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Abstract

We describe a novel approach to optimizing
matrix problems involving nuclear norm reg-
ularization and apply it to the matrix com-
pletion problem. We combine methods from
non-smooth and smooth optimization. At
each step we use the proximal gradient to
select an active subspace. We then find a
smooth, convex relaxation of the smaller sub-
space problems and solve these using sec-
ond order methods. We apply our meth-
ods to matrix completion problems includ-
ing Netflix dataset, and show that they are
more than 6 times faster than state-of-the-
art nuclear norm solvers. Also, this is the
first paper to scale nuclear norm solvers to
the Yahoo-Music dataset, and the first time
in the literature that the efficiency of nuclear
norm solvers can be compared and even com-
pete with non-convex solvers like Alternating
Least Squares (ALS).

1. Introduction

We solve the nuclear norm optimization problem:

X = argmin
X∈Rm×n

F (X) = argmin
X∈Rm×n

f(X) + λ‖X‖∗, (1)

where f(X) is a twice differentiable convex function,
λ > 0 is the regularization parameter, and ‖X‖∗ =∑m
i=1 σi(X) = trace(

√
X>X) is the nuclear norm (also

known as the trace norm). The nuclear norm regular-
ization promotes a low rank solution, which is a key
idea that can be applied to many applications such as
recommender systems (Candès & Recht, 2009), dimen-
sion reduction in multivariate regression (Yuan et al.,
2007), multi-task learning (Argryiou et al., 2008), and
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multi-label learning (Cabral et al., 2011). The nuclear
norm regularization is an `1 regularization of the sin-
gular values of X, and it therefore promotes a low rank
solution. It is proved that the underlying low rank so-
lution can be recovered by solving (1) under certain
conditions (Candés & Tao, 2009; Recht et al., 2010).

There has been much work on developing efficient
nuclear norm minimization solvers (Ji & Ye, 2009;
Mazumder et al., 2010; Jaggi & Sulovsky, 2010; Avron
et al., 2012), but most of them still fail to solve large-
scale problems. (Avron et al., 2012) reports that on
the Netflix dataset, one of the state-of-the-art Stochas-
tic Sub-Gradient Descent (SSGD) algorithms cannot
achieve 0.95 test Root Mean Square Error (RMSE) in
one day, while other non-convex methods (ALS) meth-
ods can achieve 0.93 test RMSE in a couple of hours.
Similar scalability problems also arise in multi-task
learning (Dudik et al., 2012) and multivariate regres-
sion (Giraud, 2011). This scalability deficiency makes
nuclear norm regularization less applicable for large-
scale real world problems, despite its strong theoretical
guarantees.

In contrast, recently `1-regularized solvers have been
well-developed and scaled to ultra-large-scale problems
with a trillion parameters (Hsieh et al., 2013). The key
technique used in the fastest `1-minimization solvers is
to detect a small subset of active variables and focus on
optimizing these (Olsen et al., 2012; Hsieh et al., 2011;
Yuan et al., 2012). Since the nuclear norm is equiv-
alent to the `1 norm on singular values, it is natural
to ask the following question: can we identify a small
active subspace and efficiently minimize the reduced-
sized nuclear norm minimization problem?

In this paper, we propose two new methods to solve
large-scale nuclear norm regularized problems using
active subspace selection. Our methods alternate be-
tween two phases: firstly we identify the active row
and column subspaces; secondly, within the subspace,
the problem can be reduced to a smaller k× k nuclear
norm minimization problem. We then describe two
efficient solvers to solve the reduced problem, alter-
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nating minimization method and cone projection New-
ton descent method, to minimize the sub-problem. We
show that the active subspace will never change in a
neighborhood of the global minimum, and in practice
the subspace converges in very few iterations (10 in
our experiments), thus our methods are extremely fast
compared to other state-of-the-art methods.

Applications. The nuclear norm minimization can
be applied to many applications where a low rank solu-
tion is preferred, and each application uses a different
loss function f(X) in (1). For example:

• Matrix Completion: Given a partially observed
low rank m×n matrix A with observed entries in
Ω, we can recover A by solving (1) with

f(X) =
1
2
‖ΠΩ(X)−ΠΩ(A)‖2F , (2)

where (ΠΩ(X))ij = Xij for all (i, j) ∈ Ω and 0
otherwise.

• Multivariate Regression: Given a data matrix
A ∈ Rl×m where each row of A is a data point,
and a label matrix B ∈ Rl×n where each row is n
labels to a input data, we compute the model X
by solving (1) with

f(X) =
1
2
‖AX −B‖2F . (3)

A low rank solution of X is preferred based on the
discussion of (Yuan et al., 2007) for multivariate
regression and (Amit et al., 2007) for multi-class
learning.

In the experiments we will show the effectiveness of
our algorithm on the two problems described above,
and our method can also be extended to solve other
nuclear norm regularized problems, including multi-
task learning and clustering with missing labels.

2. Background Material

In this section we give some interesting background
information related to nuclear norm minimization.

IfX has the singular value decompositionX = UΣV >,
then we define the shrinkage operator by

Sλ(X) = U(Σ− λI)+V
>, (4)

where the operation a+ = max{0, a} is applied ele-
mentwise to the matrix. Also, we denote the pseudo-
inverse of X by X†.

It is worthwhile noting that the regression problem (3)
with a nuclear norm regularizer can be solved analyt-
ically when AA> and BB> commute.
Theorem 1 (Exact Solvability). Let A ∈ Rm×m,
B,X ∈ Rm×n then if AA> and BB> commutes
the minimum of F (X) is achieved for X∗ =
(ATA)†Sλ(A>B).

The theorem can be proved by verifying that F (X) is
convex and that 0 is a subgradient at X∗. A similar
result is shown in Theorem 4 of (Yu & Schuurmans,
2011). A particularly important case of Theorem 1
is A = I when the solution simplifies to X∗ = Sλ(B),
and this special case has been proved and used in many
previous papers (Cai et al., 2010; Mazumder et al.,
2010).

We now describe two first order methods that converge
to the global minimum of the matrix completion and
regression problems respectively.

