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ABSTRACT
Trust networks, where people leave trust and distrust feed-
back, are becoming increasingly common. These networks
may be regarded as signed graphs, where a positive edge
weight captures the degree of trust while a negative edge
weight captures the degree of distrust. Analysis of such
signed networks has become an increasingly important re-
search topic. One important analysis task is that of sign
inference, i.e., infer unknown (or future) trust or distrust re-
lationships given a partially observed signed network. Most
state-of-the-art approaches consider the notion of structural
balance in signed networks, building inference algorithms
based on information about links, triads, and cycles in the
network. In this paper, we first show that the notion of weak
structural balance in signed networks naturally leads to a
global low-rank model for the network. Under such a model,
the sign inference problem can be formulated as a low-rank
matrix completion problem. We show that we can perfectly
recover missing relationships, under certain conditions, us-
ing state-of-the-art matrix completion algorithms. We also
propose the use of a low-rank matrix factorization approach
with generalized loss functions as a practical method for sign
inference — this approach yields high accuracy while being
scalable to large signed networks, for instance, we show that
this analysis can be performed on a synthetic graph with
1.1 million nodes and 120 million edges in 10 minutes. We
further show that the low-rank model can be used for other
analysis tasks on signed networks, such as user segmenta-
tion through signed graph clustering, with theoretical guar-
antees. Experiments on synthetic as well as real data show
that our low rank model substantially improves accuracy
of sign inference as well as clustering. As an example, on
the largest real dataset available to us (Epinions data with
130K nodes and 840K edges), our matrix factorization ap-
proach yields 94.6% accuracy on the sign inference task as
compared to 90.8% accuracy using a state-of-the-art cycle-
based method — moreover, our method runs in 40 seconds
as compared to 10,000 seconds for the cycle-based method.
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1. INTRODUCTION
Social network analysis has received a lot of attention re-

cently. Traditionally, online networks such as Facebook or
World Wide Web can be viewed as graphs, with nodes rep-
resenting entities, and edges representing relationships be-
tween entities. Recently, trust networks have also become in-
creasingly common where two opposite kinds of relationships
exist between entities. For example, online review websites
such as Epinions allow users to either like or dislike others’
reviews. Such networks can be modeled as signed networks,
where edge weights are +1 or −1, representing positive or
negative relationships respectively.

Perhaps the most basic yet significant belief in signed net-
works is structural balance [11, 4]. Structural balance states
that people in signed networks tend to follow patterns such
as“an enemy of my friend is my enemy”and“an enemy of my
enemy is my friend”, and so on [4]. It is important to note
that since balance notion applies only to signed networks,
therefore, algorithms for signed networks can be somewhat
different from algorithms for unsigned networks. Structural
balance has been shown to be useful for analysis tasks for
signed networks. For instance, the sign inference problem,
which aims to infer the unknown relationship between two
entities, can be achieved by learning from balance informa-
tion of signed networks [17, 5]. Nevertheless, these state-of-
the-art methods for sign inference problem mainly consider
structural balance, while a more general notion - weak bal-
ance [7] - is not taken into account. Therefore, it is natural
to ask what can be further inferred from weak balance.

In this paper, we propose a low rank model by observ-
ing that complete weakly balanced networks have a low-
rank structure. Therefore, many analysis tasks such as sign
inference and clustering can be posed as low-rank matrix
completion. The advantages of taking a matrix completion
approach are as follows. First, many matrix completion al-
gorithms provide theoretical recovery guarantees under cer-
tain conditions [19, 12]. Moreover, many algorithms such
as Alternating Least Squares (ALS) and Stochastic Gradi-
ent Descent (SGD) can efficiently find effective solutions for
problems with billions of nonzero entries [14]. We will em-
pirically demonstrate that our proposed low rank model is
both accurate and scalable in many applications.



We summarize the contributions of this paper:
• We explore a new model for signed networks - the low

rank model - from both theoretical and practical points
of view. We show that the low-rank structure arises
naturally from weak balance theory. In practice, we
show that real-life signed networks tend to have low-
rank structure, so it is natural to apply the low rank
model to real datasets.

• We show that the sign inference problem can be formu-
lated as a low-rank matrix completion problem. Un-
der certain conditions, we prove that matrix comple-
tion can perfectly recover missing links. We also apply
matrix factorization algorithms to sign inference prob-
lems, and these turn out to be much more accurate
and efficient than other inference methods.

• We show that our low rank model can be used for clus-
tering. Our algorithm first infers missing values using
matrix completion, and then performs the clustering,
thus enabling us to get guarantees for clustering under
certain conditions. This theoretical guarantee cannot
be achieved by other spectral methods [15].

The paper is organized as follows. In Section 2, we review
some recent work related to this paper. In Section 3, we pro-
pose our low rank model, and show that the sign inference
problem can be modeled as a low-rank matrix completion
problem. We present two approaches; matrix completion
and matrix factorization. In Section 4, we show how to
do clustering using the low rank model. In Section 5, we
conduct experiments which convincingly demonstrate that
our low rank model improves sign inference accuracy as well
as clustering results. Finally, we present our conclusions in
Section 6.

2. RELATED WORK
Signed network analysis has a rich history dating back to

the 1950s — the notion of structural balance was formulated
and analyzed by Harary and Carwright [11, 4], who formally
defined balanced triads and proved global structural results
for signed balanced networks (stated as Theorem 1 in Sec-
tion 3). Davis [7] further generalized the notion of balance
to weak balance, by allowing triads where all edges are neg-
ative. In Section 3, we will elaborate on weak balance and
show that it naturally leads to our proposed low-rank model.

