PU Learning for Matrix Completion

Cho-Jui Hsieh Dept of Computer Science UT Austin

ICML 2015

Joint work with N. Natarajan and I. S. Dhillon

Matrix Completion

- Example: movie recommendation
- Given a set Ω and the values M_{Ω} , how to predict other elements?

			6.8			1.9	
			7.9				4.4
	5.1			?		2.3	
rs	6.8						5.3
					9.3		
		8.8			8.0		
	5.1			7.7		1.9	

movies

users

Matrix Completion

- Assumption: the underlying matrix *M* is low rank.
- Recover *M* by solving

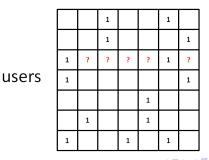
$$\min_{\|X\|_*\leq t}\sum_{i,j\in\Omega}(X_{ij}-M_{ij})^2,$$

 $||X||_*$ is the nuclear norm (the best convex relaxation of rank(X)).

0.9	2.7		1	3.3	2.2	1.8	2.8	0.6	0.8				6.8			1.9	
2.1	1.8	*	2	2.7	1.8	2.7	3.0	0.5	1.5				7.9				4.4
2.9	1.1									=	5.1			8.2		2.3	
3.4	1.7									-	6.8						5.3
1.6	1.6														9.3		
2.1	0.7											8.8			8.0		
1.9	1.6										5.1			7.7		1.9	

One Class Matrix Completion

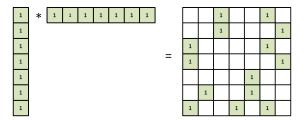
- All the observed entries are 1's.
- Examples:
 - Link prediction using social networks (only friend relationships)
 - Product recommendation using purchase networks.
 - "Follows" in Twitter, "like" in Facebook, ...



users

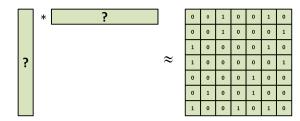
Can we apply matrix completion?

- Minimizing the loss on the observed 1's.
- Will get a trivial solution.



Can we apply matrix completion?

- Treat all the missing entries as zeroes, and minimizing the loss on all the entries.
- 99% elements are zero \Rightarrow tend to fit zeroes instead of ones.



Challenges

- All the observed entries are 1's.
- '0' is unlabeled entries: can be either 0 or 1 in the underlying matrix.
- PU (Positive and Unlabeled) Matrix Completion:
 - How to formulate the problem?
 - How to solve the problem?
 - What's the sample complexity?
 - What's the time complexity?

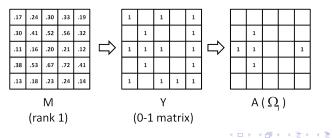
Outline

- Non-deterministic setting Shifted Matrix Completion
- Deterministic setting Biased Matrix Completion
- Extension to PU matrix completion with features.
- Experimental Results

- $M_{ij} \in [0, 1]$, M is low-rank.
- The generating process: M (underlying) $\rightarrow Y$ (0-1 matrix) $\rightarrow \Omega_1$.
- An underlying 0-1 matrix Y is generated by

$$Y_{ij} = egin{cases} 1 & ext{with prob.} & M_{ij} \ 0 & ext{with prob.} & 1-M_{ij}. \end{cases}$$

• Ω_1 sampled from $\{(i,j) \mid Y_{ij} = 1\}$, the sample rate is $1 - \rho = |\Omega_1| / ||Y||_0$



Unbiased Estimator of Error

• Find the best X to minimize the mean square error on M:

$$\min_{X} \sum_{i,j} (X_{ij} - M_{ij})^2 = \min_{X} \sum_{i,j} \ell(X_{ij}, M_{ij})$$

.17	.24	.30	.33	.19		1	0	1	0	1		0	0	0	0	0
.30	.41	.52	.56	.32		0	1	0	0	1		0	1	0	0	0
.11	.16	.20	.21	.12	\Box	1	1	1	0	1	$ \square $	1	1	0	0	1
.38	.53	.67	.72	.41		0	1	0	0	1		0	1	0	0	0
.13	.18	.23	.24	.14		1	0	1	1	1		0	0	0	0	0
		М				Y								А		
(0-1 matrix)																

