xj) = I(π(xi), π(xj))K(xi,xj), (3)

where π(xi) is the cluster that xi belongs to; I(a, b) =
1 iff a = b and I(a, b) = 0 otherwise.

Based on the above lemma, we are able to bound ‖α∗−
ᾱ‖2 by the sum of between-cluster kernel values:
Theorem 1. Given data points {(xi, yi)}ni=1 with
labels yi ∈ {1,−1} and a partition indicator

{π(x1), . . . , π(xn)},

0 ≤ f(ᾱ)− f(α∗) ≤ (1/2)C2D(π), (4)

where f(α) is the objective function in (1) and
D(π) =

∑
i,j:π(xi)6=π(xj)

|K(xi,xj)|. Furthermore,
‖α∗ − ᾱ‖22 ≤ C2D(π)/σn where σn is the smallest
eigenvalue of the kernel matrix.

The proof is provided in Appendix 7.2. In order to
minimize ‖α∗ − ᾱ‖, we want to find a partition with
small D(π). Moreover, a balanced partition is pre-
ferred to achieve faster training speed. This can be
done by the kernel kmeans algorithm, which aims to
minimize the off-diagonal values of the kernel matrix
with a balancing normalization.

We now show that the bound derived in Theorem 1 is
reasonably tight in practice. On a subset (10000 in-
stances) of the covtype data, we try different numbers
of clusters k = 8, 16, 32, 64, 128; for each k, we use ker-
nel kmeans to obtain the data partition {V1, . . . ,Vk},
and then compute C2D(π)/2 (the right hand side of
(4)) and f(ᾱ)− f(α∗) (the left hand side of (4)). The
results are presented in Figure 1. The left panel shows
the bound (in red) and the difference in objectives
f(ᾱ) − f(α∗) in absolute scale, while the right panel
shows these values in a log scale. Figure 1 shows that
the bound is quite close to the difference in objectives
in an absolute sense (the red and blue curves nearly
overlap), especially compared to the difference in ob-
jectives when the data is partitioned randomly (this
also shows effectiveness of the kernel kmeans proce-
dure). Thus, our data partitioning scheme and subse-
quent solution of the subproblems leads to good ap-
proximations to the global kernel SVM problem.

(a) covtype 10000 samples. (b) covtype 10000 samples (log
scale).

Figure 1: Demonstration of the bound in Theorem 1 – our
data partitioning scheme leads to good approximations to
the global solution α∗. The left plot is on an absolute scale,
while the right one is on a logarithmic scale.

However, kernel kmeans has O(n2d) time complexity,
which is too expensive for large-scale problems. There-
fore we consider a simple two-step kernel kmeans ap-
proach as in (Ghitta et al., 2011). The two-step ker-
nel kmeans algorithm first runs kernel kmeans on m
randomly sampled data points (m � n) to construct
cluster centers in the kernel space. Based on these



A Divide-and-Conquer Solver for Kernel Support Vector Machines

(a) rbf kernel, precision (b) rbf kernel, recall (c) rbf kernel, time vs. pre-
cision

(d) rbf kernel, time vs. re-
call

(e) polynomial kernel, pre-
cision

(f) polynomial kernel, recall (g) polynomial kernel, time
vs. precision

(h) polynomial kernel, time
vs. recall

Figure 2: Our multilevel DC-SVM algorithm computes support vectors for subproblems during the “conquer” phase.
The above plots show that DC-SVM identifies support vectors more accurately (Figure 2a, 2b, 2e, 2f) than cascade SVM,
and more quickly than the shrinking strategy in LIBSVM.

centers, each data point computes its distance to clus-
ter centers and decides which cluster it belongs to.
The algorithm has time complexity O(nmd) and space
complexity O(m2). In our implementation we just use
random initialization for kernel kmeans, and observe
good performance in practice.

A key facet of our proposed divide and conquer al-
gorithm is that the set of support vectors from the
subproblems S̄ := {i | ᾱi > 0}, where ᾱi is the i-th el-
ement of ᾱ, is very close to that of the whole problem
S := {i | α∗i > 0}. Letting f̄(α) denote the objec-
tive function of (1) with kernel K̄ defined in (3), the
following theorem shows that when ᾱi = 0 (xi is not
a support vector of the subproblem) and ∇if̄(ᾱ) is
large enough, then xi will not be a support vector of
the whole problem.

Theorem 2. For any i ∈ {1, . . . , n}, if ᾱi = 0 and

∇if̄(ᾱ) > CD(π)(1 +
√
nKmax/

√
σnD(π)),

where Kmax = maxiK(xi,xi), then xi will not be a
support vector of the whole problem, i.e., α∗i = 0.

The proof is given in Appendix 7.3. In practice also, we
observe that DC-SVM can identify the set of support
vectors of the whole problem very quickly. Figure 2
demonstrates that DC-SVM identifies support vectors
much faster than the shrinking strategy implemented
in LIBSVM (Chang & Lin, 2011) (we discuss these
results in more detail in Section 4).

Conquer Step. After computing ᾱ from the sub-
problems, we use ᾱ to initialize the solver for the whole
problem. In principle, we can use any SVM solver in
our divide and conquer framework, but we focus on
using the coordinate descent method as in LIBSVM

to solve the whole problem. The main idea is to up-
date one variable at a time, and always choosing the αi
with the largest gradient value to update. The benefit
of applying coordinate descent is that we can avoid a
lot of unnecessary access to the kernel matrix entries
if αi never changes from zero to nonzero. Since ᾱ’s
are close to α∗, the ᾱ-values for most vectors that are
not support vectors will not become nonzero, and so
the algorithm converges quickly.

