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Turing Machine Extensions 
Read K & S 4.3.1, 4.4. 
Do Homework 19. 
 

Turing Machine Definitions 
 
An alternative definition of a Turing machine: 
 (K, Σ, Γ, δ, s, H): 
 
Γ is a finite set of allowable tape symbols.  One of these is ❑. 
 
Σ is a subset of Γ not including ❑, the input symbols. 
 
δ is a function from: 
   K × Γ                to       K ×      (Γ - {❑}) ×  {←, →} 
                                     state,  tape symbol,   L or R 
 
  ❑ ❑ a b b a ❑ ❑ ❑  
 
 
Example transition:  ((s, a), (s, b, →)) 
 

Do these Differences Matter? 
Remember the goal: 
 
Define a device that is: 
• powerful enough to describe all computable things, 
• simple enough that we can reason formally about it 
 
Both definitions are simple enough to work with, although details may make specific arguments easier or harder. 
 
But, do they differ in their power? 
 
Answer: No. 
 
Consider the differences: 
• One way or two way infinite tape:  we're about to show that we can simulate two way infinite with ours. 
• Rewrite and move at the same time: just affects (linearly) the number of moves it takes to solve a problem. 

 
Turing Machine Extensions 

 
In fact, there are lots of extensions we can make to our basic Turing machine model.  They may make it easier to write Turing 
machine programs, but none of them increase the power of the Turing machine because: 
 

We can show that every extended machine has an equivalent basic machine. 
 
We can also place a bound on any change in the complexity of a solution when we go from an extended machine to a basic 
machine. 
 
Some possible extensions: 
• Multiple tapes 
• Two-way infinite tape 
• Multiple read heads 
• Two dimensional “sheet” instead of a tape 
• Random access machine 
• Nondeterministic machine 
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Multiple Tapes 
 
 
  ❑ ❑ a b b a ❑ ❑ ❑  
 
 
 
  ❑ b a b b a ❑ ❑ ❑  
 
 
 
  ❑ ❑ 1 2 2 1 ❑ ❑ ❑  
 
 
The transition function for a k-tape Turing machine: 
 
((K-H)  ,  Σ1               to             (K,  Σ1' ∪  {←, →} 
 ,  Σ2     , Σ2' ∪  {←, →} 
 ,   .   ,   . 
 ,   .   ,   . 
 ,   Σk)   , Σk' ∪  {←, →}) 
 
Input: input as before on tape 1, others blank 
Output: output as before on tape 1, others ignored 

 
An Example of a Two Tape Machine 

Copying a string 
 
  ❑ ❑ a b b a ❑ ❑ ❑  
 
 
 
  ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑  
 
 
 
 
  ❑ ❑ a b b a ❑ ❑ ❑  
 
 
 
  ❑ ❑ a b b a ❑ ❑ ❑  
 
 
 
 
  ❑ ❑ a b b a ❑ ❑ ❑  
 
 
 
  ❑ ❑ a b b a ❑ ❑ ❑  
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Another Two Tape Example - Addition 
 
  ❑ 1 0 1 ; 1 1 0 ❑  
 
 
  ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑  
 
 
 
 
  ❑ 0 0 0 0 1 1 0 ❑  
 
 
  ❑ 1 0 1 ❑ ❑ ❑ ❑ ❑  
 
 

Adding Tapes Adds No Power 
Theorem: Let M be a k-tape Turing machine for some k ≥ 1.  Then there is a standard Turing machine M' where Σ ⊆  Σ', and such 
that: 
• For any input string x, M on input x halts with output y on the first tape iff M' on input x halts at the same halting state and 

with the same output on its tape. 
• If, on input x, M halts after t steps, then M' halts  after a number of steps which is O(t ⋅ (|x| + t)). 
Proof: By construction 
 
   � ❑ a b a ❑ ❑  
  � 0 0 1 0 0 0  0     ❑     ❑ 
   � a b b a b a 
   0 1 0 0 0 0 0 
 
Alphabet (Σ') of M' = Σ ∪  (Σ × {0, 1})k 
 e.g.,  �, (�, 0, �, 0), (❑, 0, a, 1) 