An important analysis task on signed networks is the sign
inference problem. This problem was first considered by
Guha et al.[9]. More recently, Kunegis et al.[15, 16] recon-
sidered this problem by using varied similarity functions and
kernels such as matrix exponential and signed Laplacian, on
the signed link structure of the network. Leskovec et al.[17]
proposed a machine learning formulation of this problem,
arguing that learning from only local triangular structure of
edges can achieve high accuracy. Chiang et al.[5] general-
ized [17] by showing that longer cycles in the signed network
reveal balance information in the network — using these ad-
ditional “features” for learning led to an improvement in in-
ference accuracy. Our modeling approach in this paper is
distinct from existing work, as we first show that the global
viewpoint of structural balance (as opposed to the local triad
structure) naturally leads to a low-rank model for the net-
work, and then show that the sign inference problem may
be regarded as a low-rank matrix completion problem. Our
approach is much more scalable than previous approaches,
and leads to higher inference accuracy as well. Some recent

work also considers the link inference problem as network
completion [10, 13]. The goal in [10, 13] is to reconstruct
the underlying (unsigned) network topology given partially
observed links and/or nodes. In contrast, the main goal of
our work is to infer the (unobserved) signed relationships
between all pairs of entities. Moreover, our low-rank matrix
completion approach arises from the notion of weak struc-
tural balance, which only applies in signed networks.

Clustering or community detection is another important
task in network analysis, and has been well studied for un-
signed social networks using many varied approaches [18,
8]. However, extending these algorithms to signed networks
is not obvious since it has been shown that clustering on
signed networks is highly related to (weak) balance the-
ory [11, 4, 7]. Thus several tailored approaches have been
proposed for clustering of signed networks [20]. Recently,
Kunegis et al.[16] proposed a spectral approach using the
so-called “signed” Laplacian, and showed that partitioning
signed networks using the signed Laplacian kernel is anal-
ogous to considering ratio cut on unsigned networks. Our
approach is somewhat similar to [16] in that we also con-
sider the spectra of signed graphs. However, our clustering
algorithm proceeds by first completing the underlying graph
using low-rank matrix completion, and then performing the
clustering. This important difference makes our clustering
results much more reliable, especially on graphs where the
observed signed relationships are sparse.

Sign inference using our low rank model is closely related
to matrix completion problem. In the last five years, there
has been substantial research that has studied exact recov-
ery conditions for this problem [19, 3, 2], and algorithms
with theoretical guarantees have also been proposed [1, 12].
Matrix factorization is another approximation technique for
matrix completion. Though this approach is notoriously
hard to analyze, it is very competitive in practice [14]. While
the matrix completion problem is considered mostly in col-
laborative filtering, our low rank model arises naturally from
weak balance of signed networks. We will discuss the details
of matrix completion and matrix factorization in Section 3.

3. LOW RANK MODELING
In this section, we investigate the structure of signed net-

works and show that a low-rank structure intuitively emerges
when we consider so-called weakly balanced networks. First,
we introduce a few preliminaries before going into details.

We will consider a signed network to be a graph G =
(V, E, A), where V is the vertex set of size n, E is the edge
set of size m, and A ∈ R

n×n is the signed adjacency matrix
associated with G. The entries of A are as follows:

Aij =

8

>

<

>

:

1, if i & j trust each other,

−1, if i & j distrust each other,

0, if relationship of (i, j) is unknown (or missing)

For now we restrict ourselves to symmetric relationships, i.e.,
A is a symmetric matrix, although asymmetric relationships
are possible. Note that for us, Aij = 0 does not imply
no relationship between i and j; it just means we do not
currently observe the relationship. We denote the set of
known entries by Ω, i.e. (i, j) ∈ Ω iff Aij is observed. A
network is complete if all entries in A are observed.

We first review some basics of structural balance. A com-
plete network is called (strongly) balanced if all triads in
the graph have (i) all positive edges or (ii) only one posi-
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Figure 1: An illustrative example of low-rank structure of a 3-weakly balanced network. The network can be represented as
a product of two rank-3 matrices, which implies that the adjacency matrix has rank no more than 3.

tive edge. With this local definition, it can be shown that
complete balanced networks have a special global structure:

Theorem 1 (Global “Strong Balance” Structure [11])
A complete network is balanced iff all edges are positive, or
the vertices can be divided into two different groups such
that all edges within the same group are positive, and all
edges between the two groups are negative.

The assumption that strong structural balance exists in a
real signed network might be too extreme, so a more relaxed
notion of balance is the so-called “weak” structural balance
theory. The formal definition of weak balance is as follows:

Definition 1 (Weak Balance for Complete Graphs [7])
A complete signed network is weakly balanced iff there is no
triad in the network that contains two positive edges and
one negative edge.

Similar to Theorem 1, this local definition implies a simple
global structure of weakly balanced networks:

Theorem 2 (Global “Weak Balance” Structure [7])
A complete signed network is weakly balanced iff all edges
are positive, or the vertices can be divided into several groups
such that within-group edges are positive and between-group
edges are negative.

Thus we can say that a network is k-weakly balanced iff
it can be perfectly divided into k groups, k ∈ N. Note that
Theorem 1 can be regarded as a special case of Theorem 2
with k ≤ 2. We now show that the adjacency matrix A of
a complete k-weakly balanced network is low rank. With
a suitable reordering of nodes, A can be represented as a
block-diagonal matrix where all entries within the diagonal
blocks are +1’s, and all entries within off-diagonal blocks are
all −1’s. The following theorem proves that the adjacency
matrix of a complete k-weakly balanced network has rank
up to k.

