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General Intuition |

 We have: a discriminatively
trained classification model for
category A.

e We need: a classifier for a new
category B.

 Can we use it to make learning
a model for category B easier?

— Less examples?
— Better accuracy?




General Intuition Il

Motorbike images courtesy of the Caltech Vision Group, collated by Svetlana Lazebnik



Background |

e Good:

— There has been considerable progress recently in
object category detection.

— Successful tools are readily available.
* Bad:

— current methods require training the detector
from scratch.

— Training from scratch is very costly in terms of
sample size required.

— Not scalable in multi-category settings.



Background |

— Represent categories by their attributes,
and re-use attributes.

— Attributes are learned from multiple
classes, so training data is abundant.

— Attributes learned can be used even for
categories that didn’t “participate” in the
learning, as long as they share the attribute.
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(This idea should sound familiar...)

“Sharing visual features for multiclass and multiview
object detection”, Torralba et al., 2007

— Training multiple category classifiers at the same time with
lower sample and runtime complexity using shared features.

— Uses a variation on boosting and shared regression stumps.
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Torralba et al. — cont. Il

 There is a difference in motivations here.
* Torralba et al. are mostly concerned with

— Reduce the cost of training multiple detectors.

— Use shared features when learning full sets of
distinctive features per category is infeasible.

* Knowledge transfer is more concerned with

— Use preexisting related classifiers when new
examples are hard to come by.



(Back to our paper...)

Wheel Detector

* Unfortunately, this approach proves inferior in
practice to discriminative training (true for both

detection and classification). (true to when the paper was
published...)



Background IV

* An alternative approach:

— Benefit from previously-learned category
detectors.

— Previously learned categories should be similar.

 We need a way to transfer information from
one classifier to the next.



Aytar & Zisserman |

* Consider the SVM discriminative training
framework for HOG template models of Dalal
& Triggs & Felzenszwalb et al.

* Observation: learned template records the
spatial layout of positive and negative
orientations.

e Classes that are geometrically similar will give
rise to similar templates.




Aytar & Zisserman ||

* Apply transfer learning from one detector to
another.

* To do this, the previously learned template is
used as a regularizer in the cost function of
the new classifier.

* This enables learning with a reduced number
of examples.



Some (a few) Words on Regularization

 From a Bayesian standpoint, it’s similar to
introducing a prior.

e Often used to prevent overfitting or solve ill posed
problems.

* A good example for regularization:
argming{|lY — XBII1>+[|T5||*}

1F e—0 mA=0

Images taken from Andrew Rosenberg’s slides, ML course, CUNY



Model Transfer Support Vector
Machines

 We wish to detect a target object category.

 We already have a well trained detector for a
different source category.

* Three strategies to transfer knowledge from
the source detector to the target detector:
— Adaptive SVMs
— Projective Model Transfer SVMs
— Deformable Adaptive SVMs



Adaptive SVMs |

* Learn from the source model w* by
regularizing the distance between the learned

model w and w”>.
* x; are the training examples, y; € {—1,1} are
the labels, and the loss function is the hinge

loss:
[(x;, y;;w,b) = max(0,1 — y;(wlx; + b))

L N
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Adaptive SVMs ||

 Reminder: in regular SVMs we want to optimize:
N
Ly = min{ lwl® + cz [(x;, yi; w, b))}
W;
i

* But now, our goal is to optimize:
L, = milgl{ lw —Tws||?2 + C XY 1(x;, vi; w, b)}
w,

* I' controls the amount of transfer
regularization, C controls the weight of the
loss function and N is the number of samples.



An lllustration




Adaptive SVMs Il

 We note that if w° is normalized to 1 then:
|lw — Tw?||? = ||w||* — 2T ||wl||cosd + T'?

= ||lw]|? - “normal” SVM margin.
» (—2I'|lw]|cos@) - the transfer.

* We wish to minimize &, the angle between w*
and w.

* However, —2T’||w||cos@ also encourages w to
be larger, so I' controls a tradeoff between
margin maximization and knowledge transfer.



Projective Model Transfer SVMs |
« Rather than transfer by maximizing ||w||cos®,

we can instead minimize the projection of w

onto the separating hyperplane orthogonal to

w?.

* This directly translates to optimizing:

N
Lpyr = Iﬂiél |w||* + T|| Pw||* + CZ [(xi, yi;w, b)

st -wT-w‘HE_?D

* Where P is the projection matrix:

o T
P=1- 2y
we

T-ll_'l



Yet another illustration




Projective Model Transfer SVMs I

 We note that ||Pw]|? is the squared norm of
the projection of w onto the source
hyperplane: [ Puw|? = |w|*sin¢

« wl'wS > 0 constraints w to the positive

halfspace defined by w*.

 Here too I controls the transfer. AsI' — 0, the
PMT-SVM reduces to a classic SVM
optimization problem.