Theorem 2. The iteration Xk+1 = Sλ(ΠΩ(A) +
Π⊥Ω(Xk)), where Π⊥Ω(Xk) = Xk − ΠΩ(Xk) converge
to the global minimum of (2).

See the Appendix 6.1 in the supplement for a sketch
of the proof.

Theorem 3. The iteration Xk+1 = Sλ/c(Xk −
1
c∇f(Xk)) converge to the global minimum of (3) if
cI � A>A = f ′′(X).

See the Appendix 6.2 in the supplement for a sketch
of the proof. It should be noted that the iteration in
Theorem 2 is a special case of Theorem 3 with c = 1.
The vector Sλ/c(X − 1

cf
′(X)) is the proximal gradient

(Toh & Yun, 2010; Ji & Ye, 2009) and we shall make
use of it later when we explore more efficient methods.

3. Our Proposed Method

Our proposed method iterates between two phases. At
each iteration, we identify the active row and column
subspaces UA, VA using the power method. Within
the active subspace, the original problem can be re-
duced to a k × k nuclear norm minimization problem
with k � min(m,n). We then propose efficient ways
to minimize the sub-problem. Our framework can be
summarized in Algorithm 1.

Algorithm 1: Our proposed framework
Input : regularization parameter λ, initial

X = UΣV >
Output: The optimal solution X∗ ∈ Rm×n

1 for iter = 1, 2, . . . do
2 [Ū , Σ̄, V̄ ]← ApproxSVD(X −∇f(X)) ;
3 UG ← {ūi | Σ̄ii > λ}, VG ← {v̄i | Σ̄ii > λ} ;
4 UA ← QR([UG, U ]), VA ← QR([VG, V ]);
5 S ← argminS f(UASV >A ) + λ‖S‖∗ ;
6 [US ,Σ, VS ]← ThinSVD(S);
7 U ← UAUS , V ← VAVS , X ← UΣV > ;
8 end
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3.1. Active subspace selection

In this section we introduce our active subspace selec-
tion strategy. Note that any matrix X ∈ Rm×n can be
represented as a sum of rank one matrices:

X =
∑
ij

σijuiv>j , (5)

when span{ui}i = Rm and span{vj}j = Rn. Since
the solution is low rank, σ will be sparse. Therefore,
the goal of the active set selection phase is to elimi-
nate rank-one subspaces which are likely to have zero
weights in the final solution, and then focus on the re-
maining rank one subspaces, which we call the active
subspace.

If the SVD of X is UΣV , it is shown in (Watson, 1992)
that the sub-differential of ‖X‖∗ is

∂‖X‖∗ = {UV >+W : U>W = 0,WV = 0, ‖W‖2 ≤ 1},

Assume U⊥, V ⊥ are orthogonal subspace complements
to U, V , then the sub-differential with respect to σij
can be written

∂σijF (X) ∈ [u>i ∇f(X)vj − λ,u>i ∇f(X)vj + λ] (6)

if ui ∈ U⊥ or vj ∈ V ⊥ (equivalently, u>i Xvj = 0).
We can easily see that |u>i ∇f(X)vj | ≤ λ if and only
if 0 is in the sub-differential. If we want to update X
by a rank one factor σuv>, the optimal step size is

σ∗ = argmin
σ

f(X + σuv>) + λ‖X + σuv>‖∗,

and it will have the solution σ∗ = 0 whenever 0 is in
the sub-differential set. We therefore define the fixed
rank one subspace as

F = {uvT | u>Xv = 0 and |u>∇f(X)v| ≤ λ}.

Therefore, all the rank one subspaces in F have zero
weight in the current solution X, and is not likely to
change from zero to nonzero. However, fixed subspace
elements can still be activated in the next iteration
of our algorithm, when we compute a new proximal
gradient. We define the active rank one subspace as

A ≡ {uv> | u>Xv 6= 0 or |u>∇f(X)v| > λ},

which is the complementary set of F . We focus on
updating X on active rank one subspaces and fix the
weights for all the fixed subspaces to be zero. In the
following we propose a simple way to eliminate the
fixed subspaces:
Theorem 4. Assume X = UΣV > is the reduced SVD
of X (U ∈ Rm×k, V ∈ Rn×k and Σ has positive
diagonal values), and Sλ(X − ∇f(X)) = UGΣGV >G
(also a reduced SVD). Let UA be an orthonormal ba-
sis of span(U,UG), VA be an orthonormal basis of

span(V, VG), and U⊥A , V
⊥
A are orthonormal comple-

ments to UA, VA, then

{uv> | u ∈ UA⊥ or v ∈ VA⊥} ⊂ F .

The proof is in Appendix 6.3. Given UA, VA, we can
form the column basis Û = [UA, U⊥A ] and row ba-
sis V̂ = [VA, V ⊥A ], and then re-parameterize X by
X = ÛY V̂ > where Y ∈ Rm×n. Now solving the origi-
nal problem is equivalent to solving minY F (UY V >).
Assume both UA and VA have k columns, then by The-
orem 4 only the top k × k submatrix of Y belong to
the active set and all other elements of Y belong to
the fixed set. So after eliminating the fixed set, the
problem can be reduced to the following sub-problem:

argmin
S∈Rk×k

F (UASV >A ) = f(UASV >A )+λ‖UASV >A ‖∗, (7)

where S = Y1:k,1:k ∈ Rk×k. Moreover, since UA, VA are
orthogonal matrices ‖UASV >A ‖∗ = ‖S‖∗, (7) is equiv-
alent to

argmin
S∈Rk×k

f̂(S) + λ‖S‖∗ ≡ F̂ (S), (8)

where f̂(S) = f(UASV >A ), k � min(n,m). Since the
variable in (8) is a small k × k matrix, solving (8) is
often much cheaper than solving the original problem.
We will discuss how to solve (8) in Section 3.3. In
addition, we will show in Theorem 7 that UA, VA are
exactly equal to the row and column subspace of the
optimal solution X∗ in a neighborhood of X∗, and in
this case solving (8) one time will achieve the global
optimum.

