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Wearable ADL detection
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It is easy to collect ADL actions derived from medical
natural data literature on patient rehabilitation
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Slides from authors (link) 18 using cell



http://deepthought.ics.uci.edu/ADLdataset/adl.html

Method - Choice of features

Low level features High level features

(Weak semantics) (Strong semantics)
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Space-time interest points Human pose

Laptev, IJCV'05
Difficulties of pose:
* Detectors are not accurate enough

* Not useful in first person camera views

Slides from authors (link)


http://deepthought.ics.uci.edu/ADLdataset/adl.html

Method - Choice of features

High level features

(Strong semantics)

Object-centric features

Slides from authors (link)


http://deepthought.ics.uci.edu/ADLdataset/adl.html

Bag of objects
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Slides from authors (link)


http://deepthought.ics.uci.edu/ADLdataset/adl.html

Method - Active/Passive
objects

Passive Active

Better object detection (visual phrases CVPR’11)
Better features for action classification (active vs passive)

Slides from authors (link)


http://deepthought.ics.uci.edu/ADLdataset/adl.html
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Slides from authors (link)


http://deepthought.ics.uci.edu/ADLdataset/adl.html

Method - Temporal pyramid

long-scale temporal structure

“Classic” data: boxing

Start boiling Do other things Pour in cup Drink tea
water (while waiting) time
>

Difficult for HMMs to capture long-term temporal dependencies
Slides from authors (Iink)



http://deepthought.ics.uci.edu/ADLdataset/adl.html

Method - Temporal pyramid
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Slides from authors (link)


http://deepthought.ics.uci.edu/ADLdataset/adl.html

40 GB of video data

Annotations

o Object annotations
o 30-frame intervals
o Present/absent

o Bounding boxes
o Active/passive

Action annotations
o Start time, end time

Pre-computed:
o DPM object detection outputs
o Active/passive models



Examples




Implementation differences

Temporal pyramid is not really implemented as
a pyramid - linear SVM in place of kernel SVM

Locations are not used



Recap - Key ideas

e Bag-of-objects representation (instead of
low-level STIP-type approach)

e Separate models for active/passive objects

e Temporal pyramid

We will now study the impact of each of these
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Accuracy- 37%
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Taxonomic loss function

Taxonomic loss
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Taxonomic loss weighted confusion
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Understanding data - 32

ADL actions, 18 selected

'cleaning house'
'reading book’
'using_mouth_wash’
'writing'

'putting on shoes/sucks'
'drinking coffee/tea’
'‘grabbing water from tap'

'moving dishes'
'making tea’

'making coffee'
'drinking water/bottle’
'drinking water/tap'

° ‘combing hair' 'making hot food'

o 'make up' 'making cold food/snack'’
o 'brushing teeth' ‘eating food/snack’
o 'dental floss' 'mopping in kitchen'
o 'washing hands/face' 'vacuuming'

o 'drying hands/face' 'taking pills'

o 'enter/leave room' 'watching tv'

e  'adjusting thermostat' 'using computer’

° 'laundry’ 'using cell’

o 'washing dishes' 'making bed'

o
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Understanding data - 32

ADL actions, 18 selected
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Data available for actions

Number of instances in data

grabbén%lmiaterf m tap

a
putting on sumi

R er mE
ceaﬁ og ﬁ
making be
usm% ell
USII’I%COIEIméIP{

takin

moppm gv
makmgcor] oxgn%

drmi«r%l ater Ele
co e

lTlO"J r|
washm

ad| ustm thermost t

w;fmh?

bru s?lmg teetﬁ
comgjng alr

0 10 20 30 40 a0

Not a data issue



combing hair

make up

brushing teeth
dental floss
washing hands/face
drying hands/face
adjusting thermostat
laundry

washing dishes
moving dishes
making tea

making coffee
drinking water/bottle
drinking water/tap
making hot food
making cold food/snack
eating food/snack
mopping in kitchen
vacuuming

taking pills
watching tv

using computer
using cell

making bed
cleaning house
reading book

using mouth wash
writing

putting on shoes/sucks
drinking coffeeftea
grabbing water from tap

combing hair

make up
brushing teeth

dental floss

washing hands/face

RESULTS ON 31 CLASSES - ACCURACY 19.98% (random 3.13%)
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Method

Accuracy

DPM | act +pass | 2 temp levels

19.98%




What does each stage

contribute?

e Bag-of-objects
e Bag-of-active/passive objects

e Bag-of-active/passive objects with temporal
ordering
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t occurence

Mean number of occurrences of each object in each activity
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Object presence

Average presence/absence of each object in each activity
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CURACY 29.61% (random 3.23%)
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Method Accuracy
DPM | act.+pas.| 2 temp levels 19.98%
Ideal | no activity info | no ord. 29.61%




Thresholded bag-of-objects

e Obiject presence duration is an important

cue, but

o has large variance

o assumes objects with large presence duration are
also important for discrimination

e Binary approach counters these

shortcomings but

o loses object presence duration cues

o susceptible to noise without ground truth data. Even
one false positive will have large impact.