4. Divide and Conquer SVM with
multiple levels

There is a trade-off in choosing the number of clusters
k for a single-level DC-SVM with only one divide and
conquer step. When k is small, the subproblems have
similar sizes as the original problem, so we will not gain
much speedup. On the other hand, when we increase
k, time complexity for solving subproblems can be re-
duced, but the resulting ᾱ can be quite different from
α∗ according to Theorem 1, so the conquer step will
be slow. Therefore, we propose to run DC-SVM with
multiple levels to further reduce the time for solving
the subproblems, and meanwhile still obtain ᾱ values
that are close to α∗.

In multilevel DC-SVM, at the l-th level, we partition
the whole dataset into kl clusters {V(l)

1 , . . . ,V(l)

kl
}, and

solve those kl subproblems independently to get ᾱ(l).
In order to solve each subproblem efficiently, we use
the solutions from the lower level ᾱ(l+1) to initialize
the solver at the l-th level, so each level requires very
few iterations. This allows us to use small values of
k, for example, we use k = 4 for all the experiments.
In the following, we discuss more insights to further
speed up our procedure.
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Table 1: Comparing prediction methods using a lower level model. Our proposed early prediction strategy is better in
terms of prediction accuracy and testing time per sample (time given in milliseconds).

webspam k = 50 webspam k = 100 covtype k = 50 covtype k = 100
Prediction by (5) 92.6% / 1.3ms 89.5% / 1.3ms 94.6% / 2.6ms 92.7% / 2.6ms

BCM in (Tresp, 2000) 98.4% / 2.5ms 95.3% / 3.3ms 91.5% / 3.7ms 89.3% / 5.6ms
Early Prediction by (6) 99.1% / .17ms 99.0% / .16ms 96.1% / .4ms 96.0% / .2ms

Adaptive Clustering. The two-step kernel kmeans
approach has time complexity O(nmd), so the number
of samples m cannot be too large. In our implemen-
tation we use m = 1000. When the data set is very
large, the performance of two-step kernel kmeans may
not be good because we sample only a few data points.
This will influence the performance of DC-SVM.

To improve the clustering for DC-SVM, we propose the
following adaptive clustering approach. The main idea
is to explore the sparsity of α in the SVM problem, and
sample from the set of support vectors to perform two-
step kernel kmeans. Suppose we are at the l-th level,
and the current set of support vectors is defined by
S̄ = {i | ᾱi > 0}. Suppose the set of support vectors
for the final solution is given by S∗ = {i | α∗i > 0}. We
can define the sum of off-diagonal elements on S̄ ∪ S∗
as DS∗∪S̄(π) =

∑
i,j∈S∗∪S̄ and π(xi)6=π(xj)

|K(xi,xj)|.
The following theorem shows that we can refine the
bound in Theorem 1:
Theorem 3. Given data points x1, . . . ,xn and a par-
tition {V1, . . . ,Vk} with indicators π,

0 ≤ f(ᾱ)− f(α∗) ≤ (1/2)C2DS∗∪S̄(π).

Furthermore, ‖α∗ − ᾱ‖22 ≤ C2DS∗∪S̄(π)/σn.

The proof is given in Appendix 7.4. The above ob-
servations suggest that if we know the set of support
vectors S̄ and S∗, ‖α∗ − ᾱ‖ only depends on whether
we can obtain a good partition of S̄ ∪ S∗. Therefore,
we can sample m points from S̄ ∪ S∗ instead of the
whole dataset to perform the clustering. The perfor-
mance of two-step kernel kmeans depends on the sam-
pling rate; we enhance the sampling rate from m/n to
m/|S∗ ∪ S̄|. As a result, the performance significantly
improves when |S∗ ∪ S̄| � n.

In practice we do not know S∗ or S̄ before solving the
problem. However, both Theorem 2 and experiments
shown in Figure 2 suggest that we have a good guess of
support vectors even at the bottom level. Therefore,
we can use the lower level support vectors as a good
guess of the upper level support vectors. More specif-
ically, after computing ᾱl from level l, we can use its
support vector set S̄l := {i | ᾱli > 0} to run two-step
kernel kmeans for finding the clusters at the (l− 1)-th
level. Using this strategy, we obtain progressively bet-
ter partitioning as we approach the original problem
at the top level.

Early identification of support vectors. We first
run LIBSVM to obtain the final set of support vectors,
and then run DC-SVM with various numbers of clus-

ters 45, 44, . . . , 40 (corresponding to level 5, 4, . . . , 0 for
multilevel DC-SVM). We show the precision and re-
call for the support vectors determined at each level
(ᾱi > 0) in identifying support vectors. Figure 2 shows
that DC-SVM can identify about 90% support vectors
even when using 256 clusters. As discussed in Section
2, Cascade SVM (Graf et al., 2005) is another way to
identify support vectors. However, it is clear from Fig-
ure 2 that Cascade SVM cannot identify support vec-
tors accurately as (1) it does not use kernel kmeans
clustering, and (2) it cannot correct the false nega-
tive error made in lower levels. Figure 2c, 2d, 2g, 2h
further shows that DC-SVM identifies support vectors
more quickly than the shrinking strategy in LIBSVM.

Early prediction based on the l-th level solu-
tion. Computing the exact kernel SVM solution can
be quite time consuming, so it is important to obtain a
good model using limited time and memory. We now
propose a way to efficiently predict the label of un-
known instances using the lower-level models ᾱl. We
will see in the experiments that prediction using ᾱl
from a lower level l already can achieve near-optimal
testing performance.

When the l-th level solution ᾱl is computed, a naive
way to predict a new instance x’s label ỹ is:

ỹ = sign

(
n∑
i=1

yiᾱ
l
iK(x,xi)

)
. (5)

Another way to combine the models trained from k
clusters is to use the probabilistic framework proposed
in the Bayesian Committee Machine (BCM) (Tresp,
2000). However, as we show below, both these meth-
ods do not give good prediction accuracy when the
number of clusters is large.