Empirically we also observe that the active subsapce
UA, VA converges to the final space quickly. In Figure
1a we compute the similarity between (UA)t (UA at the
t-th iteration) and U∗, which is measured by the small-
est singular value of (U∗)>(UA)t. If U∗ ⊂ span((UA)t),
this value will be 1. We can see the value converges
to 1 in ten steps. Moreover, the rank of our solutions
X1, X2, . . . does not blow up when the final solution
has a small rank, as shown in Figure 1b.

Relationship to other greedy methods. The
family of “greedy algorithms”, including GECO
(Shalev-Shwartz et al., 2011), Lifted-CD (Dudik et al.,
2012), and GCG (Zhang et al., 2012), have been
proposed and achieved state-of-the-art performance
on solving nuclear norm regularized problems. The
greedy algorithms also consider the coordinate decom-
position (5), but they construct the active subspace
in a greedy manner: at each iteration, they add the
top singular vector pair (u,v) to the active subspace,
and then solve the problem within this subspace. The
drawback of these greedy algorithms is the difficulty
in removing unimportant basis elements. In contrast,
our algorithm selects the rank-k subspace anew at each
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(a) Subspace similarity be-
tween active subspace and
the final solution

(b) Maximum rank during
the process

Figure 1: Experiments on the ml100k dataset demon-
strates the power of active subspace selection. Figure 1a
shows that the active subspace converges very quickly, and
Figure 1b demonstrates that the rank of Xt never greatly
exceeds the final rank for a wide range of λ.

iteration, and thus rapidly removes irrelevant basis el-
ements and converges faster as shown in the experi-
ments.

3.2. Step 1: Computing active subspace

In this section, we discuss an efficient way to compute
the active subspace UA, VA. Note again that UA is the
orthonormal basis of span(U,UG). U is the column ba-
sis of the current solution X, and this is always main-
tained during the process since we always maintain the
low rank factor form USV > of X.

To compute UG and VG, we have to compute Sλ(X −
∇f(X)), which requires the top k singular vectors of
X − ∇f(X) (assuming we know the rank k). This is
the bottleneck in other proximal gradient based meth-
ods (Mazumder et al., 2010; Ji & Ye, 2009; Toh & Yun,
2010). As discussed in (Mazumder et al., 2010), since
X is a low rank matrix and ∇f(X) usually have a spe-
cial form, the matrix vector product (X−∇f(X))v can
often be computed efficiently. For example, ∇f(X) =
(X −A)Ω in matrix completion problems with square
loss, and ∇f(X) = A>AX − A>B in multivariate re-
gression problems. Therefore, (Mazumder et al., 2010)
apply a Lanczos algorithm to compute the top k eigen-
vectors in Soft-Impute.

In our solver, we compute Sλ(X−∇f(X)) faster than
Soft-Impute by use of the following innovations:

1. We observe that Sλ(X −∇f(X)) will not change
a lot in two consecutive iterations. Therefore, we
apply the power method (Halko et al., 2011) and
use the eigenvectors in the previous iteration to
initialize the power method. Using this warm
start technique, the power method usually con-
verges in 3 iterations.

2. In our solver, this step is only used to identify the
subspace, and we will solve the sub-problem more
accurately as discussed in Section 3.3. Therefore,
we do not need to compute Sλ(X −∇f(X)) very

accurately. We will show in Theorem 9 that our
algorithm converges linearly even with only one
step of the power method, and this is not true for
other gradient descent algorithms.

Also, it is easy to increase the target rank k in the
power method. Assume we already compute the top
k1 eigenvectors of Sλ(X − ∇f(X)) and we find the
k1-th singular value is larger than λ, then we have to
increase k1. Suppose we increase k1 to k2; we can keep
the top k1 singular vectors, and then run the power
method to compute the k1 + 1, . . . , k2-th singular vec-
tors. During the process, we just need to make sure
those k1 + 1, . . . , k2-th vectors are orthogonal to the
top k1 singular vectors. Therefore, the time complex-
ity of each step of the power method is O(|Ω|k2) to
computing Au for each new vector u ∈ Rk2 that is
added, and O((m + n)k2

2) for orthogonalization. The
algorithm is summarized in Algorithm 2.

Algorithm 2: Power method (ApproxSVD in Algo-
rithm 1)

Input : Input matrix A, rank k, initial R ∈ Rn×k
Output: Approximate SVD A ≈ UΣV >

1 Y ← AR ;
2 Q← QR(Y ) ;
3 for t = 1, . . . , Tmax do
4 Y ← A(A>Q) ;
5 Q← QR(Y ) ;
6 end
7 B ← Q>A ;
8 [Û ,Σ, V ] = SVD(B) ;
9 U = QÛ ;

3.3. Step 2: Solving the k × k Sub-Problem

After selecting the subspace UA, VA, we need to solve
(8). Since the variable S in (8) is a small k × k ma-
trix, computing the SVD of S is cheap. Moreover, the
gradient and Hessian vector product of f̂(S) can also
be computed efficiently.

For general matrix-scalar functions, using the chain
rule we have

∇f̂(S) =
∂f(USV >)

∂S
= U> (∇f(Y ) |Y=USV >)V,

and if we define ∇2f(X) to be a Rmn×mn matrix with
elements ∂2f

∂Xij∂Xpq
(X), then

∇2f̂(S) = U> ⊗ V >
(
∇2f(Y ) |Y=USV >

)
U ⊗ V. (9)

Usually by utilizing the structure of ∇f(Y )
and ∇2f(Y ), combined with (U ⊗ V ) vec(D) =
vec(V DU>), both gradient and Hessian can be com-
puted efficiently. The following are some examples:
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• Matrix Completion problems:

∇f̂(S) = U>(X −A)ΩV,

∇2f̂(S) vec(D) = vec(U>(UDV >)ΩV ),

so both the gradient and Hessian vector product
can be computed in O(k|Ω|+ nk2) flops.