The Operation of M' 
   � ❑ a b a ❑ ❑  
  � 0 0 1 0 0 0  0     ❑     ❑ 
   � a b b a b a 
   0 1 0 0 0 0 0 
 
1. Set up the multitrack tape: 

1) Shift input one square to right, then set up each square appropriately. 
2. Simulate the computation of M until (if) M would halt: (start each step to the right of the divided tape) 

1) Scan left and store in the state the k-tuple of characters under the read heads. Move back right. 
2) Scan left and update each track as required by the transitions of M.  Move back right. 

i) If necessary, subdivide a new square into tracks. 
3. When M would halt, reformat the tape to throw away all but track 1, position the head correctly, then go to M's halt 

state. 
How Many Steps Does M' Take? 

Let: x be the input string, and  
 t be the number of steps it takes M to execute. 
Step 1 (initialization)    O(|x|) 
Step 2 ( computation) 
 Number of passes = t 
 Work at each pass: 2.1 = 2 ⋅ (length of tape) 
             = 2 ⋅ (|x| + 2 + t) 
    2.2 = 2 ⋅ (|x| + 2 + t) 
 Total = O(t ⋅ (|x|  + t)) 
Step 3 (clean up)    O(length of tape) 
Total = O(t ⋅ (|x|  + t)) 
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Two-Way Infinite Tape 
Our current definition: 
 
    � a b c d ❑ ❑ 
 
Proposed definition: 
 
   ❑ ❑ g f e a b c d ❑  
 
Simulation: 
 
 
Track 1    � a b c d ❑ ❑ 
 

 
 
Track 2    � e f g ❑ ❑ ❑ 
 

 
Simulating a PDA 

The components of a PDA: 
• Finite state controller 
• Input tape     
• Stack 
The simulation: 
• Finite state controller: 
• Input tape: 
• Stack: 
 
Track 1    � a a a b b ❑ 
  (Input) 
 
Track 2    � ❑ a a ❑ ❑ ❑ 
 
 
Corresponding to 
    a 
    a 

 
 

Simulating a Turing Machine with a PDA with Two Stacks 
 

  �    a     b    a    a     #    a    a    b    a 

                          ���� 
 
                           a                         # 
                           a                         a 
                           b                         a 
                           a                         b 
                           �                         a 
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Random Access Turing Machines 
A random access Turing machine has: 
• a fixed number of registers 
• a finite length program, composed of instructions with operators such as read, write, load, store, add, sub, jump 
• a tape 
• a program counter 
Theorem:  Standard Turing machines and random access Turing machines compute the same things.  Furthermore, the number of 
steps it takes a standard machine is bounded by a polynomial in the number of steps it takes a random access machine. 

Nondeterministic Turing Machines 
 
A nondeterministic Turing machine is a quintuple   (K, Σ, ∆, s, H) 
where K, Σ, s, and H are as for standard Turing machines, and ∆ is a subset  of 
 ((K - H) × Σ) × (K × (Σ ∪  {←, →})) 
 
     �❑abab 
 
 
 �❑abab          �❑abab 
 
 
     �❑abab    �❑bbab 
 
What does it mean for a nondeterministic Turing machine to compute something? 
• Semidecides - at least one halts. 
• Decides   -  ? 
• Computes  -  ? 

Nondeterministic Semideciding 
 
Let M = (K, Σ, ∆, s, H) be a nondeterministic Turing machine.  We say that M accepts an input  
 w ∈  (Σ - {�, ❑})* iff  
(s, �❑w) yields a least one accepting configuration. 
 
We say that M semidecides a language  
 L ⊆  (Σ - {�, ❑})* iff 
  for all w ∈  (Σ - {�, ❑})*: 
     w ∈  L iff  
    (s, �❑w) yields a least one halting configuration. 
 

An Example 
L = {w ∈  {a, b, c, d}* : there are two of at least one letter} 
            ¬a/→ 
 
      2                  a 
 
          ∀ /→            a/→                 ¬b/→ 
        → 
             0  ❑/→      1          b/→  3       b  h 
 
             c/→                 ¬c/→       c 
 
            d/→  4 
 
          ¬d/→     d 
 
      5 
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Nondeterministic Deciding and Computing 
 
M decides a language L if, for all w ∈  (Σ - {�, ❑})* : 
1. all of M's computations on w halt, and 
2. w ∈  L iff at least one of M's computations accepts. 
 
