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Question – How to browse such a collection and 
search for someone?



 

 

 

Problem Definition





 



Applications

 
1. Photo browsing
2. Surveillance 
3. Content based querying / search 

- Richer search experience.



CHALLENGES



Challenges

 
 
 
 

 
 
 
 Severe occlusion Low resolutionPose Change



Challenges (contd..)

Photos from 100s of users;
different viewpoints

Different capture devices 
from different people.

Matching 100s of people where even faces are not clearly 
visible.

http://homes.cs.washington.edu/~rahul/data/CVPR_supp/index.html

http://homes.cs.washington.edu/~rahul/data/CVPR_supp/index.html


A particular “Waldo” appears in a small fraction 
of the entire collection. 

Challenges (contd..)

http://homes.cs.washington.edu/~neeraj/projects/facesearch/#slides

 

 

 

http://homes.cs.washington.edu/~neeraj/projects/facesearch/
http://homes.cs.washington.edu/~neeraj/projects/facesearch/


Solution: Make Realistic Assumptions

1. People are relatively stationary over large 
intervals.

Advantage? Multi View Stereo is applicable.
 

2. Images contain additional contextual information.
– GPS tags, time stamps.
– Social context.
Advantage? Markov Random Field model is applicable.



MAIN CONTRIBUTIONS



Main contributions
1. Generalizing multi-view stereo to people-matching 
problem

– NOT template matching
– Use of a part-based appearance classifier instead of a 

window-based classifier

 

http://homes.cs.washington.edu/~rahul/data/CVPR2011/CVPR11-poster.pdf



1) Generalizing multi-view stereo to 
people-matching problem.

MVS Waldo Problem

Photo consistency through NCC 
etc.

Appearance consistency through 
a part based classifier

3D Localization 3D Localization with custom 
priors

Smoothness in space via MRF “Smoothness” over time and 
people via MRF

http://homes.cs.washington.edu/~rahul/data/CVPR2011/CVPR11-poster.pdf



Main contributions (contd..)

2) Exploiting contextual-cues  via MRF
– Co-occurrence of people
– Timestamps.

 
3)  Making an extensively labeled dataset 
available.
 



METHOD OVERVIEW



Register the Photo 
Collection  using SFM

Image Collection 
of an event

Step#0

http://grail.cs.washington.edu/projects/cpc/

Structure From Motion 

 

http://grail.cs.washington.edu/projects/cpc/


Learn Part Based 
Appearance classifier

Estimate the 3D 
Location of the person

Search  for the person 
in the entire image 

collection

Refine search using 
MRF optimization

User Input

Results
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User Input

• Input – Single instance of each person to be searched (pi)
 
 
 
 
 
 
 
• Effective since the pose variation is implicitly captured.

Part1

Part2

Part3



Part specific Color Model 
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Challenges:
View point
Scale
Exposure
Occlusion
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Scoring a candidate match

Transformed Image

Part-specific classifier

 
+

Putative Match Training Image

Isotropic Transform

Binary Classification Mask (per part )



Scoring a candidate match

•   

 

  

   



Discussion

• Very high dependence on the lighting conditions. 
– Normalize the RGB values in the appearance model?
– HSV space or a different color space?

 
• Performance on a similarly dressed crowd images. 
Eg: Convocation ceremony. 

– Requires additional cues beyond appearance. 
 
• Face detection during appearance modeling (when 

applicable)
• Soft threshold on the appearance score rather than a hard 

threshold as it is now. 
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3D Localization

Assumption: Orientation of the person is along the vertical.
 
 
 
 
 
 
 
 
 
• Searching in 1-D for Piground
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3D Localization (contd..)

•   
  

  

 



Wiggle search

  h
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2h
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MAX(S1,S2,S3)

Search window of size  2hX2h

S2

 

 
 

 

 

 

 

The score is multiplied by height and ground priors.

h: projected height of the 
candidate  location



When orientation of the person is not 
vertical.
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Contextual Cues

1. People appear together with the same group of 
people.

2. Images which are nearby in time are likely to contain 
the same set of people.
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People who are 
likely to appear 
together
in an image

A person in a set of similar images.

Image 
Affinity

People 
Affinity

 

 

  

  

       Minimize
Objective Function 

Unary Potential Pairwise potentials



Discussion

• For the MRF model to be applicable, is every person, in 
every image, every time? 
– (OR) Is every person  in the training image identified? 

 
 
• Cues hallucinate the person when not present if 

other people with high affinities with that person are 
detected in the image.
– Wont the appearance score be zero for this missing person?
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Datasets & Ground Truth Data

• Dataset#1  
– 34 photos ; single photographer ; Trafalgar Square ; single day. 

• Dataset#2 
– 282 photos ; 89 different photographers ; Trafalgar Square ; 

single day. 
• Dataset#3 

– 45 photos from 19 different users taken ; Hackday ; over two 
days. (Indoor)

• Ground truth labeling
–  Manually labeled with assistance from geometry
–  Does not follow the contextual cues.

 
 



Results – Dataset#1

Pose change Occlusion



Precision-Recall curves
Results of individual people



Results – Dataset#2

 



Illustrating failure to identify matches

 
 
 
 
 
• Torso (Red) not distinct from the 

background.
• Blue – too many colors.



Extensions

• Relaxing each of the assumptions made.
– Allow large motion of people.

 
• Track people’s movement through the scene.
 
• More powerful and accurate appearance models.
 
• Larger image datasets.
 



Understanding Images of Groups of 
People