• Multivariate regression:

∇f̂(S) = U>A>AUSV >V − U>A>BV,
∇2f̂(S) vec(D) = vec(U>A>AUDV >V )

so both the gradient and Hessian vector product
can be computed in O(kl(m + n)) time (assume
k < l� m,n).

In the reduced k × k problem, we can utilize the sec-
ond order information, to achieve faster convergence.
In the following we propose two novel algorithms for
minimizing the sub-problem (8). For both algorithms,
the most time consuming step is to compute the gradi-
ent or Hessian vector product, so the time complexity
is proportional to that.

3.3.1. Alternating Minimization of an
Auxiliary function

To compute the nuclear norm it is necessary to com-
pute the square root (S>S)1/2. If Z0 commutes with
S>S (e.g. Z0 = S>S) then the iteration Zk+1 =
1
2

(
Zk + Z−1

k S>S
)

coincides with Newton’s algorithm
and converges to the square root, (Higham, 1986).
This motivated the following reformulation
Lemma 1 (A Convex Function). Let s(Z) =
1
2 trace(Z + Z−1S>S) then s is a convex function
(strictly convex when S is invertible) with

infZ�0s(Z) = ‖S‖∗ (10)

and the infimum is attained when S is invertible for
Z = (S>S)1/2. When S is not invertible we can get ar-
bitrarily close to the infimum by approaching (S>S)1/2

from inside the cone of positive definite matrices.

The Lemma follows directly from the expressions of
the gradient and Hessian of s.

Based on Lemma 1, we can rewrite the sub-problem
as

min
S

inf
Z�0

f(USV >) +
λ

2
trace(Z + (SS>)Z−1)

≡ min
S

inf
Z�0

g(S,Z). (11)

By Lemma 1 it follows that this function is jointly
convex in S,Z as stated in the following theorem
Theorem 5. g(S,Z) is jointly convex on S,Z on the
domain S ∈ Rk×k, Z � 0.

Therefore, we can alternatingly minimize S and Z to
solve (11). The update rules are described below.

Update S. When Z is fixed, g(S,Z) in (11) is a
convex quadratic function in S, so we can update S by
Newtons method. When f(X) is quadratic (as in ma-
trix completion or multivariate regression), Newtons
method converges in one iteration. Each Newton step
can be computed by the Conjugate Gradient method
(CG), which only requires us to compute Hessian vec-
tor products. The gradient is

∇Sg(S,Z) = ∇f̂(S) +
λ

2
(Z−>S + Z−1S),

and since ∇2
Str(SSZ) = 1

2 (Z−> + Z−1)⊗ I, we have

∇2
Sg(S,Z) vec(D) = ∇2f̂(S) vec(D)

+
λ

2
vec(DZ−> +DZ−1).

We can further assume that Z is symmetric which gives

∇2
Sg(S,Z) vec(D) = ∇2f̂(S) vec(D) + λ vec(DZ−1).

When the iteration cannot be computed efficiently, we
can use limited memory BFGS (Nocedal & Wright,
1999) with line search instead.

Closed form solution for multivariate regression
problem. Interestingly, when f(X) = ‖AX − B‖2F ,
we can derive a closed form solution of minS g(S,Z).
By setting ∇Sg(S,Z) = 0 we get

U>A>AUSV >V + λZ−1S = U>A>BV.

Assuming AU is full rank, then this equation is equiv-
alent to SP +QS = K, (12)

where P = V >V , Q = λ(U>A>AU)−1Z−1 and K =
(AU)†BV . Eq (12) is a Sylvester equation and can be
solved in O(k3) time by forming the SVD of P,Q and
K or by using the even more efficient Bartels-Stewart
algorithm, (Bartels & Stewart, 1972). Since all of them
are k by k matrices and k � m,n, we can compute
the exact solution efficiently.

Update Z. Lemma 1 shows that Z =
√
SS> is a

minimizer of g(S,Z).

Since (11) is a convex problem and our method is
a block coordinate descent method with two blocks,
our method is guaranteed to converge (see Proposi-
tion 7.2.1 in (Bertsekas, 1999)). Moreover, Lemma 1
implies that F̂ (St) = minZ g(St, Z) = g(St, Zt), so
F̂ (S1), F̂ (S2), . . . is a decreasing sequence and con-
verges to the optimum of the sub-problem.

The details of this approach for solving the matrix
completion problem is in Algorithm 3.
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Algorithm 3: Our proposed algorithm Active ALT
Input : Active subspace UA, VA, initial S
Output: Solution S of (8)

1 Z ← (SS>)1/2

2 for tinner = 0, 1, . . . do
3 G← U>A (UASV >A )ΩV + 1

2λ(Z−1 + Z−>)S
4 Solve ∇2

Sg(S,Z) vec(D) = vec(G) by CG
5 S ← S −D
6 Z ← (SS>)1/2

7 end

3.4. Cone Projection Newton Descent Method

Here we consider an alternative method to solve the
k×k sub-problem that takes advantage of the fact that
any norm is linear on at least a one dimensional cone
since ‖tx‖ = t‖x‖ for t > 0. In both of the proposed
focus problems the smooth part of the objective is a
quadratic and therefore the entire problem becomes
a smooth quadratic on the linearization cone. If the
cone is only one dimensional this is not of great benefit,
but for the `1 norm for example the cone is one of the
mn dimensional orthants of Rm×n. The cone is also
non-trivial for many other norms such as `∞ and the
nuclear norm.

Theorem 6. Let U ∈ Rm×k and V ∈ Rn×k be orthog-
onal matrices then the sub-differential of ‖X‖ is con-
stant on the cone {X = USV > : S = S> and S � 0}.

The proof is in Appendix 6.4. The positive definite
cone is

(
k
2

)
dimensional, which is nontrivial whenever

k > 1. If we change the asymmetric portion of S then
the derivative changes, much in the way it would for
an `2 norm. The nuclear norm resembles both the `1
norm and the `2 norm. The `1 norm aspect we already
saw, while the `2 norm is apparent when m = 1 since
then ‖X‖∗ = ‖X‖F .