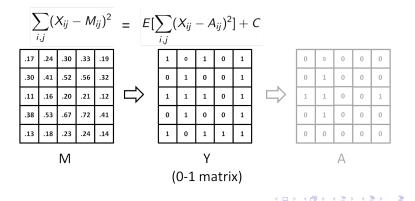
伺 と く ヨ と く ヨ と

э

Unbiased Estimator of Error

• Find the best X to minimize the mean square error on M:

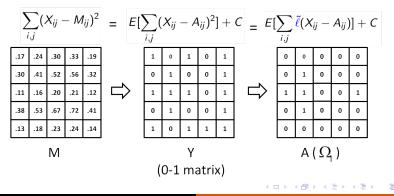
$$\min_{X} \sum_{i,j} (X_{ij} - M_{ij})^2 = \min_{X} \sum_{i,j} \ell(X_{ij}, M_{ij})$$



Unbiased Estimator of Error

- Find the best X to minimize the mean square error on M:
- The unbiased estimator [Natarajan et al., 2013]:

$$ilde{\ell}(X_{ij},A_{ij}) = egin{cases} rac{(X_{ij}-1)^2-
ho X_{ij}^2}{1-
ho} & ext{if } A_{ij}=1 \ X_{ij}^2 & ext{if } A_{ij}=0. \end{cases}$$



Shifted Matrix Completion

• Shifted Matrix Completion.

Solve

$$\min_{X}\sum_{i,j} \tilde{\ell}(X_{ij},A_{ij}) ext{ s.t. } \|X\|_{*} \leq t, 1 \geq X_{ij} \geq 0.$$

Where

$$ilde{\ell}(X_{ij},A_{ij}) = egin{cases} rac{(X_{ij}-1)^2-
ho X_{ij}^2}{1-
ho} & ext{if } A_{ij}=1 \ X_{ij}^2 & ext{if } A_{ij}=0. \end{cases}$$

• Equivalent to

$$\min_X \|X - \hat{A}\|_F^2 + \lambda \|X\|_* \text{ s.t. } 1 \ge X \ge 0,$$

where

$$\hat{A}_{ij} = 1/(1-
ho)$$
 if $A_{ij} = 1$
 $\hat{A}_{ij} = 0$ if $A_{ij} = 0$.

< E

-∢ ≣ →

э

Error Bound for Shifted MF

• Measure the error by
$$R(X) = \frac{1}{n^2} \sum_{i,j} (M_{ij} - X_{ij})^2$$
.

Theorem: error bound for Shifted MF

Let \hat{X} be the solution of the Shifted MF, then with probability at least $1 - \delta$,

$$egin{aligned} &R(\hat{X}) \leq rac{3\sqrt{\log(2/\delta)}}{n(1-
ho)} + Ctrac{2\sqrt{n}+\sqrt[4]{s}}{(1-
ho)n^2} \ &= O(rac{1}{n(1-
ho)}), \end{aligned}$$

where C is a constant.

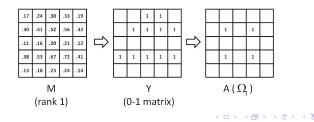
Deterministic Setting

M_{ij} ∈ [0, 1] (can be generalized to other bounded matrix).
With some threshold *q* ∈ [0, 1],

$$Y_{ij} = egin{cases} 1 & ext{if } M_{ij} > q \ 0 & ext{if } M_{ij} \leq q, \end{cases}$$

• Ω_1 sampled from $\{(i,j) \mid Y_{ij} = 1\}$.

Given Ω₁, impossible to recover M: for example, M = ηee^T will generate Y = ee^T for all η > q.
So our goal is to recover Y.



Biased Matrix Factorization

- Square loss: $\ell(x, a) = (x a)^2$.
- Biased square loss:

$$\ell_{\alpha}(x,a) = \alpha \mathbf{1}_{a=1}\ell(x,1) + (1-\alpha)\mathbf{1}_{a=0}\ell(x,0).$$

Biased MF:

$$\hat{X} = \arg\min_{X: \|X\|_* \leq t} \sum_{i,j} \ell_{\alpha}(X_{ij}, A_{ij}).$$

• Recover Y:

$$ar{X}_{ij} = egin{cases} 1 & ext{ if } \hat{X}_{ij} > q \ 0 & ext{ otherwise} \end{cases}$$

Sample Complexity

• Error:
$$\bar{R}(X) = \frac{1}{n^2} \sum_{i,j} \mathbb{1}_{X_{ij} \neq Y_{ij}}$$
.

