Poselets: Body part detectors trained using 3d human pose annotations (ICCV 2009)

Lubomir Bourdev and Jitendra Malik

Dinesh Jayaraman
Person detection results on the PASCAL challenge data

<table>
<thead>
<tr>
<th></th>
<th>Poselets</th>
<th>Second-highest score</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC 2010</td>
<td>48.5</td>
<td>47.5 ***</td>
</tr>
<tr>
<td>VOC 2009</td>
<td>48.6</td>
<td>47.9 ***</td>
</tr>
<tr>
<td>VOC 2008</td>
<td>54.1</td>
<td>43.1 **</td>
</tr>
<tr>
<td>VOC 2007</td>
<td>46.9</td>
<td>43.2 *</td>
</tr>
</tbody>
</table>

** P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan Object Detection with Discriminatively Trained Part Based Models, PAMI (preprint, 2009)
*** P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, PASCAL VOC 2010 competition
What are poselets?

• Poselets are discriminative parts - not necessarily semantic.

• Requirements:
 – Should tell us about the 3D pose
 – Should be easy to find from a 2D input image
What poselets look like

Slide credit: [Bourdev & Malik, ICCV09]
What are poselets?

• Poselets are discriminative “parts”, not necessarily semantic that describes parts of a pose.

• Requirements:
 – Should tell us about the 3D pose
 – Should be easy to find from a 2D input image

How do we enforce these requirements?
Configuration space

- Lost in transfer to 2D
- Fixed number of degrees of freedom
- Specified completely by positions of joints in a 3D coordinate space registered to the camera

“Should tell us about the 3D pose” = Tightly clustered in configuration space
Appearance space

- Pixel values i.e. the image itself
- Clothing, illumination, occlusion, background clutter etc.

“Should be easy to find from a 2D input image” = Should be tightly clustered in appearance space
Poselets

Poselets capture part of the pose from a given viewpoint

Slide credit: [Bourdev & Malik, ICCV09]
Poselets

Examples may differ visually but have common semantics

Slide credit: [Bourdev & Malik, ICCV09]
Poselets

But how are we going to create training examples of poselets?

Slide credit: [Bourdev & Malik, ICCV09]
H3D dataset – humans in 3D

• 2000 annotated people
• 19 keypoint annotations

Appearance space annotation
H3D dataset – humans in 3D

• 2000 annotated people
• 19 keypoint annotations

Configuration space annotation
H3D dataset – humans in 3D

- 2000 annotated people
- 19 keypoint annotations
- 15 regions – “face”, “hair” etc.

Region label annotation
How do we train a poselet for a given pose configuration?

Slide credit: [Bourdev & Malik, ICCV09]
Finding correspondences at training time

Given part of a human pose

How do we find a similar pose configuration in the training set?

Slide credit: [Bourdev & Malik, ICCV09]
Finding correspondences at training time

Slide credit: [Bourdev & Malik, ICCV09]
Finding correspondences at training time

Slide credit: [Bourdev & Malik, ICCV09]
Finding correspondences at training time

Residual Error

\[d_S(r) = \sum_i w_s(i) \left| \left| x_s(i) - x_r(i) \right| \right|^2 \left(1 + h_{s,r}(i) \right) \]

\[\exp\left(-\frac{\left(x_s(i) \right)^2}{2\sigma^2} \right) \]

0 if visible or invisible in both

\(a \) otherwise
Registering candidate matches

Similarity transformation (4DOF):
• X translation: t_x
• Y translation: t_y
• Rotation: α
• Scaling: s
Registering candidate matches

\[d_s^*(r) = \min_{t_x,t_y,\alpha,s} d_s \left(r_{t_x,t_y,\alpha,s} \right) \]

\[x_{r_{t_x,t_y,\alpha,s}} = \text{transform}(x|t_x,t_y,\alpha,s) \]

\[d_s(r) = \sum_i w_s(i) \| x_s(i) - x_r(i) \|_2^2 (1 + h_{s,r}(i)) \]

Matching done in 3D => clustered in configuration space
Training poselet classifiers

1. Given a seed patch
2. Find the closest patch for every other person
3. Sort them by residual error
4. Threshold them

Residual Error:

0.15 0.20 0.10 0.85 0.15 0.35

Slide credit: [Bourdev & Malik, ICCV09]
1. Given a seed patch
2. Find the closest patch for every other person
3. Sort them by residual error
4. Threshold them
5. Use them as positive training examples to train a **linear SVM with HOG features**

Slide credit: [Bourdev & Malik, ICCV09]
Which poselets should we train?