We propose to solve the quadratic problem by use of a
quasi Newton method such as the conjugate gradient
algorithm or limited memory BFGS (L-BFGS), (No-
cedal & Wright, 1999). If the optimum over the sym-
metric matrices is not positive definite we do a back-
tracking line search. We additionally project the entire
search line segment onto the cone to ensure conver-
gence. This also encourages further reduction in rank.
For a particular point on the line segment the projec-
tion consists simply of setting any negative eigenvalues
to zero. This is analogous to what was done for the
graphical LASSO problem in (Olsen et al., 2012).

4. Convergence Analysis

In our framework (Algorithm 1) there are two key
tasks; 1) step 2: to compute UA by ApproxSVD and 2)
step 5: to solve the k×k-size sub-problem. Both tasks
incorporate an iterative solver. When both tasks are
solved exactly, our algorithm converges to the global
optimum (we omit the proof because this is a special
case of Theorem 9).

As the sequence Xt converges to the global optimum
X∗, we show that the active column and row subspace
(UA, VA) will converge to the column and row space of
X∗ in finite number of iterations.

Theorem 7. Assume step 2 and 5 are exact, and

λ is not a singular value of X∗ −∇f(X∗) (13)

then span(UA) = span(U∗), span(VA) = span(V ∗) after
a finite number of iterations, where U∗, V ∗ are column
and row space of the global optimum X∗.

The proof is in Appendix 6.5. Note that Theorem 7
holds for any convergent sequence with limt→∞Xt =
X∗, and the assumption (13) can be shown to happen
with very low probability, and was satisfied in our ex-
periments. As long as UA, VA span the column/row
space of X∗, Algorithm 1 can terminate in one step,
so we have the following theorem:

Theorem 8. If step 2 and 5 are exact and (13) holds,
then Algorithm 1 terminates in a finite number of it-
erations.

Since there is no closed-form solution to a general sin-
gular value decomposition, we consider the case where
singular vectors are identified by the power method,
as discussed in Algorithm 2. Assume in each iteration
we use the previous UG, VG (denoted by (UG)t, (VG)t)
as the initial subspace for the power method and run
the power method for more than one iteration. In gen-
eral power method cannot converge to the top k eigen-
values of A unless V >R is nonsingular for the initial
guess R ∈ Rn×k , where V ∈ Rn×k is the top k singu-
lar vectors of A. This conditions is usually satisfied in
practice. Under this condition, we prove the following
theorem:

Theorem 9. When step 2 is computed by power
method with more than one iteration and step 5 is
solved exactly, then Algorithm 1 converges to the opti-
mum with an asymptotic linear convergence rate.

The proof is in Appendix 6.6. This remarkable result
shows that our algorithm converges fast even if the
SVD in step 2 is computed inaccurately (i.e., with only
one power iteration), if we initialize it by the previous
UG, VG.
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(a) test RMSE on ml100k (b) test RMSE on ml10m (c) test RMSE on netflix

(d) objective function on ml100k (e) objective function on ml10m (f) objective function on netflix

Figure 2: Comparison to other nuclear norm minimization solvers for the matrix completion problem. Methods
with test RMSE or relative error above the top of y-axis are not shown in the figures. Our methods Active ALT
and Active Newton are much faster than other methods.

Table 1: Dataset statistics and parameters.
dataset m n |Ω| λ k
ml100k 943 1,682 90,567 15 65
ml10m 69,878 10,677 9,301,260 100 44
netflix 2,649,429 17,770 99,072,112 300 53
yahoo 1,000,990 624,961 252,800,275 10000 54

5. Experimental Results
In this section, we compare our proposed nuclear norm
solver with other state-of-the-art solvers. All the
experiments are conducted on an Intel Xeon X5355
2.66GHz CPU with 32G RAM.

5.1. Matrix Completion: Comparison with
nuclear norm solvers

We compare the following methods:

• Soft-Impute: the gradient descent method pro-
posed by (Mazumder et al., 2010).

• JSH: based on the work by (Jaggi & Sulovsky,
2010; Hazan, 2008), an extension of Frank-Wolfe
method for optimizing a bounded SDP problem.

• SSGD: a Stochastic Sub-Gradient Descent
method proposed by (Avron et al., 2012).

• Lifted CD: a greedy coordinate descent method
proposed by (Dudik et al., 2012).

• MMBS: the method iteratively increases the rank
and solves each fixed rank sub-problem by a trust-
region Newton method (Mishra et al., 2013).

• GCG: A Generalized Conditional Gradient

method proposed by (Zhang et al., 2012).
• Active ALT: our method with sub-problems

solved by ALTernating minimization of S and Z.
• Active Newton: our method with sub-problems

solved by the cone projection Newton method.

The implementation detail for the competing algo-
rithms are described in Appendix 6.7. We use the
real-world recommendation system datasets, Movie-
Lens (ml100k, ml10m), Netflix, and Yahoo Music (Dror
et al., 2012) as shown in Table 1. The balancing pa-
rameter λ was chosen by 3-fold cross validation on sub-
samples and the resulting rank k are also shown in Ta-
ble 1. We compare the methods in terms of objective
function value and test data RMSE. The results are
shown in Figure 2. Notice the relative error on the y-
axis is defined as |(F (X)− F (X∗))/F (X∗)|, where X∗
is the optimal solution. JSH, SoftImpute, and Lifted
CD are too slow on the Netflix dataset so we omit
the results in Figure 2f and 2c. Since JSH solves a
constrained version of (1), we omit the objective func-
tion value of JSH in the plots. The results show that
our methods are more than 6 times faster than other
solvers on large datasets.

Nuclear norm regularization is often considered too
slow to solve large problems, and another approach is
used to solve the non-convex problem:

min
U∈Rm×k,V ∈Rn×k

f(UV >) +
λ

2
(
‖U‖2F + ‖V ‖2F

)
. (14)
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(a) test RMSE on ml10m (b) test RMSE on yahoo

(c) objective function on
ml10m

(d) objective function on ya-
hoo

Figure 3: Comparison to non-convex methods (ALS
and LMaFit). The speed of our method is competitive
to non-convex methods, and they may not converge to
the global optimum.