Theorem 3 (Low Rank Structure of Signed Networks)
The adjacency matrix A of a complete k-weakly balanced
network has rank 1 if k ≤ 2, and has rank k for all k > 2.

Proof. Since A is k-weakly balanced, the nodes can be
divided into k groups, say S(1), S(2), . . . , S(k). Suppose group

S(i) contains nodes s
(i)
1 , s

(i)
2 , . . . , s

(i)
ni

, then the column vec-
tors A

:,s
(i)
1

, . . . , A
:,s

(i)
ni

are all identical to the following form

(after suitable reordering of nodes):
bi = [−1 · · · − 1 1 · · · 1

| {z }

the ith group

−1 · · · − 1]T ,

and so the column space of A is spanned by {b1, . . . ,bk}.
First let us consider k ≤ 2, i.e., the network is strongly

balanced. If k = 1, it is easy to see that rank(A) = 1. If
k = 2, then b1 = −b2. Therefore, rank(A) is again 1. Now

consider k > 2. In this case, we argue that rank(A) = k
by showing that b1, . . . ,bk are linearly independent. We
consider the following k × k square matrix:

M =

2
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6
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1 −1 · · · −1 −1
−1 1 · · · −1 −1

...
...

. . .
...
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It is obvious that 1 = [1 1 · · · 1]T is an eigenvector of M with
eigenvalue −(k−2). We can further construct k−1 linearly
independent eigenvectors all with eigenvalue 2:

e1 − e2, e1 − e3, . . . , e1 − ek,

where ei ∈ R
k is the ith column of the k×k identity matrix.

These k − 1 eigenvectors are clearly linearly independent.
Therefore, rank(M) = k.

From the above we can show that rank(A) = k. Suppose
that b1, . . . ,bk are not linearly independent, then there ex-
ists α1, . . . , αk, with some αi 6= 0, such that

Pk

i=1 αibi = 0.

Using this set of α’s, it is easy to see that
Pk

i=1 αiM:,i = 0,
but this contradicts the fact that rank(M) = k. Therefore,
rank(A) = k.

Figure 1 is an example of a complete 3-weakly balanced
network. As shown, its adjacency matrix can be expressed
as a product of two rank-3 matrices, indicating its rank is
no more than three. By Theorem 3, we can conclude that
rank(A) = 3.

The above reasoning shows that complete weakly balanced
graphs are low rank, however, most real networks are not
complete graphs. One way to define balance on graphs that
are not complete is to try to fill in the unobserved or missing
edges(relationships) so that balance is obtained:

Definition 2 (Weak Balance for General Graphs)
A signed network is weakly balanced iff it is possible to add
missing edges to the network, with appropriate sign, so that
the resulting complete graph is weakly balanced.

Hence, sign inference in trust networks can be thought
of as a low-rank matrix completion problem. Specifically,
given a signed network with observed edges Aij , (i, j) ∈ Ω,
we want to find a complete matrix by assigning ±1 to every
unknown entry, such that the resulting complete graph is
(nearly) weakly balanced and hence, the completed matrix
is low rank. Thus, our missing value estimation problem can
be formulated as:

minimize rank(X)

s.t. Xij = Aij , ∀ (i, j) ∈ Ω, (1)

Xij ∈ {±1}, ∀ (i, j) /∈ Ω.



Once we obtain the minimizer of (1), which we will denote
by X∗, we can infer the missing relationship between i and
j by simply looking up the sign of the entry X∗

ij . However,
it is known that solving (1) is NP-hard in general. Recent
research on low-rank matrix completion has shown the sur-
prising result that in many cases, problem (1) can be solved
to yield the global optimal in polynomial time [3]. In the
following subsections, we identify such conditions as well as
approaches to approximately solve (1) for real-world signed
networks.

3.1 Inference via Matrix Completion
One possible approximate solution for (1) can be obtained

by dropping the discrete constraints and replacing rank(X)
by ‖X‖∗, where ‖X‖∗ denotes the trace norm of X, which
is the tightest convex relaxation of rank. Thus, a convex
relaxation of (1) is:

minimize ‖X‖∗ s.t. Xij = Aij , ∀ (i, j) ∈ Ω. (2)

It turns out that, under certain condition, by solving (2)
we can recover the exact missing relationships from the un-
derlying complete signed network. This surprising result is
the consequence of recent research [3, 2] which has shown
that perfect recovery from the observations is possible if the
observed entries are uniformly sampled and X∗ has high
incoherence, which may be defined as follows:

Definition 3 (Incoherence)
An m×n matrix X∗ with singular value decomposition X∗ =

USV T is µ-incoherent if

max
i,j

|Uij | ≤
√

µ/
√

m and max
i,j

|Vij | ≤
√

µ/
√

n. (3)

Intuitively, higher incoherence (smaller µ) means that large
entries of X∗ are not concentrated in a small part of the
matrix, and so uniform sampling is sufficient to recover X∗.
The following theorem summarizes the exact recovery con-
dition that we will use in this paper:

Theorem 4 (Recovery Condition [2])
Let X∗ be a matrix of bounded rank (k = O(1)) with sin-

gular value decomposition X∗ = USV T . Assume X∗ is µ-
incoherent and more than Cµ4n log2 n entries are uniformly
sampled, then with probability at least 1 − n−3, X∗ is the
unique optimizer of (2).