M computes a function f if, for all w ∈  (Σ - {�, ❑})* : 
1. all of M's computations halt, and 
2. all of M's computations result in f(w) 
 
Note that all of M's computations halt iff: 
 
There is a natural number N, depending on M and w, such that there is no configuration C satisfying 
 (s, �❑w) |-M

N C. 
An Example of Nondeterministic Deciding 

 
L = {w ∈  {0, 1}* : w is the binary encoding of a composite number} 
 
M decides L by doing the following on input w: 
 
1. Nondeterministically choose two binary numbers 1 < p, q, where |p| and |q| ≤ |w|, and write them on the tape, after w, 

separated by ;. 
 
   �❑110011;111;1111❑❑ 
 
2. Multiply p and q and put the answer, A, on the tape, in place of p and q. 
 
   �❑110011;1011111❑❑ 
 
3. Compare A and w.  If equal, go to y.  Else go to n. 
 

Equivalence of Deterministic and Nondeterministic Turing Machines 
 
Theorem: If a nondeterministic Turing machine M semidecides or decides a language, or computes a function, then there is a 
standard Turing machine M' semideciding or deciding the same language or computing the same function. 
 
Note that while nondeterminism doesn’t change the computational power of a Turing Machine, it can exponentially increase its 
speed! 
  
Proof: (by construction)  
For semideciding: We build M', which runs through all possible computations of M.  If one of them halts, M' halts 
 
Recall the way we did this for FSMs:  simulate being in a combination of states. 
 
Will this work here? 
 
What about: Try path 1.  If it accepts, accept.  Else 
  Try path 2.  If it accepts, accept.  Else 
      •  
      •  
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The Construction 
 
At any point in the operation of a nondeterministic machine M, the maximum number of branches is 
 r =           |K|    ⋅      (|Σ| + 2) 
               states        actions 
 
So imagine a table: 
 
 1 2 3  r 
(q1,σ1)  (p-,σ-) (p-,σ-) (p-,σ-) (p-,σ-) (p-,σ-) 
(q1,σ2) (p-,σ-) (p-,σ-) (p-,σ-) (p-,σ-) (p-,σ-) 
(q1,σn)      
(q2,σ1)      
      
(q|K|,σn)      
 
Note that if, in some configuration, there are not r different legal things to do, then some of the entries on that row will repeat. 

 
The Construction, Continued 

Md:   (suppose r = 6) 
 
  Tape 1:   Input 
   
  Tape 2:   1   3   2   6   5   4   3   6   
 
Md chooses its 1st move from column 1 
Md chooses its 2nd move from column 3 
Md chooses its 3rd move from column 2 
  •  
  •  
 until there are no more numbers on Tape 2 
 
Md either: 
• discovers that M would accept, or 
• comes to the end of Tape 2. 
 
In either case, it halts. 

The Construction, Continued 
M' (the machine that simulates M): 
 
  Tape 1:   Input 
   
  Tape 2:         Copy of Input 
            Md 
  Tape 3:   1   3   2   6   5   4   3   6   
 
Steps of M': 
 write ε on Tape 3 
 until Md accepts do 
  (1) copy Input from Tape 1 to Tape 2 
  (2) run Md 

  (3) if Md accepts, exit 
  (4) otherwise, generate lexicographically next string on Tape 3. 
 
Pass 1 2 3  7 8 9   
Tape3 ε 1 2 ⋅⋅⋅ 6 11 12 ⋅⋅⋅ 2635 
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Nondeterministic Algorithms 
 
 
 

Other Turing Machine Extensions 
 

Multiple heads (on one tape) 
Emulation strategy:  Use tracks to keep track of tape heads.  (See book) 

 
Multiple tapes, multiple heads 

Emulation strategy:  Use tracks to keep track of tapes and tape heads. 
 