For some sufficiently large k, minU,V :X=UV >
1
2 (‖U‖2F+

‖V ‖2F ) = ‖X‖∗, so solving (14) is equivalent to solv-
ing (1). However, (14) is not jointly convex in U, V , so
solvers are not guaranteed to converge to the global op-
timum. We compare our method to non-convex solvers
– Alternating Least Squares (ALS) and LMaFit (Wen
et al., 2012) (a successive over-relaxation version of
ALS) in Figure 3. Since Active ALS has very similar
performance to Active Newton on large dataset, we
only compare Active Newton with ALS in the figures.
Non-convex solvers (especially ALS) were widely used
in the Netflix price because of its scalability (Koren
et al., 2009). We observe that our method is faster
than ALS and LMaFit on ml10m, while on yahoo non-
convex solvers are faster in the beginning, but con-
verges to an inferior solution (because it may get stuck
in saddle points). Therefore, our method is competi-
tive in terms of time, is more stable, and has theoreti-
cal guarantees. This is the first paper to scale nuclear
norm solvers to the yahoo dataset, and the first time
in the literature that the efficiency of nuclear norm
solvers can be compared with non-convex solvers.

5.2. Other Applications

Next, we apply our method to other problems with
nuclear norm regularization. Since Active Newton
and Active ALT has similar performance, we only
show results for Active ALT in this section. We con-
sider m = 3724 stocks, each with daily closing price
recorded in 2012 (l = 200 days) downloaded from Ya-
hoo Finance. Assume pt ∈ Rm is the stock return of
all the m stocks at day t, and we model the change

(a) test RMSE on stock re-
gression problem

(b) test error on ILSVRC
multiclass problem

Figure 4: Comparison on regression and multi-class
problems. Our proposed method is much faster than
other nuclear norm solvers.

of return by the auto regression model pt = Xpt−1.
To estimate the transition matrix X ∈ Rm×m, we
solve the multivariate regression problem (3) where
A = [p1p2 . . .pl−1]> and B = [p2p3 . . .pl]>. It was
shown (Yuan et al., 2007) that a low rank assumption
of X corresponds to the idea of feature sharing. We set
λ = 5, which gives us a solution with rank 186. The
model is tested on next 200 days data and evaluated
using the root mean square error. The experimental
results in Figure 4a show that our method is much
faster than other methods.

We also test our method on a multi-class classification
problem. We use the dataset from the ILSVRC-2010
competition. This dataset is a subset of ImageNet
(Deng et al., 2009) with roughly 1000 images in each
of the 1000 categories. There are 1.2 million training
images and 150,000 testing images, the 1000 bag-of-
visual-word features provided in the original dataset
is used for classification. We model this as a multi-
variate regression problem, where each row of A is a
training data, and each row of B is a unit vector eyi

where yi is the label of i-th training data. The nu-
clear norm regularization is useful and has theoretical
benefit as shown in (Amit et al., 2007). We solve the
nuclear norm regularized multivariate regression prob-
lem with λ = 600 to get a solution X∗ with rank 189.
The performance of our proposed algorithm and other
methods are shown in Figure 4b. Our method achieves
18.57% test accuracy in 6 minutes, while no other nu-
clear norm solver can achieve this accuracy in 4 hours.
Our method achieve the final accuracy 21.36% after
0.5 hours. Notice that this accuracy is already good
since random guess for 1000 classes would just achieve
a 0.1% accuracy.
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6. Appendix

6.1. Proof sketch for Theorem 2

This theorem is proved in (Mazumder et al., 2010) by
considering the auxilliary function

Q(X,Y ) =
1
2
‖ΠΩ(A) + Π⊥Ω(Y )−X‖2F + λ‖X‖∗

= F (X) +
1
2
‖Π⊥Ω(Y −X)‖2F ,

for which Q(X,Y ) ≥ F (X) and Q(X,X) = F (X). We
can minimize the auxiliary function by noting that the
minimum with respect to Y for fixed X is Y = X and
for fixed Y the minimum with respect to X is X =
Sλ(ΠΩ(A) + Π⊥Ω(Y )). Alternating the minimization
gives the iteration in the theorem. This algorithm is
known as Soft-Impute.

6.2. Proof sketch for Theorem 3

For the regression problem we can form a different
auxilliary function. If cI � A>A = f ′′(X) then
− 1

2‖AX − AY ‖
2
F + c

2‖X − Y ‖
2
F ≥ 0 for all X,Y and

the auxilliary function

Q(X,Y ) =
1
2
‖AX −B‖2F −

1
2
‖A(X − Y )‖2F

+
c

2
‖X − Y ‖2F + λ‖X‖∗

=
c

2
‖X − Y − 1

c
(A>B −A>AY )‖2F

+λ‖X‖∗ + const

= c(
1
2
‖X> − (Y − 1

c
f ′(Y ))‖2F +

λ

c
‖X‖∗)

+const

satisfy Q(X,Y ) ≥ F (X) and Q(X,X) = F (X). For
fixed Yk the minimum over X is Xk+1 = Sλ/c(Yk −
1
cf
′(Yk)) and for fixed Xk the minimum over Y is

Yk = Xk. This auxilliary function is constructed com-
pletely analogously to the `1 case, for which global
convergence is formally proved in (Daubechies et al.,
2004).

6.3. Proof of Theorem 4

Proof. If u ∈ U⊥A , then (1) U>u = 0, which implies
u>X = 0; (2) U>Gu = 0, which implies |u>(X −
∇f(X))v| < λ for any v (by the definition of soft-
thresholding operator S). Combining (1) and (2) we
have uv> ∈ F for all v if u ∈ U⊥A . By the same argu-
ment we can prove uv> ∈ F for all u if v ∈ V ⊥A .

6.4. Proof of Theorem 6

Proof. Since S is positive definite it has an eigenvalue
decomposition S = PΣP> with Σ � 0 a diagonal

matrix. Therefore the SVD of X can be written X =
(UP )Σ(V P )> and the sub-differential is

∂‖X‖∗ = {UV >+W : U>W = 0,WV = 0, ‖W‖2 ≤ 1},

independent of S since (UP )(V P )> = UV >.