Thresholded bag-of-objects

e Thresholded bag-of-objects features

compromise

o less noisy

o retains information about which objects are more
and less important



Bag-of-objects

Captures some notion of the scene.

Action classes that are typically performed in
similar settings tend to get confused.

Can action recognition really just be reduced to
object detection?



Active and passive objects

Average presence/absence of each object in each activity
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Method Accuracy
DPM | act.+pas.| 2 temp levels 19.98%
Ideal | no activity info | no ord. 29.61%
Ideal | act. + pas. | no ord 46.12%




Data ambiguity

Again, a large quantity of the data actually
collected is not used in the paper, or in the
Implementation.

Only 21 of 49 passive objects and 5 of 49
active objects are used in the implementation.

This might be a constraint forced by object
detection performance.



Active and passive objects

Information about which objects are being used
- crucial cue for action recognition.

Captures important information about person's
iInteraction with objects, rather than just looking
at objects.

Helps disambiguate previously confused action
classes performed in similar settings.Large
performance boost (from 33.5% to 40% and
29.5% to 46% respectively)



Temporal ordering
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Temporal ordering

BAGOF OBJECTS - ACCURACY 47.33% (random 3.23%)
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Method Accuracy
DPM | act.+pas.| 2 temp levels 19.98%
Ideal | no activity info | no ord. 29.61%
|deal | act. + pas. | no ord 46.12%
Ideal | act. + pas. | 2 temp levels [47.33%




Temporal ordering

Marginal improvement in performance

Does more temporal ordering improve
performance?
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BAGOF OBJECTS - ACCURACY 45.67% (random 3.23%)
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Temporal ordering

Contributes little to classification when ground
truth annotations for active and passive objects

are known for this dataset

Without active/passive
objects, temporal ordering
(2 levels) boosts
performance from 29.6 to
36.2%

segment class. accuracy

pyramid bag

STIP 228 16.5
O 32.7 24.7
AO 40.6 36.0
(@ 55.8 49.3
[A+IO 77.0 76.8




Method Accuracy
DPM | act.+pas.| 2 temp levels 19.98%
Ideal | no activity info | no ord. 29.61%
Ideal | no activity inf] 2 temp lev |36.20%
|ldeal | act. + pas. | no ord 46.12%
|deal | act. + pas. | 2 temp levels 47.33%
|deal | act. + pas. | 3 temp levels 45.67%




Temporal ordering

Why is temporal ordering more important
when not using less data or "non-ideal
detectors"?



Can we do better?

What we have learnt:

Activity information contributes most
Temporal ordering makes insignificant
difference when activity information is
available

Training data is limited => smaller feature
space is preferable
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Mean number of occurrences of each object in each activity
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ONLY Passive objects

Mean number of occurrences of each object in each activity
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trashcan
vacuum
washeridryer
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combing hair

make up

brushing teeth
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making tea
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making hot food
making cold food/snack
eating food/snack
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taking pills
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making bed
cleaning house
reading book

using mouth wash
writing
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drinking coffee/tea
grabbing water from tap
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ONLY passive objects

BAGOF OBJECTS - ACCURACY 45.67% (random 3.23%)
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Active objects

e Deteriorates to 51.63% with two temporal
levels - insufficient training data

e \We have side-stepped object detection by
using ground truth annotations

e Near-ideal active object detection
performance may be very hard to achieve -
occlusions etc., so other cues are important
for robust performance.



Method Accuracy
DPM | act.+pas.| 2 temp levels 19.98%
|deal | no activity info | no ord. 29.61%
|deal | no activity inf | 2 temp lev 36.20%
Ideal | pas. | 2 temp levels 25.04%
Ideal | act. | no ord 56.50%
Ideal | act. | 2 temp levels 51.63%
|deal | act. + pas. | no ord 46.12%
|deal | act. + pas. | 2 temp levels 47.33%
|deal | act. + pas. | 3 temp levels 45.67%




. Hamed Pirsiavash and Deva Ramanan,

"Detecting activities of daily living in first-
person camera views", CVPR 2012

. Examples, dataset and code at hiip:
//deepthought.ics.uci.edu/ADLdataset/adl.

html
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