Instead, we propose the following early prediction
strategy. From Lemma 1, ᾱ is the optimal solution to
the SVM dual problem (1) on the whole dataset with
the approximated kernel K̄ defined in (3). Therefore,
we propose to use the same kernel function K̄ in the
testing phase, which leads to the prediction

k∑
c=1

∑
i∈Vc

yiαiK̄(xi,x) =
∑

i∈Vπ(x)

yiαiK(xi,x), (6)

where π(x) can be computed by finding the nearest
cluster center. Therefore, the testing procedure for
early prediction is: (1) find the nearest cluster that x
belongs to, and then (2) use the model trained by data
within that cluster to compute the decision value.

We compare this method with prediction by (5) and
BCM in Table 1. The results show that our proposed
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Table 2: Comparison on real datasets.
ijcnn1 cifar census covtype webspam kddcup99 mnist8m

C = 32, γ = 2 C = 8, γ = 2−22 C = 512, γ = 2−9 c = 32, γ = 32 C = 8, γ = 32 C = 256, γ = 0.5 C = 1, γ = 2−21

time(s) acc(%) time(s) acc(%) time(s) acc(%) time(s) acc(%) time(s) acc(%) time(s) acc(%) time(s) acc(%)
DC-SVM (early) 12 98.35 1977 87.02 261 94.9 672 96.12 670 99.13 470 92.61 10287 99.85

DC-SVM 41 98.69 16314 89.50 1051 94.2 11414 96.15 10485 99.28 2739 92.59 71823 99.93
LIBSVM 115 98.69 42688 89.50 2920 94.2 83631 96.15 29472 99.28 6580 92.51 298900 99.91

LIBSVM (subsapmle) 6 98.24 2410 85.71 641 93.2 5330 92.46 1267 98.52 1627 91.90 31526 99.21
LaSVM 251 98.57 57204 88.19 3514 93.2 102603 94.39 20342 99.25 6700 92.13 171400 98.95

CascadeSVM 17.1 98.08 6148 86.8 849 93.0 5600 89.51 3515 98.1 1155 91.2 64151 98.3
LLSVM 38 98.23 9745 86.5 1212 92.8 4451 84.21 2853 97.74 3015 91.5 65121 97.64

FastFood 87 95.95 3357 80.3 851 91.6 8550 80.1 5563 96.47 2191 91.6 14917 96.5
SpSVM 20 94.92 21335 85.6 3121 90.4 15113 83.37 6235 95.3 5124 90.5 121563 96.3
LTPU 248 96.64 17418 85.3 1695 92.0 11532 83.25 4005 96.12 5100 92.1 105210 97.82

Table 3: Dataset statistics
dataset Number of Number of dtraining samples testing samples
ijcnn1 49,990 91,701 22
cifar 50,000 10,000 3072

census 159,619 39,904 409
covtype 464,810 116,202 54
webspam 280,000 70,000 254
kddcup99 4,898,431 311,029 125
mnist8m 8,000,000 100,000 784

testing scheme is better in terms of test accuracy. We
also compare average testing time per instance in Ta-
ble 1, and our proposed method is much more efficient
as we only evaluate K(x,xi) for all xi in the same clus-
ter as x, thus reducing the testing time from O(|S|d)
to O(|S|d/k), where S is the set of support vectors.

Refine solution before solving the whole prob-
lem. Before training the final model at the top level
using the whole dataset, we can refine the initializa-
tion by solving the SVM problem induced by all sup-
port vectors at the first level, i.e., level below the final
level. As proved in Theorem 2, the support vectors of
lower level models are likely to be the support vectors
of the whole model, so this will give a more accurate
solution, and only requires us to solve a problem with
O(|S̄(1)|) samples, where S̄(1) is the set of support vec-
tors at the first level. Our final algorithm is given in
Algorithm 1.

5. Experimental Results
We now compare our proposed algorithm with other
SVM solvers. All the experiments are conducted on an
Intel 2.66GHz CPU with 8G RAM. We use 7 bench-
mark datasets as shown in Table 3. The data prepro-
cessing procedure is described in Appendix 7.5.

Competing Methods: We include the follow-
ing exact SVM solvers (LIBSVM, CascadeSVM), ap-
proximate SVM solvers (SpSVM, LLSVM, FastFood,
LTPU), and online SVM (LaSVM) in our comparison:

1. LIBSVM: the implementation in the LIBSVM
library (Chang & Lin, 2011) with a small modifi-
cation to handle SVM without the bias term – we
observe that LIBSVM has similar test accuracy
with/without bias. We also include the results for
using LIBSVM with random 1/5 subsamples on
each dataset in Table 2.

2. Cascade SVM: we implement cascade SVM (Graf

Algorithm 1 Divide and Conquer SVM
Input : Training data {(xi, yi)}ni=1, balancing pa-

rameter C, kernel function.
Output: The SVM dual solution α.
for l = lmax, . . . , 1 do

Set number of clusters in the current level kl = kl;
if l = lmax then

Sample m points {xi1 , . . . ,xim} from the
whole training set;

else
Sample m points {xi1 , . . . ,xim} from
{xi | ᾱ(l+1)

i > 0};
end
Run kernel kmeans on {xi1 , . . . ,xim} to get
cluster centers c1, . . . , ckl ;
Obtain partition V1, . . . ,Vkl for all data points ;
for c = 1, . . . , kl do

Obtain ᾱ(l)
Vc by solving SVM for the data in

the c-th cluster Vc with ᾱ(l+1)
Vc as the initial

point ( ᾱlmax+1
Vc is set to 0);

end
end
Refine solution: Compute α(0) by solving SVM on
{xi | α(1)

i 6= 0} using α(1) as the initial point;
Solve SVM on the whole data using α(0) as the
initial point;

et al., 2005) using LIBSVM as the base solver.
3. SpSVM: Greedy basis selection for nonlinear SVM

(Keerthi et al., 2006).
4. LLSVM: improved Nyström method for nonlinear

SVM by (Wang et al., 2011).
5. FastFood: use random Fourier features to approx-

imate the kernel function (Le et al., 2013). We
solve the resulting linear SVM problem by the
dual coordinate descent solver in LIBLINEAR.