6.5. Proof of Theorem 7

Proof. Assume X∗ = U∗Σ∗V ∗ is the reduced SVD of
X∗. Since X∗ is the global optimum,

X∗ = Sλ(X∗ −∇f(X∗))

= Ū∗(Σ̄∗ − λI)+(V̄ ∗)>. (15)

If there are k singular values in Σ̄∗ larger than λ, then
it is clear that the first k columns of Ū∗ is U∗, and
the first k columns of V̄ ∗ is V ∗. By our assumption,
Σii 6= λ for all i, so we can assume Σkk > λ and
Σk+1,k+1 < λ− ε with some ε > 0.

We consider the set

Z ≡ {(u,v) | u ∈ (U∗)⊥ or v ∈ (V ∗)⊥}.

For (u,v) ∈ Z, u>X∗v = 0, so

|u>(X∗ −∇f(X∗))v| = |u>∇f(X∗)v| < λ− ε.

Since the sequence Xt generated by Algorithm 1 con-
verges to the global optimum X∗, there exists a T such
that

‖∇f(Xt)−∇f(X∗)‖ < ε (16)

and
|u>∇f(Xt)v| < λ (17)

for all t > T and any (u, v) ∈ Z. Now for any (u, v) ∈
Z we consider two cases:

1. If u>Xt−1v 6= 0, then u ∈ (UA)t−1 and v ∈
(VA)t−1. Since we exactly solve the sub-problem
(7) and we already know |u>∇f(Xt)v| < λ, the
optimality condition of (7) implies u>Xtv = 0.

2. If u>Xt−1v = 0, then combined with (17) we
know u,v are not in the active subspace, so
u>Xtv = 0.

Therefore, once t > T , for any u ∈ (U∗)⊥ or v ∈
(V ∗)⊥, u>Xtv will be zero and will never be selected
in (UA)t, (VA)t. This implies that span((UA)t) ⊆
span(U∗) and span((VA)t) ⊆ span(V ∗).

Next we prove the equality part. For all u,v such that
u>X∗v 6= 0, there exists a T such that u>(Xt)v 6= 0
for all t > T (since the smallest eigenvalue > 0).
Therefore, all such u,v will belong to (UA)t, (VA)t af-
ter t > T . Combined with the previous argument,
we have span((UA)t) = span(U∗) and span((VA)t) =
span(V ∗) after t > T .
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6.6. Proof of Theorem 9

Proof. We first introduce an important property of the
power method, which will be useful for proving the
theorem.

The power method (subspace iteration) described in
Algorithm 2 has a linear convergence rate: assume
U, V are the top-k singular vectors of A, σk, σk+1 are
the k-th and (k + 1)-st singular values, and the ap-
proximate SVD given by Algorithm 2 with R as initial
and with Tmax steps. If the initial matrix R satisfies
the condition that V >R is nonsingular, then

‖Û Û>−UU>‖ ≤ (
σk+1

σk
)T

max

‖URU>R −UU>‖,

‖V̂ V̂ >−V V >‖ ≤ (
σk+1

σk
)T

max

‖VRV >R −V V >‖. (18)

where UR is the orthogonal subspace of R, VR is the
orthogonal subspace of AR, and Û is the subspace af-
ter one power iteration. This property is shown in
Theorem 7.2 in (Arbenz, 2010).

Now we prove that the sequence Xt generated by Algo-
rithm 1 converges to the global optimum. For conve-
nience, we define P (X) := Sλ(X−∇f(X)), and P̃ (X)
to be the computed value (by the power method with
one iteration) of P (X). The reduced SVD of Sλ(X −
∇f(X)) is denoted by UG(X)ΣG(X)(VG(X))>, and
the computed subspace vectors is ŨG(X), ṼG(X). We
use ŨG(Xt) to denote the computed value at the t-
th iteration, and UG(Xt) to denote the true subspace
vectors at the t-th iteration.

Since Algorithm 1 ensures that the objective function
value decreases at each iteration, the sequence {Xt} is
in a compact set. Therefore, there exists a subsequence
of Xst

converges to a limit point X̄. For convenience
we denote st by t in the following. We want to prove
X̄ is the global optimum by contradiction, so we first
assume X̄ 6= X∗, so P (X̄) 6= X̄.

First we want to show Ũ(Xt), Ṽ (Xt) converges to
UG(X̄), VG(X̄) (the computed subspace converges to
the true subspace). Assume ŨG(Xt), ṼG(Xt) converges
to Ũ , Ṽ , then what we want to show is that span(Ũ) =
span(UG(X̄)) and span(Ṽ ) = span(VG(X̄)). Since
{Xt} converges to X̄ and X − ∇f(X) is a continu-
ous function, for any ε > 0 there exists a T1 such that
∀t > T1 ,

‖(Xt −∇f(Xt))− (X̄ −∇f(X̄))‖ ≤ ε. (19)

By perturbation theory (Li, 1998), for any matrix A
and a small perturbation ∆, we have

max(‖U(A)U(A)> − U(A+ ∆)U(A+ ∆)>‖,
‖V (A)V (A)> − V (A+ ∆)V (A+ ∆)>‖) ≤ ‖∆‖/δ,

where δ is the singular-gap between σk(A) and
σk+1(A), and U(A), V (A) are the top-k singular vec-
tors of A. Now we consider A = P (X̄),∆ = P (Xt) −
P (X̄), then we have

max(‖UG(Xt)UG(Xt)> − UG(X̄)UG(X̄)>‖,
‖VG(Xt)VG(Xt)> − VG(X̄)VG(X̄)‖) ≤ ‖P (Xt)− P (X̄)‖/δ,

Combining with (19) we get

‖UG(Xt)UG(Xt)> − UG(X̄)UG(X̄)>‖ ≤ ε

δ
∀t > T1.

