# Detecting activities of daily living in first person camera views

Hamed Pirsiavash, Deva Ramanan

Presented by Dinesh Jayaraman

### Wearable ADL detection



It is easy to collect natural data





ADL actions derived from medical literature on patient rehabilitation

```
5 washing hand/face
personal hygiene 6 drying hand/face

facial hygiene 2 make up oral 3 brushing teeth hygiene 4 dental floss

external 7 laundry
preparing 8 washing dishes food 9 moving dishes
                9 moving dishes
            solid { 14 making cold food/snack
```

Slides from authors (link)

### **Method - Choice of features**

Low level features

(Weak semantics)



Space-time interest points Laptev, IJCV'05 High level features

(Strong semantics)



Human pose

Difficulties of pose:

- · Detectors are not accurate enough
- · Not useful in first person camera views

### **Method - Choice of features**

Low level features (Weak semantics)



Space-time interest points

Laptev, IJCV'05

High level features (Strong semantics)







Object-centric features

#### Difficulties of pose:

- Detectors are not accurate enough
- Not useful in first person camera views

## Bag of objects



# Method - Active/Passive objects



Better object detection (visual phrases CVPR'11)

Better features for action classification (active vs passive)

Slides from authors (link)

# Method - Active/Passive objects



## Method - Temporal pyramid

#### long-scale temporal structure

"Classic" data: boxing



Wearable data: making tea



Start boiling water



Do other things (while waiting)



Pour in cup



Drink tea

time

Difficult for HMMs to capture long-term temporal dependencies

## Method - Temporal pyramid



### Data

- 40 GB of video data
- Annotations
  - Object annotations
  - 30-frame intervals
  - Present/absent
  - Bounding boxes
  - Active/passive
- Action annotations
  - Start time, end time
- Pre-computed:
  - DPM object detection outputs
  - Active/passive models

## Examples



### Implementation differences

Temporal pyramid is not really implemented as a pyramid - linear SVM in place of kernel SVM

Locations are not used

### Recap - Key ideas

- Bag-of-objects representation (instead of low-level STIP-type approach)
- Separate models for active/passive objects
- Temporal pyramid

We will now study the impact of each of these

## Accuracy- 37%

RESULTS ON 18 CLASSES - ACCURACY 36.89% (random 5.5%)



### **Taxonomic loss function**



#### Taxonomic loss weighted confusion



# Understanding data - 32 ADL actions, 18 selected

- 'combing hair'
- 'make up'
- 'brushing teeth'
- 'dental floss'
- 'washing hands/face'
- 'drying hands/face'
- 'enter/leave room'
- 'adjusting thermostat'
- 'laundry'
- 'washing dishes'
- 'moving dishes'
- 'making tea'
- 'making coffee'
- 'drinking water/bottle'
- 'drinking water/tap'

- 'making hot food'
- 'making cold food/snack'
- 'eating food/snack'
- 'mopping in kitchen'
- 'vacuuming'
- 'taking pills'
- 'watching tv'
- 'using computer'
- 'using cell'
- 'making bed'
- 'cleaning house'
- 'reading book'
- 'using\_mouth\_wash'
- 'writing'
- 'putting on shoes/sucks'
- 'drinking coffee/tea'
- 'grabbing water from tap'

# Understanding data - 32 ADL actions, 18 selected

- 'combing hair'
- 'make up'
- 'brushing teeth'
- 'dental floss'
- 'washing hands/face'
- 'drying hands/face'
- 'enter/leave room'
- 'adjusting thermostat'
- 'laundry'
- 'washing dishes'
- 'moving dishes'
- 'making tea'
- 'making coffee'
- 'drinking water/bottle'
- 'drinking water/tap'

- 'making hot food'
- 'making cold food/snack'
- 'eating food/snack'
- 'mopping in kitchen'
- 'vacuuming'
- 'taking pills'
- 'watching tv'
- 'using computer'
- 'using cell'
- 'making bed'
- 'cleaning house'
- 'reading book'
- 'using\_mouth\_wash'
- 'writing'
- 'putting on shoes/sucks'
- 'drinking coffee/tea'
- 'grabbing water from tap'

### Data available for actions

#### Number of instances in data



#### RESULTS ON 31 CLASSES - ACCURACY 19.98% (random 3.13%)

combing hair make up brushing teeth dental floss washing hands/face drying hands/face adjusting thermostat laundry washing dishes moving dishes making tea making coffee drinking water/bottle drinking water/tap making hot food making cold food/snack eating food/snack mopping in kitchen vacuuming taking pills watching to using computer using cell making bed cleaning house reading book using mouth wash writing putting on shoes/sucks drinking coffee/tea grabbing water from tap