Based on Theorem 4, we now show that the notion of inco-
herence can be connected to the relative sizes of the clusters
in signed networks. As a result, by solving (2), we can re-
cover the underlying signed network with high probability
if there are no extremely small groups. More precisely, we
define the group imbalance of a signed network as follows:

Definition 4 (Group Imbalance)
Let X∗ be the adjacency matrix of a complete k-weakly
balanced network with n nodes, and let n1, . . . , nk be the
sizes of the groups. Group imbalance τ of X∗ is defined as

τ ≡ max
i=1,...,k

n/ni. (4)

By definition, k ≤ τ ≤ n. Intuitively, larger group imbalance
τ indicates the presence of a very small group, which would
make recovery of the underlying network harder (under uni-
form sampling). For example, consider an extreme scenario
that a k-weakly balanced network contains n nodes, with
two groups containing only one node. Then the adjacency

matrix of this network has group imbalance τ = n with the
following form:

X∗ =

2
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1 · · · · · · −1 −1
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. . .
...
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...

. . . −1 −1
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−1 · · · −1 −1 1
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However, without observing X∗
n,n−1 or X∗

n−1,n, it is impossi-
ble to determine whether the last two nodes are in the same
cluster, or each of them belongs to an individual cluster.
When n is very large, the probability of observing one of
these two entries will be extremely small. Therefore, no ma-
trix completion algorithm can exactly recover this network
under uniform sampling.

Motivated by this example, we now analytically show that
group imbalance τ determines the possibility of recovery. We
first show the connection between τ and incoherence µ.

Theorem 5 (Incoherence of Signed Networks)
Any complete k-weakly balanced network is τ -incoherent
where τ is the group imbalance measurement.

Proof. Let X∗ be the adjacency matrix of a k-weakly
balanced complete network. Recall from Definition 3 that
µ is defined as the maximum absolute value in the (normal-
ized) singular vectors of X∗, which are the same as eigen-
vectors of X∗ since the adjacency matrix is symmetric.

Let u be any eigenvector of X∗(‖u‖2 = 1) with eigenvalue
λ. Suppose i and j are in the same group, namely X∗

i,: =
X∗

j,:, we have ui = X∗
i,:u/λ = X∗

j,:u/λ = uj . Thus, u has
the following form:

u = [v1, v1, . . . , v1
| {z }

n1

, v2, . . . , v2
| {z }

n2

, . . . , vk, . . . , vk
| {z }

nk

]T . (5)

Since ‖u‖2 = 1,
Pk

i=1 niv
2
i = 1, and so niv

2
i ≤ 1, ∀i, which

implies |vi| ≤ 1/
√

ni, ∀i. Thus,

max
i

|ui| = max
j

|vj | ≤ max
j

1√
nj

= max
j

p

n/nj√
n

≤
√

τ√
n

.

Therefore, X∗ is τ -incoherent.

Putting together Theorems 4 and 5, we now have the main
theorem of this subsection:

Theorem 6 (Recovery Condition for Signed Networks)
Suppose we observe edges Aij , (i, j) ∈ Ω, from an underlying
k-weakly balanced signed network X∗, and suppose that the
following assumptions hold:
A. k is bounded (k = O(1)),
B. the set of observed entries Ω is uniformly sampled, and
C. number of samples is sufficiently large, i.e. |Ω| ≥ Cτ4n log2 n,

where τ is the group imbalance of the underlying com-
plete network X∗.

Then X∗ can be perfectly recovered by solving (2), with
probability at least 1 − n−3.

In particular, if ni/n is lower bounded so that τ is a constant,
then we only need O(n log2 n) observed entries to exactly
recover the complete k-weakly balanced network.

It is known that the convex problem (2) can be exactly
solved by an SDP. However, the computational cost of SDP



might be too prohibitive in practice. Recent research pro-
vides more efficient algorithms to approximately solve (1) [1,
12]. In our experiment, we use the SVP algorithm proposed
by Jain et al.[12] which attempts to solve matrix comple-
tion problem in an efficient manner. Experimental evidence
in [12] shows that all iterates of the SVP algorithm are µ-
incoherent, in which case the matrix completion problem (1)
can be exactly solved by SVP. In Section 5, we will see that
SVP performs well in recovering weakly balanced networks.

3.2 Inference via Matrix Factorization
Though matrix completion algorithms can guarantee re-

covery for weakly balanced networks under certain condi-
tions, convex relaxation (2) does not work very well in real-
life applications, where observed values are not uniformly
distributed, which violates one of the assumptions in The-
orem 6. In addition, the methods for solving (2) cannot
scale to very large datasets. Thus, we use a gradient based
matrix factorization approach as an approximation to the
signed network completion problem. In Section 5, we will
see that a matrix factorization approach can not only boost
the accuracy of estimation but also scale to large real net-
works.

In the matrix factorization approach, we consider the fol-
lowing problem:

min
W,H∈Rk×n

X

(i,j)∈Ω

(Aij −(W T H)ij)
2 +λ‖W‖2

F +λ‖H‖2
F . (6)

Although problem (6) is non-convex, it is widely used in
practical collaborative filtering applications as the perfor-
mance is competitive or better as compared to trace-norm
minimization, while scalability is much better. For example,
to solve the Netflix problem, (6) has been applied with a fair
amount of success to factorize the dataset with 100 million
ratings [14].

Nevertheless, there is an issue when modeling signed net-
works using (6): the square loss in the first term of (6) tends
to force entries of W T H to be either +1 or −1. However,
what we care about in this completion task is the consistency
between sign((W T H)ij) and sign(Aij) rather than their dif-
ference. For example, (W T H)ij = 10 should have zero loss
when Aij = +1 if only the signs are important.