(20)
Now assume t is large enough so that

‖Ũ Ũ> − ŨG(Xt−1)ŨG(X>t−1)‖ < ε1, (21)

so we have

‖ŨG(Xt)ŨG(Xt)> − UG(X̄)UG(X̄)>‖

≤ ‖ŨG(Xt)ŨG(Xt)> − UG(Xt)UG(Xt)>‖+
ε

δ
(by (20))

≤(
σk+1

σk
)‖ŨG(Xt−1)ŨG(Xt−1)>−UG(Xt)UG(Xt)>‖+

ε

δ
(by (18))

≤ (
σk+1

σk
)‖Ũ Ũ> − UG(Xt)UG(Xt)>‖+

ε

δ
+ ε1. (by (21))

≤ (
σk+1

σk
)‖Ũ Ũ> − UG(X̄)UG(X̄)>‖+ 2

ε

δ
+ ε1 (by (20)).

Therefore,

‖ŨG(Xt)ŨG(Xt)> − Ũ Ũ>‖
≥ ‖UG(X̄)UG(X̄)> − Ũ Ũ>‖
− ‖ŨG(Xt)ŨG(Xt)− UG(X̄)UG(X̄)>‖

≥ (1− σk+1

σk
)‖Ũ Ũ> − UG(X̄)UG(X̄)>‖ − 2

ε

δ
− ε1.

Taking t→∞ on both side and ε, ε1 → 0 we have

0 ≥ (1− σk+1/σk)‖Ū Ū> − UG(X̄)UG(X̄)>‖.

So span(UG(X̄)) = span(Ũ). Using the same deriva-
tions on the right singular vectors V , we can get
span(VG(X̄)) = span(Ṽ ).

The above argument shows that P̃ (Xt) → P (X̄). If
X̄ is not a global optimum, then P (X̄) 6= X̄. Since
all the fixed points are global optimum, by a typical
convergence property for the fixed-point operation we
can show that X̄ is a global optimum.

Next, we prove the asymptotic convergence rate. By
Theorem 7, we know after finite steps T1, UA(Xt) =
U∗, VA(Xt) = V ∗. Moreover, σk(Xt − ∇f(Xt)) con-
verges to σk(X∗ − ∇f(X∗)) and σk+1(Xt − ∇f(Xt))
converges to σk+1(X∗−∇f(X∗)), so there exists a T2

such that for all t > T2,

σk+1(Xt −∇f(Xt))
σk(Xt −∇f(Xt))

≤ λ− ε/2
λ

. (22)
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Assume T̄ = max(T1, T2). Since for each iteration we
run one power iteration on Xt−∇f(Xt) and the gap of
the k-th and (k + 1)-st singular values are guaranteed
in (22), from (18) we can bound the error between
subspaces (UA)t and U∗ by

‖UA(Xt)UA(Xt)> − U∗(U∗)>‖

≤ (1− ε

2λ
)‖UA(Xt−1)UA(Xt−1)> − U∗(U∗)>‖

when t > T̄ . Therefore

‖UA(XT̄+t)UA(XT̄+t)
> − U∗(U∗)>‖

≤ (1− ε

2λ
)t‖UA(XT̄ )UA(XT̄ )> − U∗(U∗)>‖. (23)

At the t-th iteration, it is clear that S̄t =
UA(Xt)>X∗VA(Xt) is a feasible solution for the sub-
problem (8). Let X̄t = UA(Xt)S̄tVA(Xt)>. Since S̄t is
the minimizer of (8), X̄t is the minimizer within the
UA, VA subspace. By definition, the subspace of Xt is
a subset of UA, VA, therefore F (Xt) ≥ F (X̄t).

Also, X∗ = U∗(U∗)>X∗ = X∗V ∗(V ∗)>, so

‖X̄t −X∗‖
≤‖UA(Xt)UA(Xt)>X∗VA(Xt)VA(Xt)>−UA(Xt)UA(Xt)>X∗‖

+ ‖UA(Xt)UA(Xt)>X∗ −X∗‖
= ‖UA(Xt)UA(Xt)>X∗

(
V ∗(V ∗)> − VA(Xt)VA(Xt)>

)
‖

+ ‖(U∗(U∗)> − UA(Xt)UA(Xt)>)X∗‖
≤ (‖U∗(U∗)> − UA(Xt)UA(Xt)>‖+
‖V ∗(V ∗)> − VA(Xt)VA(Xt)>‖)‖X∗‖.

Next we relate this quantity with the objective func-
tion value F (Xt). From Lemma 3.1 in (Ji & Ye, 2009),

F (X)− F (X∗) ≤ L‖X −X∗‖2F ,

where L is the Lipschitz constant for ∇f(X). Substi-
tuting X̄t into the above inequality we get

F (Xt)− F (X∗) ≤ F (X̄t)− F (X∗)

≤ LR(‖U∗(U∗)> − UA(Xt)UA(Xt)>‖
+ ‖V ∗(V ∗)> − VA(Xt)VA(Xt)>‖),

where R = ‖X∗‖ is a constant. Applying (23) we can
get

F (Xt)− F (X∗) ≤ LR(1− ε

2λ
)t−T̄

when t > T̄ . Therefore our algorithm has an asymp-
totically linear convergence rate.

6.7. Implementation Details for the
comparison

We discuss the implementation detail for other algo-
rithms in our comparison. The code for Soft-Impute
is downloaded from http://statweb.stanford.edu/
~rahulm/SoftImpute/. In their code, the top-k
singular vectors is computed by Lanczos algorithm.
We use the same JSH and SSGD implementation
as in (Avron et al., 2012), where the largest sin-
gular value is computed by the SVDS function in
MATLAB and the parameters are tuned by the au-
thors. More specifically, δ = 0.04 for ml100k,
δ = 0.015 for ml10m and netflix, and ν = 0.005
for all datasets. We implement LiftedCD by our-
selves and compute the largest singular value by the
power method. For MMBS the code is downloaded
from http://www.montefiore.ulg.ac.be/~mishra/
softwares/traceNorm.html, and the GCG code is
downloaded from http://users.cecs.anu.edu.au/
~xzhang/GCG/.