• 96x64 scanning window over all scales and orientations on 1500 training images.
• 120K poselet candidates generated.
• Strict 2-stage pruning (300 poselets):
 – Individually effective (good cross-validation)
 – Complementary (large pairwise distances)
Selected poselets

Configuration space

Examples

A frontal face poselet
Selected poselets

Poselet coverage table

<table>
<thead>
<tr>
<th></th>
<th>person 1</th>
<th>person 2</th>
<th>person 3</th>
<th>person 4</th>
<th>person 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Poselet 4 activates on person 5

Selected poselets
Poselets in isolation – “individually effective”
Discussion

• Why do upper body poselets do better?

• Why do we want complementarity?
Detecting torsos and localizing keypoints – The Hough transform

- H3D can find expected keypoint location given poselet detection.
- Poselet detector in scanning window, mean-shift for non-maximum suppression
Discussion

• What is the dimension of the voting space?

• Does a poselet predict all keypoints equally well?

• Are all poselets equal?
Combining poselet predictions

\[P(O|x) \propto \sum_i w_i a_i(x) \]

Poselet index

Poselet i vote for O being at x

Agglomerative clustering in Hough space

2D Hough space (keypoint)
Learning task-specific weights: Max-Margin Hough transform

• SVM-like formulation that classifies true-positive clusters versus false-positive clusters using poselet votes as descriptors:

\[
\min_{w, b, \xi} \frac{1}{2} w^T w + C \sum_{i=1}^{T} \xi_i \\
\text{s.t. } y_i (w^T A_i + b) \geq 1 - \xi_i \\
w \geq 0, \xi_i \geq 0, \forall i = 1, 2, \ldots, N
\]

1 if true positive peak, 0 else
Score of poselet j in Hough peak i
Results – Torso detection

![Graph showing detection rate versus false positive rate per image for different detection methods. Legend includes Poselets (this paper), Face detector of [2], Pedestrian detector of [3], and Parts-based detector of [5].]
Key strengths

• Discussion: Why does this method do so much better than the next best?
 – Tightly controlled poselet training and selection process enabled by H3D
 – Large number of poselets guaranteed to be semantically same vs. stick-figure approach
 – Lots of occlusions in test set => Hough transform based voting is advantageous
Results - Torso detection
Pascal VOC person detection

<table>
<thead>
<tr>
<th></th>
<th>Poselets</th>
<th>Second-highest score</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC 2010</td>
<td>48.5</td>
<td>47.5 ***</td>
</tr>
<tr>
<td>VOC 2009</td>
<td>48.6</td>
<td>47.9 ***</td>
</tr>
<tr>
<td>VOC 2008</td>
<td>54.1</td>
<td>43.1 **</td>
</tr>
<tr>
<td>VOC 2007</td>
<td>46.9</td>
<td>43.2 *</td>
</tr>
</tbody>
</table>
Keypoint detection
Discussion

• Why are the nose, eyes and neck predicted best?
• A 2D projection can represent more than one 3D configuration - metamers. Are metamers really handled at all by the poselets method?
• Did we really collect 3D data?
• What advantage did 3D really give us?
• Can we do without 3D annotations?
Poselets website

http://eecs.berkeley.edu/~lbourdev/poselets

The set of published poselet papers
H3D data set + Matlab tools
Java3D annotation tool + video tutorial
Matlab code to detect people using poselets
Latest trained poselets: http://www.cs.berkeley.edu/~lbourdev/poselets/poselets_person.html

Slide credit: [Bourdev & Malik, ICCV09]