## Results

| Method                          | Accuracy |
|---------------------------------|----------|
| DPM   act +pass   2 temp levels | 19.98%   |

# What does each stage contribute?

- Bag-of-objects
- Bag-of-active/passive objects
- Bag-of-active/passive objects with temporal ordering

### Object occurence



### Object presence



#### BAG-OF-OBJECTS - ACCURACY 33.53% (random 3.23%)

combing hair make up brushing teeth dental floss drying hands/face laundry washing dishes moving dishes making tea making coffee drinking water/tap making hot food eating food/snack mopping in kitchen vacuuming taking pills watching tv using computer using cell making bed cleaning house reading book using mouth wash writing utting on shoes/sucks drinking coffee/tea abbing water from tap

making cold food/snack eating tood/snack mopping in kitchen vacuuming naing cell cleaning house reading book using mouth wash washing hands/fac drying hands/fac adjusting thermosta taking pill watching t putting on shoes/suc drinking coffee/te grabbing water from t using compu

BINARY BAG-OF-OBJECTS - ACCURACY 29.61% (random 3.23%)



putting on shoes/sucks drinking coffee/tea grabbing water from tap washing hands/face drying hands/face adjusting thermostal using cell making bed cleaning house reading book using mouth wash making cold food/snac eating food/snac mopping in kitcher vacuumin washing dish moving dish

washing hands/face adjusting thermostat drinking water/bottle aking cold food/snack

### Results

| Method                             | Accuracy |
|------------------------------------|----------|
| DPM   act.+pas.  2 temp levels     | 19.98%   |
| Ideal   no activity info   no ord. | 29.61%   |

## Thresholded bag-of-objects

- Object presence duration is an important cue, but
  - has large variance
  - assumes objects with large presence duration are also important for discrimination
- Binary approach counters these shortcomings but
  - loses object presence duration cues
  - susceptible to noise without ground truth data. Even one false positive will have large impact.

## Thresholded bag-of-objects

- Thresholded bag-of-objects features compromise
  - less noisy
  - retains information about which objects are more and less important

### Bag-of-objects

Captures some notion of the scene.

Action classes that are typically performed in similar settings tend to get confused.

Can action recognition really just be reduced to object detection?

### Active and passive objects



## Active and passive objects

BAG OF OBJECTS - ACCURACY 39.96% (random 3.23%)

combing hair make up brushing teeth dental floss washing hands/face drying hands/face adjusting thermostat laundry washing dishes moving dishes making tea making coffee drinking water/bottle drinking water/tap making hot food sking cold food/snack eating food/snack mopping in kitchen vacuuming taking pills watching tv using computer using cell making bed cleaning house reading book using mouth wash writing utting on shoes/sucks drinking coffee/tea abbing water from tap



making cold f

BINARY BAG-OF-OBJECTS - ACCURACY 46.12% (random 3.23%)



putting on shoes/sucks drinking coffee/tea grabbing water from tap making cold too eating for mopping it

### Results

| Method                             | Accuracy |
|------------------------------------|----------|
| DPM   act.+pas.  2 temp levels     | 19.98%   |
| Ideal   no activity info   no ord. | 29.61%   |
| Ideal   act. + pas.   no ord       | 46.12%   |

### Data ambiguity

Again, a large quantity of the data actually collected is not used in the paper, or in the implementation.

Only 21 of 49 passive objects and 5 of 49 active objects are used in the implementation.

This might be a constraint forced by object detection performance.

### Active and passive objects

Information about which objects are being *used* - crucial cue for *action* recognition.

Captures important information about person's interaction with objects, rather than just looking at objects.

Helps disambiguate previously confused action classes performed in similar settings. Large performance boost (from 33.5% to 40% and 29.5% to 46% respectively)

## Temporal ordering



### Temporal ordering

BAG OF OBJECTS - ACCURACY 47.33% (random 3.23%)

combing hair make up brushing teeth dental floss washing hands/face drying hands/face adjusting thermostat laundry washing dishes moving dishes making tea making coffee drinking water/bottle drinking water/tap making hot food making cold food/snack eating food/snack mopping in kitchen vacuuming taking pills watching tv using computer using cell making bed cleaning house reading book using mouth wash writing putting on shoes/sucks drinking coffee/tea grabbing water from tap



# Results

| Method                              | Accuracy |
|-------------------------------------|----------|
| DPM   act.+pas.  2 temp levels      | 19.98%   |
| Ideal   no activity info   no ord.  | 29.61%   |
| Ideal   act. + pas.   no ord        | 46.12%   |
| Ideal   act. + pas.   2 temp levels | 47.33%   |

## Temporal ordering

Marginal improvement in performance

Does more temporal ordering improve performance?