6. LTPU: Locally-Tuned Processing Units proposed
in (Moody & Darken, 1989). We set γ equal to
the best parameter for Gaussian kernel SVM. The
linear weights are obtained by LIBLINEAR.

7. LaSVM: An online algorithm proposed in (Bordes
et al., 2005).

8. DC-SVM: our proposed method for solving the
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(a) webspam objective function (b) covtype objective function (c) mnist8m objective function

(d) webspam testing accuracy (e) covtype testing accuracy (f) mnist8m testing accuracy

Figure 3: Comparison of algorithms using the RBF kernel. Each point for DC-SVM indicates the result when stopping at
different levels; each point for LIBSVM and CascadeSVM indicates different stopping conditions; each point for LaSVM
indicates various number of passes through data points; each point for LTPU and LLSVM, and FastFood indicates different
sample sizes; and each point for SpSVM indicates different number of basis vectors. Methods with testing performance
below the bottom of y-axis are not shown in the figures.

exact SVM problem. We use the modified LIB-
SVM to solve subproblems.

9. DC-SVM (early): our proposed method with the
early stopping approach described in Section 4
to get the model before solving the entire kernel
SVM optimization problem.

(Zhang et al., 2012) reported that LLSVM outper-
forms Core Vector Machines (Tsang et al., 2005)
and the bundle method (Smola et al., 2007), so
we omit those comparisons here. We apply LIB-
SVM/LIBLINEAR as the default solver for DC-SVM,
FastFood, Cascade SVM, LLSVM and LTPU, so the
shrinking heuristic is automatically used in the exper-
iments.

Parameter Setting: We first consider the RBF
kernel K(xi,xj) = exp(−γ‖xi − xj‖22). We chose
the balancing parameter C and kernel parameter γ
by 5-fold cross validation on a grid of points: C =
[2−10, 2−9, . . . , 210] and γ = [2−10, . . . , 210] for ijcnn1,
census, covtype, webspam, and kddcup99. The av-
erage distance between samples for un-scaled image
datasets mnist8m and cifar is much larger than other
datasets, so we test them on smaller γ’s: γ =
[2−30, 2−29, . . . , 2−10]. Regarding the parameters for
DC-SVM, we use 5 levels (lmax = 4) and k = 4, so
the five levels have 1, 4, 16, 64 and 256 clusters respec-
tively. For DC-SVM (early), we stop at the level with
64 clusters. The following are parameter settings for
other methods in Table 2: the rank is set to be 3000
in LLSVM; number of Fourier features is 3000 in Fast-

food1; number of clusters is 3000 in LTPU; number
of basis vectors is 200 in SpSVM; the tolerance in the
stopping condition for LIBSVM and DC-SVM is set
to 10−3 (the default setting of LIBSVM); for LaSVM
we set the number of passes to be 1; for CascadeSVM
we output the results after the first round.

Experimental Results with RBF kernel: Table
2 presents time taken and test accuracies. Experimen-
tal results show that the early prediction approach in
DC-SVM achieves near-optimal test performance. By
going to the top level (handling the whole problem),
DC-SVM achieves better test performance but needs
more time. Table 2 only gives the comparison on one
setting; it is natural to ask, for example, about the
performance of LIBSVM with a looser stopping con-
dition, or Fastfood with varied number of Fourier fea-
tures. Therefore, for each algorithm we change the pa-
rameter settings and present the detailed experimental
results in Figure 3 and Figure 5 in Appendix.

Figure 3 shows convergence results with time – in 3a,
3b, 3c the relative error on the y-axis is defined as
(f(α)−f(α∗))/|f(α∗)|, where α∗ is computed by run-
ning LIBSVM with 10−8 accuracy. Online and approx-
imate solvers are not included in this comparison as
they do not solve the exact kernel SVM problem. We
observe that DC-SVM achieves faster convergence in
objective function compared with the state-of-the-art

1In Fastfood we control the number of blocks so that
number of Fourier features is close to 3000 for each dataset.
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(a) webspam objective func-
tion

(b) webspam testing accuracy (c) covtype objective function (d) covtype testing accuracy

Figure 4: Comparison of algorithms on real datasets using polynomial kernel.

Table 4: Total time for DC-SVM, DC-SVM (early) and
LIBSVM on the grid of parameters C, γ shown in Tables
7, 8, 9, 10.

dataset DC-SVM DC-SVM LIBSVM(early)
ijcnn1 16.4 mins 2.3 hours 6.4 hours

webspam 5.6 hours 4.3 days 14.3 days
covtype 10.3 hours 4.8 days 36.7 days
census 1.5 hours 1.4 days 5.3 days

exact SVM solvers. Moreover, DC-SVM is also able to
achieve superior test accuracy in lesser training time
as compared with approximate solvers. Figure 3d, 3e,
3f compare the efficiency in achieving different test-
ing accuracies. We can see that DC-SVM consistently
achieves more than 50 fold speedup while achieving
the same test accuracy with LIBSVM.