To resolve this issue, instead of using the squared loss, we
use a loss function that only penalizes the inconsistency in
sign. More precisely, objective (6) can be generalized as:

min
W,H∈Rk×n

X

(i,j)∈Ω

ℓ(Aij , (W
T H)ij) + λ‖W‖2

F + λ‖H‖2
F . (7)

In order to penalize inconsistency of sign, we can change the
loss function to be the sigmoid or squared-hinge loss:

ℓsigmoid(x, y) = 1/(1 + exp(xy)),

ℓsquare-hinge(x, y) = (max(0, 1 − xy))2. (8)

In Section 5, we will see that applying sigmoid or square-
hinge loss functions slightly improves prediction accuracy.
Time complexity. There are two main optimization tech-
niques for solving (7) for large-scale data: Alternating Least
Squares (ALS) and Stochastic Gradient Descent (SGD) [14].
ALS solves the squared loss problem (6) by alternately min-
imizing W and H. When one of W or H is fixed, the op-
timization problem becomes a least squares problem with
respect to the other variable, so that we can use well devel-
oped least squares solvers to solve each subproblem. Given

Table 1: Network Statistics

# nodes # edges + edges - edges
Wikipedia 7,065 103,561 78.7% 21.2%
Slashdot 82,144 549,202 77.4% 22.6%
Epinions 131,828 840,799 85.0% 15.0%

an n×n observed matrix with m observations, the time com-
plexity for each subproblem requires O(mk2) operations to
form the Hessian matrices, and O(nk3) to solve the least
squares problem. Therefore, the time complexity of ALS is
O(t1(mk2 + nk3)) where t1 is the number of iterations.

However, ALS can only be used when the loss function
is square loss. To solve the general form (7) with various
loss functions, we use stochastic gradient descent (SGD).In
SGD, for each iteration, we pick an observed entry (i, j)
at random, and only update the ith column of W and the
jth column of H, denoted by wi and hj , respectively. The
update rule for wi is given by:

wi ← wi − η

„

∂ℓ(Aij , (W
T H)ij)

∂wi

+ λwi

«

, (9)

where η is a small step size. The update rule for hj is similar
to (9). Since each SGD update (9) costs O(k) time, after
a sweep through all known entries it will take O(mk) time.
Therefore, the time complexity for SGD is O(t2mk), where
t2 is the number of iterations taken by SGD to converge.
Notice that although the complexity of SGD is linear in k,
it usually takes many more iterations to converge compared
with ALS, i.e., t2 > t1.

On the other hand, all previous link or cycle-based sign
inference algorithms [17, 5] require time at least O(nm) be-
cause all of them contain some n×n sparse matrix multipli-
cation steps in model construction. Moreover, for all length-l
paths, the number of features is exponential in l. Therefore,
assuming the number of features in consideration is d, the
time complexity for various methods will be O(dnm). The
time complexity is summarized in the following table:

HOC ALS SGD

O(dnm) O(t1(nk3 + mk2)) O(t2km)

Since in real large-scale social networks, m > n ≫ t1, t2, k,
this shows our alternative minimization approach is much
more efficient for sign inference.

3.3 Low Rank Structure in Real Datasets
We now show that real networks tend to exhibit low-

rank structure to a much greater extent than random net-
works. We consider three large-scale online social networks
– Wikipedia, Epinions[17], and Slashdot[15]1. Table 1 shows
the statistics of these datasets. We compare these real net-
works with random networks as the baseline. The random
network is created using the Erdös-Rényi model with spar-
sity equal to the Wikipedia network.

To measure the closeness of observed entries between the
original network and the completed matrix, we first de-
rive the low-rank complete matrix A∗ by conducting ma-
trix completion using the observed entries Aij . Then, we
look at the relative error on the observed set Ω: errΩ =
‖W ◦ (A∗ − A)‖F /‖A‖F , where Wij = 1 if (i, j) ∈ Ω and
Wij = 0 otherwise, and ◦ denotes element-wise multiplica-

1All the three data sets can be downloaded from SNAP
(http://snap.stanford.edu)

http://snap.stanford.edu


tion. Clearly, smaller errΩ indicates better approximation
for the observed entries.

In our experiment, we choose matrix factorization ap-
proach for matrix completion, with ranks k = 1, 2, 4, 8, 16
and 32. For each network (three real datasets and the ran-
dom network), we complete the network with different k and
compute errΩ. The result is shown in Figure 2. Compared
with the purely random network, the three real-life networks
achieve much smaller errΩ for each small k. This suggests
that low-rank matrices provide a better approximation of
the observed entries for each real-life network, as compared
to random Erdös-Rényi graphs.

0 5 10 15 20 25 30 35
0.5

0.6

0.7

0.8

0.9

1

rank k

re
la

tiv
e 

er
ro

r o
n 

Ω

 

 

Epinions

Slashdot

Wiki

Random Network

Figure 2: Relative error between adjacency matrix and com-
pleted matrix with respect to observed entries, for real-
life networks versus a random network. Real-life networks
achieve much smaller relative error for every k as compared
with the random network.

