Contour Detection and Hierarchical Image Segmentation – Some Experiments

CS395T – Visual Recognition

Presented by Elad Liebman
Overview

• Understanding the method better:
 – The importance of thresholding the output
 – Understanding the inputs better
 – Understanding the UCM

• Pushing for boundaries:
 – Types of difficult inputs
 – Difficult input examples
Warm-up: choosing the right threshold

\[k = 0.4 \]
Warm-up: choosing the right threshold

\[k = 0.1 \]
Warm-up: choosing the right threshold

\[k = 0.8 \]
So what goes into the OWT?

The Features

• Difference in feature channels on the two halves of a disc of radius σ and orientation θ.

• Feature channels in our case:
 – Color gradients
 – Brightness gradients
 – Texture gradients

• Comparison between the two disc halves using χ^2 distance.
The basic signals

• Color/brightness channels based on Lab color space.
• Repeatedly generated at different scales (different σ radii values - $\frac{\sigma}{2}$, σ, 2σ).
• All in all we get 13 different inputs.
Illustration n. 1:
Color gradient \(a \) (red-green scale)
Illustration n. 2:
Color gradient a, different σ value

$\theta = \frac{\pi}{4}$

$\theta = \frac{-\pi}{4}$

$max_{\theta} \{cga\}$

$\theta = 0$
Illustration 3:
Brightness gradient (light-dark scale)

$\theta = \frac{\pi}{2}$

$\theta = -\frac{\pi}{4}$

$\max_{\theta} \{cga\}$

$\theta = \frac{\pi}{2}$
Illustration 4: Texton Map
Multiscale Pb and Spectral/Global Pb

• The features are linearly combined to create a unified signal, the multiscale Pb input.
• They are then “globalized” spectrally.
• An affinity matrix w is constructed with W_{ij} being the maximal value of mPb along the line connecting i and j.
• Generalized eigenvectors are then extracted and combined (after processing) with the local Pb data to create the final input for the OWT.
mPb vs. gPb
(In practice we sample 8 orientations...)

\[gPb = \max_\theta \{ \theta = \left[0, \frac{\pi}{8}, \frac{\pi}{4}, \frac{3\pi}{8}, \ldots, \frac{7\pi}{8} \right] \} \]
(In practice we sample 8 orientations...)

\[g_P b = \]
Playing with the orientations a bit...
Playing with the orientations a bit...
Using less than 8 orientations

2 orientations
Using less than 8 orientations

4 orientations (in this case it’s enough)
The Ultrametric Contour Map

- The basic idea is to organize and merge sub-regions hierarchically and iteratively.
- At each point we merge two regions with the weakest boundary between them.
- The result is a dendrogram of nested regions.
Example 1
Potentially Difficult Input

• We would like to test the OWT-UCM method against problematic input.
• See where it might break.
warming up - blurring
Potentially Difficult Input II

• Blurring isn’t very interesting – doesn’t reflect the kind of challenges the algorithm is likely to face.

• What realistic problems exist?
 – Difficult patches
 – Complex, contour-rich images
 – Not enough color/texture information
Difficult Input – abstract art

$k = 0.4$
Difficult Input – abstract art

\[k = 0.1 \]
Difficult(er) Input – abstract(er?) art

\[k = 0.4 \]
Difficult(er) Input – abstract(er?) art

\[k = 0.1 \]
Another Difficult Example

- Occlusion
- Similarity of objects in image:
 - Similar textures
 - Similar colors
 - Contour lines blend
Another Difficult Example

\[k = 0.4 \]
Another Difficult Example

\[k = 0.1 \]
Another Difficult Example

\[k = 0.2 \]
Sneaking a look under the hood

• Possibly we need to weight elements differently in certain cases...
Summary

• Studied some of the technical aspects of the method:
 – Threshold selection
 – Understanding the input data
 – Illustration of UCM in action

• Tested the method against difficult input:
 – Problematic contours
 – Complex images
 – Cases where features aren’t informative enough
 – Many similar items occluding one another
References

- Class notes for 16-721: Learning-Based Methods in Vision, taught by Prof. Alexei Efros, CMU.
- Class notes for CS 143: Introduction to Computer Vision, taught by Prof. James Hayes, Brown.