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Context in Detection

Myopic View of
Local Objects

Image Credit: A. Torralba, K.P. Murphy, W.T. Freeman — Using Forest to See the Trees: Exploiting Context for Visual Object Detection and Localization



Using the Forest to See the Trees
- Exploiting Context for Visual Object Detection and Localization

A.Torralba, K. P. Murphy, W.T. Freeman




Overview

e Past Approach

° associate objects with other
objects in the image

o presence of pedestrians given
presence of cars

* Holistic Approach

> associate objects with the scene
category as a single entity

o presence of pedestrians given
street scene

Image Credit: A. Olivia, A. Torralba. — Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope



Goals

» Use global features to obtain contextual prior
for object categories

* Develop a probabilistic framework for
combining local (bottom-up) and global (top-
down) features

* Target Problems
> object presence detection (is there a car?)

o object localization (where is the car?)
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Local Features

* Preview of next week’s paper on multiclass and
multiview object detection

> local feature boosting using part-model
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Image Credit: http://people.csail.mit.edu/torralba/shortCourseRLOC/CVPR2007 _part3.ppt
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Local Features
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Image Credit: http://people.csail.mit.edu/torralba/shortCourseRLOC/CVPR2007 _part3.ppt



8-Scene Dataset

Fields Mountains

Image Credit: A. Olivia, A. Torralba. — Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope



Object Presence

¢ Is the object in the image?

o binary classifier

> prob. of object presence given gist

* How many objects are in the image!
° categorize the scene from gist (quantization)
o prob. of having n objects given scene
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Image Credit: A. Olivia, A. Torralba. — Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope
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Object Localization

* Where are the objects!?
° local feature descriptors
> confidence score cit per region 1

> use top D (~10) most confident regions for evaluation

Image Credit: A. Torralba, K.P. Murphy, W.T. Freeman — Using Forest to See the Trees: Exploiting Context for Visual Object Detection and Localization



Object Localization

e Location trimming using gist
> mixture of experts model
> predict most likely vertical location

> “mask out” unlikely regions for individual objects

Image Credit: A. Torralba, K.P. Murphy, W.T. Freeman — Using Forest to See the Trees: Exploiting Context for Visual Object Detection and Localization



Integrated Model

e Combine global and local features

* Without location trimming

* Prob. of object being present given confidence
scores and gist
o find the number of objects present using gist (global)

> show that many confidence scores (local)
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Integrated Model

e With location trimming

» Add a location term [} given presence of object
and gist

o suppress or boost confidence scores according to
location of confidence region
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Results

» 2688 images with 8 scenes
° half for training, half for testing

* Focused solely on car identification

* Integrated model is better than local features only

Integrated

Image Credit: A. Torralba, K.P. Murphy, W.T. Freeman — Using Forest to See the Trees: Exploiting Context for Visual Object Detection and Localization



Results

Object presence detection Object localization
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e Improves precision but not recall

> removes false-positives

e Context oracle doesn’t improve the performance
as much for localization



Evaluation - Strength

e Probabilistic information fusion

* Boost confidence of probable regions

o suppress confidence of non-probable regions
* Location priming makes intuitive sense

» Better performance than with only local features

Image Credit: A. Torralba, K.P. Murphy, W.T. Freeman — Using Forest to See the Trees: Exploiting Context for Visual Object Detection and Localization



Evaluation - Weakness

* Tested with only cars
* Boost false positives within probable regions

* 75% accuracy on scene detector

o better than object detector but not perfect

o Still relies heavily on object detector accuracy

Image Credit: A. Torralba, K.P. Murphy, W.T. Freeman — Using Forest to See the Trees: Exploiting Context for Visual Object Detection and Localization



Evaluation - Weakness

* Scenes with less spatial regularity

° suppress true positives within non-probable regions
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Image Credit: A. Torralba, K.P. Murphy, W.T. Freeman — Using Forest to See the Trees: Exploiting Context for Visual Object Detection and Localization



Summary

* Overall thoughts

o successfully incorporated scene information into a
probabilistic model

> scene context helps to reduce false-positives
° localization is much harder than presence detection

> object detector accuracy is still crucial

* Extension
> more datasets, more objects

> multiple objects in the same image



Multi-Class Segmentation with Relative Location Prior

S. Gould, J. Rodgers, D. Cohen, G. Elidan, D. Koller




Overview

e Multiclass image segmentation

o classify all pixels in an image

o leverage context information for spatial relationships
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Image Credit: S. Gould, J. Rodgers, D. Cohen, G. Elidan, D. Koller — Multi-class Segmentation with Relative Location Prior




Conditional Random Fields

e Discriminative undirected probabilistic model

° pair-wise neighbors, no long range dependencies

* Node potentials

> object class likelihood

* Pair-wise potentials

o label smoothness preference

Image Credit: S. Gould, J. Rodgers, D. Cohen, G. Elidan, D. Koller — Multi-class Segmentation with Relative Location Prior 26



Relative Location Prior

* Encodes relative location between object classes
> conditioned on offset  p(c; = car|c; = road, D(S;, S;))

* Each superpixel votes for the most likely label

for all other superpixels
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Image Credit: S. Gould, J. Rodgers, D. Cohen, G. Elidan, D. Koller — Multi-class Segmentation with Relative Location Prior



Relative Location Prior

* Encodes relative location between object classes

> conditioned on offset  p(c¢; = car|c; = road, D(S;, S;))

* Each superpixel votes for the most likely label
for all other superpixels
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Image Credit: S. Gould, J. Rodgers, D. Cohen, G. Elidan, D. Koller — Multi-class Segmentation with Relative Location Prior



Relative Location Prior
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o I e
e ]
el =]
1@ (el [P
ENEEENEE
ENEE-CEN
LIVWEN L YO=

face water sky cow tree grass building

car

Image Credit: S. Gould, J. Rodgers, D. Cohen, G. Elidan, D. Koller — Multi-class Segmentation with Relative Location Prior



Connections

e Probabilistic framework

* Leveraging contextual relationships

° location priming vs. relative location prior

* Sensitive to first stage errors

o scene detector vs. appearance classifier

Found it!
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