Experimental Results with varying values of
C, γ: As shown in Theorem 1 the quality of approx-
imation depends on D(π), which is strongly related
to the kernel parameters. In the RBF kernel, when γ
is large, a large portion of kernel entries will be close
to 0, and D(π) will be small so that ᾱ is a good ini-
tial point for the top level. On the other hand, when
γ is small, ᾱ may not be close to the optimal solu-
tion. To test the performance of DC-SVM under differ-
ent parameters, we conduct the comparison on a wide
range of parameters (C = [2−10, 2−6, 21, 26, 210], γ =
[2−10, 2−6, 21, 26, 210]). The results on the ijcnn1, cov-
type, webspam and census datasets are shown in Ta-
bles 7, 8, 9, 10 (in the appendix). We observe that
even when γ is small, DC-SVM is still 1-2 times faster
than LIBSVM: among all the 100 settings, DC-SVM
is faster on 96/100 settings. The reason is that even
when ᾱ is not so close to α, using ᾱ as the initial
point is still better than initialization with a random
or zero vector. On the other hand, DC-SVM (early) is
extremely fast, and achieves almost the same or even
better accuracy when γ is small (as it uses an approx-
imated kernel). In Figure 6, 8, 7, 9 we plot the perfor-
mance of DC-SVM and LIBSVM under various C and
γ values, the results indicate that DC-SVM (early)
is more robust to parameters. Note that DC-SVM
(early) can be viewed as solving SVM with a different
kernel K̄, which focuses on “within-cluster” informa-
tion, and there is no reason to believe that the global
kernel K always yields better test accurracy than K̄.
The accumulated runtimes are shown in Table 4.

Experimental Results with polynomial kernel:
To show that DC-SVM is efficient for different types
of kernels, we further conduct experiments on covtype
and webspam datasets for the degree-3 polynomial ker-
nel K(xi,xj) = (η + γxTi xj)

3. For the polynomial
kernel, the parameters chosen by cross validation are
C = 2, γ = 1 for covtype, and C = 8, γ = 16 for
webspam. We set η = 0, which is the default setting
in LIBSVM. Figures 4a and 4c compare the train-
ing speed of DC-SVM and LIBSVM for reducing the
objective function value and Figures 4b and 4d show
the testing accuracy compared with LIBSVM and
LaSVM. Since LLSVM, FastFood and LPTU are de-
veloped for shift-invariant kernels, we do not include
them in our comparison. We can see that when using
the polynomial kernel, our algorithm is more than 100
times faster than LIBSVM and LaSVM. One main
reason for such large improvement is that it is hard
for LIBSVM and LaSVM to identify the right set of
support vectors when using the polynomial kernel. As
shown in Figure 2, LIBSVM cannot identify 20% of
the support vectors in 105 seconds, while DC-SVM has
a very good guess of the support vectors even at the
bottom level, where number of clusters is 256. In Ap-
pendix 7.6 we show that the clustering step only takes
a small portion of the time taken by DC-SVM.

6. Conclusions
In this paper, we have proposed a novel divide and con-
quer algorithm for solving kernel SVMs (DC-SVM).
Our algorithm divides the problem into smaller sub-
problems that can be solved independently and effi-
ciently. We show that the subproblem solutions are
close to that of the original problem, which moti-
vates us to “glue” solutions from subproblems in or-
der to efficiently solve the original kernel SVM prob-
lem. Using this, we also incorporate an early predic-
tion strategy into our algorithm. We report exten-
sive experiments to demonstrate that DC-SVM sig-
nificantly outperforms state-of-the-art exact and ap-
proximate solvers for nonlinear kernel SVM on large-
scale datasets. The code for DC-SVM is available at
http://www.cs.utexas.edu/~cjhsieh/dcsvm.
Acknowledgements
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7. Appendix

7.1. Proof of Lemma 1

Proof. When using K̄ defined in (3), the matrix Q in
(1) becomes Q̄ as given below:

Q̄i,j =

{
yiyjK(xi,xj) if π(xi) = π(xj)
0 if π(xi) 6= π(xj).

(7)

Therefore, the quadratic term in (1) can be decom-
posed into

αT Q̄α =
k∑
c=1

αT(c)Q(c,c)α(c).

The constraints and linear term in (1) are also decom-
posable, so the subproblems are independent, and con-
catenation of their optimal solutions, ᾱ, is the optimal
solution for (1) when K is replaced by K̄.

7.2. Proof of Theorem 1

Proof. We use f̄(α) to denote the objective function
of (1) with kernel K̄. By Lemma 1, ᾱ is the minimizer
of (1) with K replaced by K̄, thus f̄(ᾱ) ≤ f̄(α∗). By
the definition of f̄(α∗) we can easily show

f̄(α∗) = f(α∗)− 1
2

∑
i,j:π(xi)6=π(xj)

α∗iα
∗
jyiyjK(xi,xj)

(8)
Similarly, we have

f̄(ᾱ) = f(ᾱ)− 1
2

∑
i,j:π(xi)6=π(xj)

ᾱiᾱjyiyjK(xi,xj).

(9)
Combining with f̄(ᾱ) ≤ f̄(α∗) we have

f(ᾱ) ≤ f̄(α∗) +
1
2

∑
i,j:π(xi) 6=π(xj)

ᾱiᾱjyiyjK(xi,xj),

= f(α∗) +
1
2

∑
i,j:π(xi)6=π(xj)

(ᾱiᾱj − α∗iα∗j )yiyjK(xi,xj)

(10)

≤ f(α∗)+
1
2
C2D(π), since 0 ≤ ᾱi, α∗i ≤ C for all i.

Also, since α∗ is the optimal solution of (1) and ᾱ is a
feasible solution, f(α∗) < f(ᾱ), thus proving the first
part of the theorem.