4. CLUSTERING
In this section, we see how to take advantage of the low-

rank structure of signed networks to find clusters. Based on
weak balance theory, the general goal of clustering for signed
graphs is to find a k-way partition such that most within-
group edges are positive and most between-group edges are
negative. One of the state-of-the-art clustering algorithms
[16] extends the notion of Laplacian to signed networks, and
proposes a spectral clustering algorithm based on a signed
Laplacian matrix. Given a partially observed signed net-
work A, the signed Laplacian is defined as D̄ − A, where
D̄ is a diagonal matrix in which D̄ii =

P

j 6=i
|Aij |. By this

definition, the ratio cut of signed networks can be derived by
computing the top k eigenvectors of L̄, say U ∈ R

n×k, and
subsequently running the k-means algorithm on U to get
the clusters. This procedure is analogous to the standard
spectral clustering algorithm on unsigned graphs; the only
difference being that the usual graph Laplacian is replaced
by the signed Laplacian.

However, there is no theoretical guarantee that the use
of the signed Laplacian can recover the true groups in a
weakly-balanced signed network. To overcome this theoret-
ical defect, we now give an algorithm which, under certain
conditions, is able to recover the real structure even with
partial observations. The key idea is that since in Theorem
3 we proved that the k-weakly balanced graphs have rank
up to k, we can obtain good clustering by first running a
matrix completion algorithm, say trace-norm minimization,
on A. The following theorem shows that the eigenvectors of
the completed matrix possess a desirable property:

Theorem 7
Let Aij , (i, j) ∈ Ω, be entries observed from a complete k-
weakly balanced network X∗, and assume that the solution
of (2) is X with eigenvectors U = [u1,u2, · · · ,uk]. If the

Algorithm 1: Clustering with Matrix Completion

Input: Adjacency matrix A, number of clusters k
Output: Cluster indicators

1. X ← Completion(A) with any matrix completion
algorithm.

2. U ← Top k eigenvectors of X.
3. Run any feature-based clustering algorithm on U .

assumptions in Theorem 6 are all satisfied, then with high
probability Ui,: = Uj,: iff i and j are in the same cluster in
X∗.

Proof. From Theorem 6, we know the recovered matrix
X will be X∗ with high probability. Suppose u1, . . . ,uk

are the k eigenvectors of X∗. From the proof of Theorem
5, the eigenvectors will have the form in (5), which means
Ui,: = Uj,: if i and j are in the same cluster. Furthermore,
when i and j are in different clusters, X∗

i,: 6= X∗
j,:, so Ui,:

cannot equal to Uj,:. This proves the theorem.

Following this theorem, the true clusters can be identified
from the eigenvectors of X when the assumptions in The-
orem 6 hold. Therefore, perfect clustering is guaranteed in
this scenario.

More generally, we can use any matrix completion method
discussed in Section 3 to complete A. For example, if we
take SVP as the matrix completion approach, we can derive
perfect clustering result if all iterates of the algorithm are
µ-incoherent. This is because under this condition, SVP
can recover X∗ exactly, so the property of eigenvectors in
Theorem 7 can again be used. Our clustering algorithm
that uses matrix completion is summarized in Algorithm 1.

It should not be surprising that our clustering algorithm is
superior to (signed) spectral clustering. In some sense, our
approach can be viewed as a spectral method, except that
it first generates missing links from the training data by
doing matrix completion. This step is simple yet crucial in
signed networks as it overcomes the sparsity of the network.
We will see that our clustering algorithm outperforms the
(signed) spectral clustering method in Section 5.

5. EXPERIMENTAL RESULTS
In this section, we perform experiments on synthetic and

real networks, and show that our proposed low-rank model
for signed networks outperforms other methods on the tasks
of sign inference and clustering. To ensure that our results
are reliable, we conduct all experiments 10 times, and aver-
age the result from all of the trials.

5.1 Sign Inference
Recall that given a partially observed signed graph A, the

sign inference task is to predict the signs of the missing links.
Although in Section 3 we focused on undirected graphs when
introducing our low rank model, we can easily extend our
sign inference algorithms to directed graphs since matrix
completion and matrix factorization algorithms are easily
adapted to the directed case. Therefore, our sign inference
experiments are all on networks that are directed.

5.1.1 Algorithms and Parameter Setting
We consider two low-rank modeling approaches proposed

in Section 3: Matrix Completion (MC) and Matrix Factor-



ization (MF). For MC methods, we use Singular Value Pro-
jection (MC-SVP) since it is efficient and effective in prac-
tice [12]. For MF methods, we mainly consider Alternating
Least Square (MF-ALS) which uses the squared loss in (7).
In real datasets, we also use Stochastic Gradient Descent
(SGD) to solve (7) with sigmoid and square-hinge losses,
denoted as MF-SGDSIG and MF-SGDSH respectively.

We compare the performance of our low rank model to
state-of-the-art approaches, such as cycle-based methods,
for the sign inference problem [17, 5]. The first cycle-based
methods are the so-called measure of social imbalance (MOI),
which predict the sign of an edge so that more cycles become
balanced [5]. If we consider cycles of arbitrary length, and
exponentially damp their importance based on length, we
get a measure we call (MOI-∞), which infers the sign of (i, j)
as sign

`

((I−βA)−1−I−βA)ij

´

. The second cycle-based ap-
proach we consider is a supervised learning approach based
on high order cycles (HOC), with features derived from cy-
cles of length 3 (i.e. triangles) [17], length 4 and length 5
(see [5] for more details). As in [5], we use HOC-3, HOC-4
and HOC-5 to denote these methods.

Some of these models require parameter setting before-
hand, such as the regularization parameter λ in MF (see
(7)) and β in MOI-∞. To select these parameters, we con-
duct a 3-fold cross validation on the training set. With the
selected parameters, we then construct the model based on
the whole training set and conduct sign inference on the
testing data.