Two-dimensional semi-infinite “tape” 
Emulation strategy:  Use diagonal enumeration of two-dimensional grid.  Use second tape to help you keep track of 
where the tape head is.  (See book) 

 
Two-dimensional infinite “tape” (really a sheet) 

Emulation strategy:  Use modified diagonal enumeration as with the semi-infinite case. 
 
 

What About Turing Machine Restrictions? 
 
Can we make Turing machines even more limited and still get all the power? 
 
Example: 
 
We allow a tape alphabet of arbitrary size.  What happens if we limit it to: 
 
• One character? 
• Two characters? 
• Three characters? 
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Problem Encoding, TM Encoding, and the Universal TM 
 
Read K & S 5.1 & 5.2. 
 

Encoding a Problem as a Language 
 

A Turing Machines deciding a language is analogous to the TM solving a decision problem.   
 
Problem:  Is the number n prime? 
Instance of the problem:  Is the number 9 prime? 
Encoding of the problem, ����n����:  n as a binary number.  Example:  1001 
 
 
Problem:  Is an undirected graph G connected? 
Instance of the problem:  Is the following graph connected? 
 
 1           2            3 
 
      4              5   
 
Encoding of the problem, ����G����:  

1) |V| as a binary number 
2) A list of edges represented by pairs of binary numbers being the vertex numbers that the edge connects 
3) All such binary numbers are separated by “/”. 
Example:  101/1/10/10/11/1/100/10/101 

 
Problem View vs. Language View 

 
Problem View:  It is unsolvable whether a Turing Machine halts on a given input.  This is called the Halting Problem. 
 
Language View: Let H = {�M, w� : TM M halts on input string w} 
H is recursively enumerable but not recursive. 
 

The Universal Turing Machine 
 
Problem:  All our machines so far are hardwired. 
 
Question: Does it make sense to talk about a programmable Turing machine that accepts as input 
  program   input string 
executes the program, and outputs 
        output string           
 
Yes, it's called the Universal Turing Machine.  
 
Notice that the Universal Turing machine semidecides H = {�M, w� : TM M halts on input string w} = L(U). 
 
To define the Universal Turing Machine U we need to do two things: 
1.  Define an encoding operation for Turing machines. 
2.  Describe the operation of U given an input tape  containing two inputs: 

• encoded Turing machine M,  
• encoded input string to be given to M. 
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Encoding a Turing Machine M 
 
We need to describe M = (K, Σ, δ, s, H) as a string.  To do this we must: 
1. Encode δ                         
2. Specify s. 
3. Specify H (and y and n, if applicable) 
 
1. To encode δ, we need to: 

1. Encode the states 
2. Encode the tape alphabet 
3. Specify the transitions 

 
1.1 Encode the states as 
 qs   : s ∈  {0, 1}+ and  
 |s| = i and  
 i is the smallest integer such that 2i ≥ |K| 
 
 Example:   9 states         i = 4 
  s = q0000, 
  remaining states: q0001, q0010, q0011, 
    q0100, q0101, q0110, q0111, q1000 

 
Encoding a Turing Machine M, Continued 

1.2 Encode the tape alphabet as 
 as   : s ∈  {0, 1}+ and  
 |s| = j and  
 j is the smallest integer such that 2j ≥ |Σ| + 2  (the + 2 allows for ← and →) 
  Example:  Σ = {�, ❑, a, b}    j = 3 
   ❑ =  a000 
   � =  a001 
   ← =  a010 
   → =  a011 
   a =  a100 
   b =  a101 
 

Encoding a Turing Machine M, Continued 
1.3 Specify transitions as   (state, input, state, output) 
            Example:  (q00,a000,q11,a000) 
2. Specify s as q0i 