Let σn be the smallest singular value of the positive
definite kernel matrix K. Since Q = diag(y)Kdiag(y)
and yi ∈ {1,−1} for all i, Q and K have identical
singular values. Suppose we write ᾱ = α∗ + ∆α,

f(ᾱ) = f(α∗) + (α∗)TQ∆α+
1
2

(∆α)TQ∆α−eT∆α.

(11)

The optimality condition for (1) is

∇if(α∗)


= 0 if 0 < α∗i < C,

≥ 0 if α∗i = 0,
≤ 0 if α∗i = C,

(12)

where ∇f(α∗) = Qα∗ − e. Since ᾱ is a feasible solu-
tion, it is easy to see that (∆α)i ≥ 0 if α∗i = 0, and
(∆α)i ≤ 0 if α∗i = C. Thus,

(∆α)T (Qα∗ − e) =
n∑
i=1

(∆α)i((Qα∗)i − 1) ≥ 0.

Combining with (11) we have f(ᾱ) ≥ f(α∗) +
1
2∆αTQ∆α ≥ f(α∗) + 1

2σn‖∆α‖
2
2. Since we already

know that f(ᾱ) ≤ f(α∗) + 1
2C

2D(π), this implies
‖α∗ − ᾱ‖22 ≤ C2D(π)/σn.

7.3. Proof of Theorem 2

Proof. Let ∆Q = Q− Q̄ and ∆α = α∗− ᾱ. From the
optimality condition for (1) (see (12)), we know that
α∗i = 0 if (Qα∗)i > 1. Since Qα∗ = (Q̄ + ∆Q)(ᾱ +
∆α), we see that

(Qα∗)i
= (Q̄ᾱ)i + (∆Qᾱ)i + (Q∆α)i.

= (Q̄ᾱ)i +
∑

j:π(xi)6=π(xj)

yiyjK(xi,xj)ᾱj

+
∑
j

yiyjK(xi,xj)(∆α)j

≥ (Q̄ᾱ)i − CD(π)−Kmax‖∆α‖1
≥ (Q̄ᾱ)i − CD(π)

−
√
nKmaxC

√
D(π)/

√
σn (by Theorem 1)

= (Q̄ᾱ)i − CD(π)

(
1 +

√
nKmax√
σnD(π)

)
.

The condition stated in the theorem implies (Q̄ᾱ)i >
1+CD(π)(1+

√
nKmax√
σnD(π)

), which implies (Qα∗)i−1 > 0,

so from the optimality condition (12), α∗i = 0.

7.4. Proof of Theorem 3

Proof. Similar to the proof in Theorem 1, we use f̄(α)
to denote the objective function of (1) with kernel K̄.
Combine (10) with the fact that α∗i = 0 ∀i /∈ S∗ and
ᾱi = 0 ∀i /∈ S̄, we have

f̄(α∗) ≤f(α∗)− 1
2

∑
i,j:π(xi)6=π(xj) and i,j∈S∗

(ᾱiᾱj − α∗iα∗j )yiyjK(xi,xj)

≤ f(α∗) +
1
2
C2D({xi}i∈S∗∪S̄ , π).

The second part of the proof is exactly the same as
the second part of Theorem 1.
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7.5. Data preprocessing procedure

Here we describe our data preprocessing proce-
dure in detail. The cifar dataset can be down-
loaded from http://www.cs.toronto.edu/~kriz/
cifar.html, and other datasets can be down-
loaded from http://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets or the UCI data repository.
We use the raw data without scaling for two image
datasets cifar and mnist8m, while features in all the
other datasets are linearly scaled to [0, 1]. mnist8m is
a digital recognition dataset with 10 numbers, so we
follow the procedure in (Zhang et al., 2012) to trans-
form it into a binary classification problem by classi-
fying round digits and non-round digits. Similarly, we
transform cifar into a binary classification problem by
classifying animals and non-animals. We use a ran-
dom 80%-20% split for covtype, webspam, kddcup99, a
random 8M/0.1M split for mnist8m (used in the origi-
nal paper (Loosli et al., 2007)), and the original train-
ing/testing split for ijcnn1 and cifar.

7.6. Clustering time vs Training time

Our DC-SVM algorithm is composed of two important
parts: clustering and SVM training. In Table 5 we
list the time taken by each part; we can see that the
clustering time is almost constant at each level, while
the rest of the training time keeps increasing.

Table 5: Run time (in seconds) for DC-SVM on differ-
ent levels (covtype dataset). We can see the clustering
time is only a small portion compared with the total
training time.

Level 4 3 2 1 0
Clustering 43.2s 42.5s 40.8s 38.1s 36.5s

Training 159.4s 439.7s 1422.8s 3135.5s 7614.0s

7.7. Comparison with Bagging Approach

Boostrap aggregating (bagging) is a machine learning
approach designed to improve the stability of machine
learning algorithms. Given a training set with n sam-
ples, bagging generates k training sets, each by sam-
pling n̄ data points uniformly from the whole dataset.
Considering the case that n̄ = n/k, then the bagging
algorithms is similar to our DCSVM (early) approach,
but with the following two differences:

• Data partition: bagging uses random sampling
while DCSVM (early) uses clustering.

• Prediction: bagging uses voting for classification
task, while DCSVM (early) using the nearest
model for prediction.