5.1.2 Synthetic Datasets
We first compare all categories of approaches on synthetic

datasets. We choose MC-SVP, MC-ALS, MOI-∞ and HOC-
3 as representatives of MC, MF, MOI-based and HOC-based
methods respectively. We fix the underlying signed network
X∗ to be a complete 5-weakly balanced network, where the
five clusters have sizes 100, 200, 300, 400 and 500. Instead of
observing all of X∗, we assume that we only observe a par-
tial network by sampling some entries from X∗ using three
sampling procedures: uniform sampling, uniform sampling
with noise, and sampling with power-law distribution. For
each inference algorithm, we input the observed entries as
training data and calculate the sign inference accuracy on
the rest of elements.
Uniform sampling: In this scenario, we randomly sample
n2p entries from X∗, where p ∈ (0, 1) is the fraction of ob-
served entries. We vary p from 0.001 to 0.1 and plot the in-
ference accuracy in Figure 3(a). Clearly, MC-SVP and MF-
ALS outperform the cycle-based methods. MOI-∞ performs
the worst with accuracy only 50%-70%. This is because
MOI uses cycle-based measurements to make more cycles
become balanced. This inference policy can work only when
k = 2 (that is, the underlying network has strong balance),
but performs poorly when the underlying network is weakly
balanced. HOC-3 works much better than MOI-∞ since
it learns a classifier from cycle-based features rather than
simply making cycles balanced, but its accuracy drops dra-
matically when p is less than 0.05. On the other hand, both
MC-SVP and MF-ALS show high accuracy for all p ≥ 0.01.
In particular, MC-SVP can achieve 100% accuracy when
p > 0.07, which reconfirms the theoretical recovery guar-
antee stated in Theorem 6. Moreover, although MF-ALS
has no theoretical guarantee, it can still recover the ground
truth, an observation that is consistent with previous results.
Uniform sampling with noise: To make the synthetic

data more similar to real data, we further add noise into ob-
servations. Specifically, in this scenario, each observed entry
Aij has sign that is opposite to the true value X∗

ij with prob-
ability r. For clarity, we fix the fraction of observed entries
p = 0.1, and increase r from 0.01 to 0.25. The result is shown
in Figure 3(b). We can see that our low-rank modeling ap-
proaches are still clearly better than cycle-based methods
when noise level becomes higher. Moreover, MC-SVP can
still perfectly recover X∗ when the noise level r < 0.05, and
MF-ALS can also achieve perfect recovery with a smaller r.
Sampling with power-law distribution: As Section 3
mentioned, the good performance of matrix completion cru-
cially relies on the assumption that observed entries are uni-
formly sampled. However, in most real networks (for exam-
ple, Slashdot in [15]), the degree distribution follows power
law. Therefore, we examine how all approaches perform
on power-law distributed networks. We generate power-law
distributed networks using the Chung-Lu-Vu (CLV) model
proposed in [6], which allows one to generate random graphs
with arbitrary expected degree sequence. Similar to the uni-
form sampling case, we vary the fraction of observed en-
tries and plot the inference accuracy in Figure 3(c). We
can see MOI-∞ still has poor performance for weakly bal-
anced graphs. However, distinct from uniform sampling
case, MC-SVP has lower accuracy rate compared to HOC-3
when p < 0.1. This shows that MC-SVP cannot work well
given non-uniform distributed observations. On the other
hand, MF-ALS still performs better than all other methods
in power-law distributed graphs.

From all experiments on synthetic data shown in Figure
3, we can conclude that low rank modeling approaches gen-
erally do better than cycle-based methods, and the matrix
factorization approach (MF-ALS) performs the best in most
cases, even in non-uniform distributed networks. This indi-
cates MF approach should be superior than others in real
networks. This will be confirmed in the following subsection.

5.1.3 Real-life Datasets
Next we demonstrate that our low rank model is more ef-

fective than existing methods in real datasets also. Already
in Figure 3(c) we have seen that MC-SVP fails to perform
well under power-law distributed networks, so we consider
the more robust MF approaches, including MF-ALS, MF-
SGDSIG and MF-SGDSH, for experiments on real datasets.
We compare these proposed methods with the best cycle-
based methods, HOC-3, HOC-4 and HOC-5. Again we use
Wikipedia, Slashdot and Epinions to examine sign inference
algorithms on real networks. These three datasets have pre-
viously been used as benchmarks on sign inference [17, 5].

To make the comparison fair, we conduct a 10-fold cross
validation and report the average inference accuracy for each
dataset in Table 2. We observe that MF-based algorithms
clearly outperform cycle-based methods. In particular, we
observe that HOC-5 only improves HOC-3 by less than 1.5%,
while MF-based algorithms consistently improve the accu-
racy of HOC-5 by more than 2% over all datasets. In ad-
dition, MF-SGDSIG and MF-SGDSH further improve the
accuracy of MF-ALS slightly. This shows that the sigmoid
loss and square-hinge are more suitable for sign inference,
which supports the discussion in Section 3.2.

In Figure 4, we further examine the performance of these
algorithms with different levels of edge embeddedness. Em-
beddedness of edge (i, j) is defined as the number of common
neighbors of the nodes i and j, and can be thought as a mea-
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Figure 3: Accuracy of sign inference algorithms on synthetic datasets. In general, we can see that MC-SVP and MF-ALS
outperform cycle-based methods such as MOI-∞ and HOC-3. In addition, MF-ALS is more robust than MC-SVP when the
observations are sampled from a power-law distribution.

