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Object Recognition with
Single Depth Images



Pose Recognition in Parts

Depth Image Body Parts 3D Joint Est.
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Image Credit: Shotton et al. — Real-Time Human Pose Recognition in Parts from Single Depth Images



Microsoft Kinect

Released: Nov 4, 2010
Color: 640 x 480@ 32 bits
IDepth: 640 x 480 @ 16bits|
Frame Rate: 30/sec

ldeal Range: 1.2m ~ 3.5m N
Operational Range: 0.7m ~ 6.om

Tracking: Up to 6 people, including 2 active players
Method: 20-point joint tracking per player

Opened doors to new research (and games)!

Source: www.xbox.com/en-US/kinect



Microsoft Kinect

Image Credit: www.gamerant.com



Skeletal Images Demo Time!

Windows SDK 1.5 & Toolkit 1.6




Depth Feature

Depth Comparison Feature

weak but efficient
o _ depth invariant
offsets in pixel distance %
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Image Credit: Shotton et al. — Real-Time Human Pose Recognition in Parts from Single Depth Images



Random Decision Tree

Randomly generate Training Pixels
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Source: www.iis.ee.ic.ac.uk/~tkkim/iccvog_tutorial



Random Decision Forest

Ensemble of random decision trees
final distributions are averaged
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Source: www.iis.ee.ic.ac.uk/~tkkim/iccvog_tutorial
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Forest Classfication

Image Credit: www.iis.ee.ic.ac.uk/~tkkim/iccvog_tutorial



Image Credit: www.iis.ee.ic.ac.uk/~tkkim/iccvog_tutorial
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Experimental Setup

B3DO dataset with objects
bounding box ground truth
300~350 training images
2000~3000 pixels perimage
Fixed and random features (uv pairs)

4~16 fixed, o~150 random
TreeBagger function from Matlab

16 trees, 80% of the samples used per tree

quad core computer w/ 16GB RAM
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B3DO Dataset

Berkeley 3D Object Dataset
household object detection
849 images (color, raw depth, smoothed)
89 object classes

Color Raw Depth Smoothed

Source: Berkeley 3D Object Dataset (www.kinectdata.com) 13



B3DO Dataset
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Source: Berkeley 3D Object Dataset (www.kinectdata.com) 14



Ground Truth

VOC format bounding box  [eowe [ Trepoora [ ]

bowl monitor

inevitable overlaps -

create pixel-level ground truth




Ground Truth

VOC format bounding box pottle ceyboard

monitor

create pixel-level ground truth

inevitable overlaps
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Feature Selection

Random features
body parts are deformable, each with unique shapes
find the best from large samples of random features

Fixed features
household objects are rigid with defined shapes
might be sufficient with few known features

7ol S
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Feature Map

Depth Image
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Feature Map =




Varying # of Random Features

5o Features

Yinil punouo

150 Features

So.Jnljego4 00T




Varying # of Random Features

5o Features

Yinil punouo

150 Features

So.Jnljego4 00T




Varying # of Random Features
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Varying # of Fixed Features
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Varying Normalization

Ground Truth
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Varying Normalization
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Varying Normalization
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