Under the same k, both DCSVM (early) and bag-
ging trains the k subsets independently, so the training

times are identical for both algorithms. We compare
the classification performance under various values of
k in Table 6 on ijcnn1, covtype, and webspam datasets.
The results show that DCSVM (early) is significantly
better than bagging in terms of prediction accuracy.
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Table 6: Prediction accuracy of DC-SVM (early) and bagging under various values of k. We can see that DCSVM
(early) is significantly better than bagging.

k ijcnn1 covtype webspam
DCSVM (early) Bagging DCSVM (early) Bagging DCSVM (early) Bagging

256 98.16% 91.81% 96.12% 83.41% 99.04% 95.20%
64 98.35% 95.44% 96.15% 88.54% 99.23% 97.13%
16 98.46% 98.24% 96.16% 91.81% 99.29% 98.28%

(a) kddcup99 objective function (b) cifar objective function

(c) kddcup99 testing accuracy (d) cifar testing accuracy

Figure 5: Additional comparison of algorithms using RBF kernel on the kddcup99 and cifar datasets.
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Table 7: Comparison of DC-SVM, DC-SVM (early), and LIBSVM on ijcnn1 with various parameters C, γ.
DC-SVM (early) is always 10 times faster than LIBSVM achieves similar testing accuracy. DC-SVM is faster
than LIBSVM for almost every setting.

dataset C γ
DC-SVM (early) DC-SVM LIBSVM LaSVM
acc(%) time(s) acc(%) time(s) acc(%) time(s) acc(%) time(s)

ijcnn1 2−10 2−10 90.5 12.8 90.5 120.1 90.5 130.0 90.5 492
ijcnn1 2−10 2−6 90.5 12.8 90.5 203.1 90.5 492.5 90.5 526
ijcnn1 2−10 21 90.5 50.4 90.5 524.2 90.5 1121.3 90.5 610
ijcnn1 2−10 26 93.7 44.0 93.7 400.2 93.7 1706.5 92.4 1139
ijcnn1 2−10 210 97.1 39.1 97.1 451.3 97.1 1214.7 95.7 1711
ijcnn1 2−6 2−10 90.5 7.2 90.5 84.7 90.5 252.7 90.5 531
ijcnn1 2−6 2−6 90.5 7.6 90.5 161.2 90.5 401.0 90.5 519
ijcnn1 2−6 21 90.7 10.8 90.8 183.6 90.8 553.2 90.5 577
ijcnn1 2−6 26 93.9 49.2 93.9 416.1 93.9 1645.3 91.3 1213
ijcnn1 2−6 210 97.1 40.6 97.1 477.3 97.1 1100.7 95.5 1744
ijcnn1 21 2−10 90.5 14.0 90.5 305.6 90.5 424.9 90.5 511
ijcnn1 21 2−6 91.8 12.6 92.0 254.6 92.0 367.1 90.8 489
ijcnn1 21 21 98.8 7.0 98.8 43.5 98.8 111.6 95.4 227
ijcnn1 21 26 98.3 34.6 98.3 584.5 98.3 1776.5 97.8 1085
ijcnn1 21 210 97.2 94.0 97.2 523.1 97.2 1955.0 96.1 1691
ijcnn1 26 2−10 92.5 27.8 91.9 276.3 91.9 331.8 90.5 442
ijcnn1 26 2−6 94.8 19.9 95.6 313.7 95.6 219.5 92.3 435
ijcnn1 26 21 98.3 6.4 98.3 75.3 98.3 59.8 97.5 222
ijcnn1 26 26 98.1 48.3 98.1 384.5 98.1 987.7 97.1 1144
ijcnn1 26 210 97.2 51.9 97.2 530.7 97.2 1340.9 95.4 1022
ijcnn1 210 2−10 94.4 146.5 92.5 606.1 92.5 1586.6 91.7 401
ijcnn1 210 2−6 97.3 124.3 97.6 553.6 97.6 1152.2 96.5 1075
ijcnn1 210 21 97.5 10.6 97.5 50.8 97.5 139.3 97.1 605
ijcnn1 210 26 98.2 42.5 98.2 338.3 98.2 1629.3 97.1 890
ijcnn1 210 210 97.2 66.4 97.2 309.6 97.2 2398.3 95.4 909

(a) ijcnn1 C = 2−10 (b) ijcnn1 C = 21 (c) ijcnn1 C = 210

(d) ijcnn1 γ = 2−10 (e) ijcnn1 γ = 21 (f) ijcnn1 γ = 210

Figure 6: Robustness to the parameters C, γ on ijcnn1 dataset.
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Table 8: Comparison of DC-SVM, DC-SVM (early) and LIBSVM on webspam with various parameters C, γ.
DC-SVM (early) is always more than 30 times faster than LIBSVM and has comparable or better test accuracy;
DC-SVM is faster than LIBSVM under all settings.

dataset C γ
DC-SVM (early) DC-SVM LIBSVM
acc(%) time(s) acc(%) time(s) acc(%) time(s)

webspam 2−10 2−10 86 806 61 26324 61 45984
webspam 2−10 2−6 83 935 61 22569 61 53569
webspam 2−10 21 87.1 886 91.1 10835 91.1 34226
webspam 2−10 26 93.7 1060 92.6 6496 92.6 34558
webspam 2−10 210 98.3 1898 98.5 7410 98.5 55574
webspam 2−6 2−10 83 793 68 24542 68 44153
webspam 2−6 2−6 84 762 69 33498 69 63891
webspam 2−6 21 93.3 599 93.5 15098 93.1 34226
webspam 2−6 26 96.4 704 96.4 7048 96.4 48571
webspam 2−6 210 98.3 1277 98.6 6140 98.6 45122
webspam 21 2−10 87 688 78 18741 78 48512
webspam 21 2−6 93 645 81 10481 81 30106
webspam 21 21 98.4 420 99.0 9157 99.0 35151
webspam 21 26 98.9 466 98.9 5104 98.9 28415
webspam 21 210 98.3 853 98.7 4490 98.7 28891
webspam 26 2−10 93 759 80 24849 80 64121
webspam 26 2−6 97 602 83 21898 83 55414
webspam 26 21 98.8 406 99.1 8051 99.1 40510
webspam 26 26 99.0 465 98.9 6140 98.9 35510
webspam 26 210 98.3 917 98.7 4510 98.7 34121
webspam 210 2−10 97 1350 82 31387 82 81592
webspam 210 2−6 98 1127 86 34432 86 82581
webspam 210 21 98.8 463 98.8 10433 98.8 58512
webspam 210 26 99.0 455 99.0 15037 99.0 75121
webspam 210 210 98.3 831 98.7 7150 98.7 59126