Theorem: error bound for BiasMF

Let \bar{X} be the solution of BiasMF. If $\alpha = \frac{1+\rho}{2}$, then with probability at least $1 - \delta$,

$$R(\bar{X}) \leq \frac{2\eta}{1+\rho} \left(Ct \frac{2\sqrt{n} + \sqrt[4]{s}}{n^2} + 3 \frac{\sqrt{\log(2/\delta)}}{n(1-\rho)} \right) = O(\frac{1}{n(1-\rho)}),$$

ゆ く き と く ゆ と

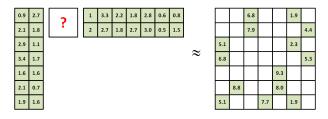
where $\eta = \max(1/q^2, 1/(1-q)^2, 8)$ and C is a constant.

Time Complexity

- Gradient can be efficiently solved using O((nnz)k) time:
 - For non-convex formulation: by Alternating Least Squares (ALS) or Cyclyc Coordinate Descent (CCD++) (Yu et al., 2012).
 - For convex formulation: by proximal gradient or active-subspace selection (Hsieh et al., 2014).
- One bit matrix completion: need $O(n^2)$ time.

- Proposed for matrix completion with features [Jain and Dhillon, 2013; Xu et al., 2013]
- Input: partially observed matrix A_{Ω} and features $F_u, F_v \in \mathbb{R}^{n \times d}$ associated with rows/columns.
- Recover the underlying matrix by solving

$$\min_{\boldsymbol{D} \in \mathbb{R}^{d \times d}, \|\boldsymbol{D}\|_* \leq t} \sum_{i,j \in \Omega} (A_{ij} - (F_u \boldsymbol{D} F_v^{\mathsf{T}})_{ij})^2$$



PU Inductive Matrix Completion

- Inductive Matrix Completion: recover the underlying matrix using
 - A subset of 1s in the matrix.
 - I row and/or column features.
- Inductive shift matrix factorization—non-deterministic setting.

Average Error =
$$O(\frac{1}{n(1-\rho)})$$

• Inductive biased matrix factorization—deterministic setting.

Average Error =
$$O(\frac{1}{n(1-\rho)})$$

Experimental results - link prediction

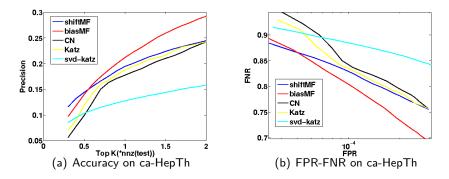


Figure: Comparison of algorithms on the link prediction problem (11,204 nodes, 235, 368 edges)

A 10

Experimental results - link prediction

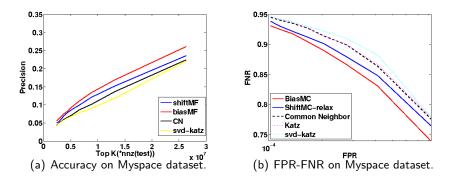


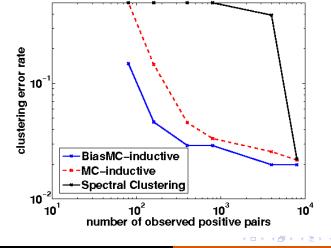
Figure: Comparison of algorithms on the link prediction problem (2, 137, 264 nodes, 90, 333, 122 edges)

A D

- Original problem:
 - Given *n* samples with features $\{\mathbf{x}_i\}_{i=1}^n$.
 - Given partial positive and negative pairwise relationship $A \in \mathbb{R}^{n \times n}$.
 - Recover clusters (categories of samples).
 - (Yi et al, 2013) proposed to use inductive MF to solve this problem.
- Semi-supervised clustering with one class observation:
 - Only observe positive pairs Ω_1 .
 - We propose a one class inductive MF to solve this problem.

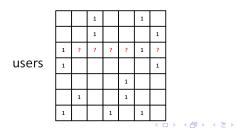
Experimental results - semi-supervised clustering

• Mushroom dataset, 8142 samples, 2 clusters.



Conclusions

- Study the one class matrix completion problem.
- Proposed algorithms with nice theoretical guarantee: error decays with the rate of O(1/n).
- Scale to large problems (millions of rows and columns).
- Applications:
 - Link prediction using social networks (only friend relationships)
 - Product recommendation using purchase networks.
 - "Follows" in Twitter, "like" in Facebook,



users