3. Specify H: 
• States with no transitions out are in H. 
• If M decides a language, then H = {y, n}, and we will adopt the convention that y is the lexicographically smaller of 

the two states. 
  y = q010          n = q011 

Encoding Input Strings  
 
We encode input strings to a machine M using the same character encoding we use for M. 
For example, suppose that we are using the following encoding for symbols in M: 
 

symbol representation 
❑ a000 
� a001 
← a010 
→ a011 
a a100 

 
Then we would represent the string s = �aa❑a as "s" = �s�  = a001a100a100a000a100 
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An Encoding Example 
Consider M = ({s, q, h}, {❑, �,a}, δ, s, {h}), where δ = 
 

state symbol δ 
s a (q, ❑) 
s ❑ (h, ❑) 
s � (s, →) 
q a (s, a) 
q ❑ (s, →) 
q � (q, →) 

 
 
 
The representation of M, denoted, "M", �M�, or sometimes ρ(M) =   
(q00,a100,q01,a000), (q00,a000,q11,a000), (q00,a001,q00,a011), 
(q01,a100,q00,a100), (q01,a000,q00,a011), (q01,a001,q01,a011) 

 
Another Win of Encoding 

 
One big win of defining a way to encode any Turing machine M:   

• It will make sense to talk about operations on programs (Turing machines).  In other words, we can talk about some 
Turing machine T that takes another Turing machine (say M1) as input and transforms it into a different machine 
(say M2) that performs some different, but possibly related task. 

 
Example of a transforming TM T: 
Input: a machine M1 that reads its input tape and performs some operation P on it.   
Output: a machine M2 that performs P on an empty input tape: 
 
 
>R     x ≠ ❑          ❑ 
 
    ❑ 
 
  L�  R  M1 

 
The Universal Turing Machine 

The specification for U: 
  U("M" "w") = "M(w)" 
 
            "M ------------------------------ M"        "w------------------------w"  
   1 0 0 0 0 0 0     
  � ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑  ❑ 
   ❑ ❑ ❑ ❑ ❑ ❑ ❑  
   ❑ ❑ ❑ ❑ ❑ ❑ ❑�  
   ❑ ❑ ❑ ❑ ❑ ❑ ❑  
 
                "�            ❑"        "w--------------------w" ❑ ❑  
   1 0 0 0 0 0 0     
  �          "M ---------------------------- M" ❑ ❑ ❑ ❑  ❑   
   1 0 0 0 0 0 0  
   q 0 0 0 ❑ ❑ ❑  
   1 ❑ ❑ ❑ ❑ ❑ ❑  
 
Initialization of U: 

1. Copy "M" onto tape 2 
2. Insert "�❑" at the left edge of tape 1, then shift w over. 
3. Look at "M", figure out what i is, and write the encoding of state s on tape 3. 

state/symbol representation 
s q00 
q q01 
h q11 
❑ a000 
� a001 
← a010 
→ a011 
a a100 
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The Operation of U 
 
                a 0 0 1 a 0 0   
   1 0 0 0 0 0 0     
  �          "M ---------------------------- M" ❑ ❑ ❑ ❑  ❑   
   1 0 0 0 0 0 0  
   q 0 0 0 ❑ ❑ ❑  
   1 ❑ ❑ ❑ ❑ ❑ ❑  
 
Simulate the steps of M: 
 
1.  Start with the heads:  
 tape 1: the a of the character being scanned, 
 tape 2: far left 
 tape 3: far left 
 
2.  Simulate one step: 
 1. Scan tape 2 for a quadruple that matches current state, input pair.  
 2. Perform the associated action, by changing tapes 1 and 3.  If necessary, extend the tape. 
 3. If no quadruple found, halt.  Else go back to 2. 

 
An Example 

 
Tape 1:  a001a000a100a100a000a100 
   �      ❑      a       a      ❑     a 
 
Tape 2:  (q00,a000,q11,a000), (q00,a001,q00,a011), 
   (q00,a100,q01,a000), (q01,a000,q00,a011), 
 (q01,a001,q01,a011), (q01,a100,q00,a100) 
 
Tape 3:  q01 
 
 
Result of simulating the next step: 
 
Tape 1:  a001a000a100a100a000a100 
   �      ❑     a      a      ❑     a 
 
Tape 3:  q00 
 

 
If A Universal Machine is Such a Good Idea … 

 
Could we define a Universal Finite State Machine?   
 
Such a FSM would accept the language 
 L = {"F" "w" : F is a finite state machine, and w ∈  L(F) } 
 
 