(a) covtype C = 2−10 (b) covtype C = 21 (c) covtype C = 210

(d) covtype γ = 2−10 (e) covtype γ = 21 (f) covtype γ = 210

Figure 7: Robustness to the parameters C, γ on covtype dataset.
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Table 9: Comparison of DC-SVM, DC-SVM (early) and LIBSVM on covtype with various parameters C, γ. DC-
SVM (early) is always more than 50 times faster than LIBSVM with similar test accuracy; DC-SVM is faster
than LIBSVM under all settings.

dataset C γ
DC-SVM (early) DC-SVM LIBSVM
acc(%) time(s) acc(%) time(s) acc(%) time(s)

covtype 2−10 2−10 68.9 736 51.5 24791 51.5 48858
covtype 2−10 2−6 69.0 507 62.7 17189 62.7 62668
covtype 2−10 21 70.9 624 70.8 12997 70.8 88160
covtype 2−10 26 86.7 1351 86.7 13985 86.7 85111
covtype 2−10 210 95.5 1173 95.6 9480 95.6 54282
covtype 2−6 2−10 69.3 373 62.7 10387 62.7 90774
covtype 2−6 2−6 70.0 625 68.6 14398 68.6 76508
covtype 2−6 21 78.0 346 79.5 5312 79.5 77591
covtype 2−6 26 87.9 895 87.9 8886 87.9 120512
covtype 2−6 210 95.6 1238 95.4 7581 95.6 123396
covtype 21 2−10 70.7 433 70.4 25120 70.4 88725
covtype 21 2−6 77.9 1000 77.1 18452 77.1 69101
covtype 21 21 86.5 421 84.1 11411 84.1 50890
covtype 21 26 95.6 299 95.3 8714 95.3 117123
covtype 21 210 95.7 882 96.1 5349 >300000
covtype 26 2−10 79.3 1360 81.8 34181 81.8 105855
covtype 26 2−6 81.3 2314 84.3 24191 84.3 108552
covtype 26 21 90.2 957 91.3 14099 91.3 75596
covtype 26 26 96.3 356 96.2 9510 96.2 92951
covtype 26 210 95.7 961 95.8 7483 95.8 288567
covtype 210 2−10 80.7 5979 52.5 50149 52.5 235183
covtype 210 2−6 82.3 8306 57.1 43488 > 300000
covtype 210 21 92.4 4553 92.7 19481 92.7 254130
covtype 210 26 95.7 368 95.9 12615 95.9 93231
covtype 210 210 95.7 1094 95.6 10432 95.6 169918

(a) webspam C = 2−10 (b) webspam C = 21 (c) webspam C = 210

(d) webspam γ = 2−10 (e) webspam γ = 21 (f) webspam γ = 210

Figure 8: Robustness to the parameters C, γ on webspam dataset.
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Table 10: Comparison of DC-SVM, DC-SVM (early) and LIBSVM on census with various parameters C, γ. DC-
SVM (early) is always more than 50 times faster than LIBSVM with similar test accuracy; DC-SVM is faster
than LIBSVM under all settings.

dataset C γ
DC-SVM (early) DC-SVM LIBSVM
acc(%) time(s) acc(%) time(s) acc(%) time(s)

census 2−10 2−10 93.80 161 93.80 2153 93.80 3061
census 2−10 2−6 93.80 166 93.80 3316 93.80 5357
census 2−10 21 93.61 202 93.68 4215 93.66 11947
census 2−10 26 91.96 228 92.08 5104 92.08 12693
census 2−10 210 62.00 195 56.32 4951 56.31 13604
census 2−6 2−10 93.80 145 93.80 3912 93.80 6693
census 2−6 2−6 93.80 149 93.80 3951 93.80 6568
census 2−6 21 93.63 217 93.66 4145 93.66 11945
census 2−6 26 91.97 230 92.10 4080 92.10 9404
census 2−6 210 62.58 189 56.32 3069 56.31 9078
census 21 2−10 93.80 148 93.95 2057 93.95 1908
census 21 2−6 94.55 139 94.82 2018 94.82 1998
census 21 21 93.27 179 93.36 4031 93.36 37023
census 21 26 91.96 220 92.06 6148 92.06 33058
census 21 210 62.78 184 56.31 6541 56.31 35031
census 26 2−10 94.66 193 94.66 3712 94.69 3712
census 26 2−6 94.76 164 95.21 2015 95.21 3725
census 26 21 93.10 229 93.15 6814 93.15 32993
census 26 26 91.77 243 91.88 9158 91.88 34035
census 26 210 62.18 210 56.25 9514 56.25 36910
census 210 2−10 94.83 538 94.83 2751 94.85 8729
census 210 2−6 93.89 315 92.94 3548 92.94 12735
census 210 21 92.89 342 92.92 9105 92.93 52441
census 210 26 91.64 244 91.81 7519 91.81 34350
census 210 210 61.14 206 56.25 5917 56.23 34906

(a) census C = 2−10 (b) census C = 21 (c) census C = 210

(d) census γ = 2−10 (e) census γ = 21 (f) census γ = 210

Figure 9: Robustness to the parameters C, γ on census dataset.