Table 2: The sign inference accuracy for MF-based algo-
rithms and cycle-based algorithms. We can see that the MF-
based algorithms are better than cycle-based algorithms.

Epinions Slashdot Wikipedia
HOC-3 0.9014 0.8303 0.8424
HOC-5 0.9080 0.8469 0.8605

MF-ALS 0.9374 0.8774 0.8814
MF-SGDSIG 0.9465 0.8789 0.8830
MF-SGDSH 0.9437 0.8835 0.8810

sure of the proximity between i and j. One might expect
that cycle-based approaches should perform better on edges
with higher embeddedness because more cycle information
is available. However, surprisingly MF-ALS achieves higher
inference accuracy regardless of the embeddedness. The per-
formance of MF-SGDSIG and MF-SGDSH is similar to MF-
ALS so they are not shown in Figure 4 for clarity.

5.1.4 Computation Time
In addition to inference accuracy, we now compare the

running time required by the different methods. As dis-
cussed in Section 3.2, matrix factorization methods are more
efficient than cycle-based algorithms in terms of time com-
plexity. Here, we further show that MF-based methods are
empirically much faster than cycle-based algorithms. The
running times are summarized in Table 3. To conduct tim-
ing tests on a large signed network, in addition to the three
real datasets as described in Table 1, we further construct a
large-scale synthetic dataset called Cluster10 where number
of edges is 100 times more than Epinions. Cluster10 is gen-
erated from a 10-weakly balanced network, in which clusters
have sizes 20000, 40000,. . . , 200000 respectively. There are
totally 1.1 million nodes and 120 million edges uniformly
observed from the complete graph. We construct this syn-
thetic data to show that our matrix factorization approach
can easily scale up to massive graphs compared to HOC-3
and HOC-5. For matrix factorization approach, we report
the time needed to solve the model by SGD (with sigmoid
and square-hinge) and ALS (with square loss). For HOC
methods which build classifiers from cycle-based features,
since the time for training phase depends on the classifier,
we only report the time for computation of features. Thus
the reported time for HOC is an underestimation for con-
structing the HOC model; even then we can see that the
time required by MF-based algorithms is much lower than
HOC methods.

In conclusion, for the sign inference problem, we can see

Table 3: Running time (in seconds) for our MF approach and
HOC on real datasets and a 1.1 million node synthetic data
Cluster10. For HOC methods, we only consider the time
for feature computation before the model training, while for
MF-based methods we report the total time for constructing
the model. We can see that MF-based methods are clearly
more efficient than cycle-based algorithms.

HOC-3 HOC-4 HOC-5 ALS SGD
Wiki 18.08 74.52 462.92 2.26 2.41

Slashdot 133.4 1936.0 >10,000 17.4 24.7
Epinions 560.64 6156.8 >10,000 28.67 37.2
Cluster10 >10,000 >10,000 >10,000 455.1 1152

that our low rank model outperforms other traditional in-
ference methods. In particular, the matrix factorization ap-
proach is clearly the most competitive method in terms of
accuracy and scalability.

5.2 Clustering
In this subsection, we show that our proposed clustering

approach, which completes the low-rank structure of signed
networks before performing clustering, outperforms spectral
clustering based on the signed Laplacian [16]. Similar to Sec-
tion 5.1.2, we conduct experiments on synthetic data gener-
ated from weakly balanced networks (note that we do not
have ground truth for clustering in the real-life datasets).
We consider a 10-weakly balanced network X∗ where size of
each group is 100. We then observe entries from X∗ with
two sampling procedures: uniform sampling and uniform
sampling with noise.

To measure the performance of clustering, we calculate
the number of edges that satisfy the ground-truth clustering,
which is defined by

X

i,j:si=sj

I(s̄i = s̄j) +
X

i,j:si 6=sj

I(s̄i 6= s̄j).

where s1, . . . , sn denote the ground-truth clustering assign-
ment for each node, and s̄1, . . . , s̄n are the clustering results
given by the clustering algorithm.

Following the procedure outlined in the previous subsec-
tion, in the uniform sampling case, we draw pn2 i.i.d. sam-
ples from all the n2 edges. Similarly, in sampling with noise,
we flip the sign of each observed edge with probability r.
The results of these two scenarios are shown in Figure 5. In
both scenarios, our proposed clustering approach is signifi-
cantly better than clustering based on the signed Laplacian.
This shows that recovering the low-rank structure of signed
networks leads to improved clustering results.
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Figure 4: Accuracy of sign inference algorithms with different levels of embeddedness. These plots show the accuracy for
edges whose embeddedness is at least T . We can see that MF-ALS consistently gives us higher accuracy for all thresholds T .
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Figure 5: Clustering partially observed synthetic data. Fig-
ure 5(a) is the result without noise and Figure 5(b) is the
result with noise. In both cases, clustering with MC-SVP
performs significantly better than using signed Laplacian.

6. CONCLUSIONS
In this paper, we have proposed a low rank modeling ap-

proach for signed network analysis. We have shown that
the low-rank structure of signed networks naturally emerges
from weak balance theory. The sign inference problem in
such networks can thus be modeled as a low-rank matrix
completion problem. We first showed that missing links in
a signed network can be exactly recovered by matrix com-
pletion algorithms under certain conditions, and then intro-
duced a more efficient matrix factorization approach for sign
inference. Furthermore, we showed that the low rank model
can also be used for clustering. Experiments conducted on
both synthetic data and real networks show that our low
rank model improves sign inference significantly, in terms
of both accuracy and speed. Clustering results also become
more favorable by making use of the low rank model.
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