## Three temporal levels

combing hair make up brushing teeth dental floss washing hands/face drying hands/face adjusting thermostat laundry washing dishes moving dishes making tea making coffee drinking water/bottle drinking water/tap making hot food making cold food/snack eating food/snack mopping in kitchen vacuuming taking pills watching tv using computer using cell making bed cleaning house reading book using mouth wash writing putting on shoes/sucks drinking coffee/tea grabbing water from tap



## Temporal ordering

Contributes little to classification when ground truth annotations for active and passive objects are known for this dataset

Without active/passive objects, temporal ordering (2 levels) boosts performance from 29.6 to 36.2%

|       | segment class. accuracy |      |
|-------|-------------------------|------|
|       | pyramid                 | bag  |
| STIP  | 22.8                    | 16.5 |
| O     | 32.7                    | 24.7 |
| AO    | 40.6                    | 36.0 |
| IO    | 55.8                    | 49.3 |
| IA+IO | 77.0                    | 76.8 |

## Results

| Method                              | Accuracy |
|-------------------------------------|----------|
| DPM   act.+pas.  2 temp levels      | 19.98%   |
| Ideal   no activity info   no ord.  | 29.61%   |
| Ideal   no activity inf  2 temp lev | 36.20%   |
| Ideal   act. + pas.   no ord        | 46.12%   |
| Ideal   act. + pas.   2 temp levels | 47.33%   |
| Ideal   act. + pas.   3 temp levels | 45.67%   |

## Temporal ordering

Why is temporal ordering more important when not using less data or "non-ideal detectors"?

### Can we do better?

#### What we have learnt:

- Activity information contributes most
- Temporal ordering makes insignificant difference when activity information is available
- Training data is limited => smaller feature space is preferable

## **ONLY** active objects



### **ONLY** active objects

BAG OF OBJECTS - ACCURACY 56.5%

combing hair make up brushing teeth dental floss washing hands/face drying hands/face adjusting thermostat laundry washing dishes moving dishes making tea making coffee drinking water/bottle drinking water/tap making hot food making cold food/snack eating food/snack mopping in kitchen vacuuming taking pills watching tv using computer using cell making bed cleaning house reading book using mouth wash writing putting on shoes/sucks drinking coffee/tea grabbing water from tap



## **ONLY Passive objects**



# **ONLY** passive objects

BAG OF OBJECTS - ACCURACY 45.67% (random 3.23%)

combing hair make up brushing teeth dental floss washing hands/face drying hands/face adjusting thermostat laundry washing dishes moving dishes making tea making coffee drinking water/bottle drinking water/tap making hot food making cold food/snack eating food/snack mopping in kitchen vacuuming taking pills watching to using computer using cell making bed cleaning house reading book using mouth wash writing putting on shoes/sucks drinking coffee/tea grabbing water from tap



### Active objects

- Deteriorates to 51.63% with two temporal levels - insufficient training data
- We have side-stepped object detection by using ground truth annotations
- Near-ideal active object detection performance may be very hard to achieve occlusions etc., so other cues are important for robust performance.

# Results

| Method                               | Accuracy |
|--------------------------------------|----------|
| DPM   act.+pas.  2 temp levels       | 19.98%   |
| Ideal   no activity info   no ord.   | 29.61%   |
| Ideal   no activity inf   2 temp lev | 36.20%   |
| Ideal   pas.   2 temp levels         | 25.04%   |
| Ideal   act.   no ord                | 56.50%   |
| Ideal   act.   2 temp levels         | 51.63%   |
| Ideal   act. + pas.   no ord         | 46.12%   |
| Ideal   act. + pas.   2 temp levels  | 47.33%   |
| Ideal   act. + pas.   3 temp levels  | 45.67%   |

- Hamed Pirsiavash and Deva Ramanan, "Detecting activities of daily living in firstperson camera views", CVPR 2012
- Examples, dataset and code at <a href="http://deepthought.ics.uci.edu/ADLdataset/adl.html">http://deepthought.ics.uci.edu/ADLdataset/adl.html</a>