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Matrix Completion

Example: movie recommendation

Given a set Ω and the values MΩ, how to predict other elements?
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Matrix Completion

Assumption: the underlying matrix M is low rank.

Recover M by solving

min
‖X‖∗≤t

∑
i ,j∈Ω

(Xij −Mij)
2,

‖X‖∗ is the nuclear norm (the best convex relaxation of rank(X )).
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One Class Matrix Completion

All the observed entries are 1’s.
Examples:

Link prediction using social networks (only friend relationships)
Product recommendation using purchase networks.
”Follows” in Twitter, ”like” in Facebook, . . .
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Can we apply matrix completion?

Minimizing the loss on the observed 1’s.

Will get a trivial solution.
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Can we apply matrix completion?

Treat all the missing entries as zeroes, and minimizing the loss on all
the entries.

99% elements are zero ⇒ tend to fit zeroes instead of ones.
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Challenges

All the observed entries are 1’s.

’0’ is unlabeled entries: can be either 0 or 1 in the underlying matrix.

PU (Positive and Unlabeled) Matrix Completion:

How to formulate the problem?
How to solve the problem?
What’s the sample complexity?
What’s the time complexity?
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Outline

Non-deterministic setting – Shifted Matrix Completion

Deterministic setting – Biased Matrix Completion

Extension to PU matrix completion with features.

Experimental Results
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Non-deterministic setting

Mij ∈ [0, 1], M is low-rank.

The generating process: M (underlying) → Y (0-1 matrix) → Ω1.

An underlying 0− 1 matrix Y is generated by

Yij =

{
1 with prob. Mij

0 with prob. 1−Mij .

Ω1 sampled from {(i , j) | Yij = 1}, the sample rate is
1− ρ = |Ω1|/‖Y ‖0
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Unbiased Estimator of Error

Find the best X to minimize the mean square error on M:

min
X

∑
i ,j

(Xij −Mij)
2 = min

X

∑
i ,j

`(Xij ,Mij)
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Unbiased Estimator of Error

Find the best X to minimize the mean square error on M:
The unbiased estimator [Natarajan et al., 2013]:

˜̀(Xij ,Aij) =

{
(Xij−1)2−ρX 2

ij

1−ρ if Aij = 1

X 2
ij if Aij = 0.
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Shifted Matrix Completion

Shifted Matrix Completion.

Solve
min
X

∑
i ,j

˜̀(Xij ,Aij) s.t. ‖X‖∗ ≤ t, 1 ≥ Xij ≥ 0.

Where

˜̀(Xij ,Aij) =

{
(Xij−1)2−ρX 2

ij

1−ρ if Aij = 1

X 2
ij if Aij = 0.

Equivalent to

min
X
‖X − Â‖2

F + λ‖X‖∗ s.t. 1 ≥ X ≥ 0,

where

Âij = 1/(1− ρ) if Aij = 1

Âij = 0 if Aij = 0.
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Error Bound for Shifted MF

Measure the error by R(X ) = 1
n2

∑
i ,j(Mij − Xij)

2.

Theorem: error bound for Shifted MF

Let X̂ be the solution of the Shifted MF, then with probability at least 1− δ,

R(X̂ ) ≤
3
√

log(2/δ)

n(1− ρ)
+ Ct

2
√
n + 4
√
s

(1− ρ)n2

= O(
1

n(1− ρ)
),

where C is a constant.
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Deterministic Setting

Mij ∈ [0, 1] (can be generalized to other bounded matrix).

With some threshold q ∈ [0, 1],

Yij =

{
1 if Mij > q

0 if Mij ≤ q,

Ω1 sampled from {(i , j) | Yij = 1}.
Given Ω1, impossible to recover M:

for example, M = ηeeT will generate Y = eeT for all η > q.

So our goal is to recover Y .
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Biased Matrix Factorization

Square loss: `(x , a) = (x − a)2.

Biased square loss:

`α(x , a) = α1a=1`(x , 1) + (1− α)1a=0`(x , 0).

Biased MF:
X̂ = arg min

X :‖X‖∗≤t

∑
i ,j

`α(Xij ,Aij).

Recover Y :

X̄ij =

{
1 if X̂ij > q

0 otherwise
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Sample Complexity

Error: R̄(X ) = 1
n2

∑
i ,j 1Xij 6=Yij

.

Theorem: error bound for BiasMF

Let X̄ be the solution of BiasMF. If α = 1+ρ
2 , then with probability at least

1− δ,

R(X̄ ) ≤ 2η

1 + ρ

(
Ct

2
√
n + 4
√
s

n2
+ 3

√
log(2/δ)

n(1− ρ)

)
= O(

1

n(1− ρ)
),

where η = max(1/q2, 1/(1− q)2, 8) and C is a constant.

Cho-Jui Hsieh Dept of Computer Science UT Austin PU Learning for Matrix Completion



Time Complexity

Gradient can be efficiently solved using O((nnz)k) time:

For non-convex formulation: by Alternating Least Squares (ALS) or
Cyclyc Coordinate Descent (CCD++) (Yu et al., 2012).
For convex formulation: by proximal gradient or active-subspace selection
(Hsieh et al., 2014).

One bit matrix completion: need O(n2) time.
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Inductive Matrix Completion

Proposed for matrix completion with features [Jain and Dhillon, 2013;
Xu et al., 2013]

Input: partially observed matrix AΩ and features Fu,Fv ∈ Rn×d

associated with rows/columns.

Recover the underlying matrix by solving

min
D∈Rd×d ,‖D‖∗≤t

∑
i ,j∈Ω

(Aij − (FuDF
T
v )ij)

2
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PU Inductive Matrix Completion

Inductive Matrix Completion: recover the underlying matrix using
1 A subset of 1s in the matrix.
2 row and/or column features.

Inductive shift matrix factorization—non-deterministic setting.

Average Error = O( 1
n(1−ρ) )

Inductive biased matrix factorization—deterministic setting.

Average Error = O( 1
n(1−ρ) )
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Experimental results – link prediction

(a) Accuracy on ca-HepTh (b) FPR-FNR on ca-HepTh

Figure: Comparison of algorithms on the link prediction problem (11, 204 nodes,
235, 368 edges)
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Experimental results – link prediction

(a) Accuracy on Myspace dataset. (b) FPR-FNR on Myspace dataset.

Figure: Comparison of algorithms on the link prediction problem (2, 137, 264 nodes,
90, 333, 122 edges)
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Application – semi-supervised clustering

Original problem:

Given n samples with features {xi}ni=1.
Given partial positive and negative pairwise relationship A ∈ Rn×n.
Recover clusters (categories of samples).
(Yi et al, 2013) proposed to use inductive MF to solve this problem.

Semi-supervised clustering with one class observation:

Only observe positive pairs Ω1.
We propose a one class inductive MF to solve this problem.
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Experimental results – semi-supervised clustering

Mushroom dataset, 8142 samples, 2 clusters.
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Conclusions

Study the one class matrix completion problem.
Proposed algorithms with nice theoretical guarantee:

error decays with the rate of O(1/n).
Scale to large problems (millions of rows and columns).
Applications:

Link prediction using social networks (only friend relationships)
Product recommendation using purchase networks.
”Follows” in Twitter, ”like” in Facebook, . . .
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