Deformable Adaptive SVMs |

Regularization shouldn’t be “equally forced”.

Imagine we have a deformable source
template — small local deformations are
allowed to better fit the source to the target.

For instance, when transferring from a
motorbike wheel to a bicycle wheel:

We need more flexible regularization...



Deformable Adaptive SVMs ||

* Local deformations are described as a flow of
weight vectors from one cell to another,
governed by the following flow definition:

M
T(w®); = Z fijw;
r

* T represents the flow transformation, Wf IS

the j* cell in the source template, and f;;

denotes the amount of transfer from the j"
cell in the source to the it" cell in the target.
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Deformable Adaptive SVMs IV

* Now, the Deformable-Adaptive-SVM is simply
a generalization of the adaptive SVM we’ve
seen before, with w* replaced with its
deformable version T(w>):

N
Lpa = }ITTL}ITIL} |w — D7 (w®)]|? —|—C'TZE{K5-.'H;:?'HJ-.5)

M. M M
+)\(Z fa_jdlj Z 1_fn )

177 1

(A is the weight of the deformation, d;; is the
distance between cells i, j and d is the penalty
for overflow)



Deformable Adaptive SVMs V

e Ain effect controls the extent of deformability.

* High A values make the model more rigid (you
nay more for the deformations you make),
oushing the solution closer to that of the
simple adaptive SVM.

* Low A values allow for a more flexible source
template with less regularization.

* (Amazingly enough, the term ||lw — I't(w?||?
is still convex.)



Experiments |.|

* |n general, transfer learning can offer three
major benefits:

— Hig
— Hig
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ner asymptote (learning converges into a
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Experiments I.I

* Two types of transfer experiments:

(we know how to recognize
horses

j
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i BRES

cognize
w we want to recognize donkeys)
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Experiments Il — Interclass

 Baseline detectors are the SVM classifiers
trained directly without any transfer learning.

* Two scenarios studied:
— transferring from motorbikes to bicycles

— transferring from cows to horses

e Two variants discussed:

— One shot learning — we can only choose one (!)
example from the target class, and study our

starting point.
— Multiple shot learning




Experiments Il — One Shot Learning

Ranks | Base. SVM A-SVM DA-SVM PMT-S5VM
01-15 [ 405072 | 539 £ 04.2 | 537 =043 | 535 =057
16-30 | 33.0 £ 13.5 | 525 £ 08.3 | 51.9 = 08.8 | 54.7 = 05.7
31-45 | 264 £ 133 | 47.1 =073 | 47.1 £ 07.6 | 48.5 = 08.7
46-60 | 140 =093 | 424 £ 03.7 | 425042 | 278 = 11.3

(Looks good, but a bit unfair, especially when using lower-grade

examples from the target category...)




Experiments [V — Multiple Shot

Number of Samples 1 3 5

Test-procedure: || Base. SVM | 093 =088 | 3424+ 115 | 41.9 £ 059

pascal-side-only A-SVM 28.4 1+ 08.1 | 409 £ 06.1 | 47.3 = 044

DA-SVM 28.7 £ 08.2 | 421 £ 057 | 48.3 £ 036

Test-procedure: || Base. SVM | 07.0 £ 044 | 18,6 £052 | 22.7 = 02.1

pascal-default A-SVM 149 = 02.5 | 20.1 =027 | 240 = 01.7

DA-SVM 153025 | 206 £02.4 | 245 £ 01.6

| Number of Samples | 7 [ 10 [ 15 | 20 ] 30 | 50 |

Test-procedure: Base. SVM |44.0+099 | 4999+ 054 | 559+ 068 | 552+ 035 | 57.9+02.0 | 589 +01.3
pascal-side-only A-SVM 488 +084 | 520+ 059 | 560+ 03.8 | 5701+ 033 | 59.0+01.6 | 60.2 + 015
DA-SVM 49.1 +£07.6 | 520 £ 05.2 | 57.0 £ 04.7 | 58.0 £ 01.9 | 60.3 + 02.0 | 59.5 1+ 00.9
Test-procedure: Base. SVM |24.7 +045 | 27.1 £ 023 | 29.6 £01.9 | 30.1 £01.2 | 30.7 £ 01.4 | 31.6 =009
pascal-default A-SVM 252+03.1 | 2720+ 020 | 299+01.2 | 31,01+ 009 | 31.5+01.3 | 323 +00.5
DA-SVM 255+034 | 273 1+01.7 | 30.2+01.0 | 31.1 008 | 31.5 + 013 | 32.2 +00.7

(We note that by ~10 examples, basic SVM has caught up with us...)



Experiments V — Multiple Shot
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Experiments VI - Specialization

 “Quadruped” detector trained with instances of

cows, sheep and horses.
* Then specialization for cows and horses was

attempted via transfer.

| Number of Samples | 1 | 3 | 5 |

Test-procedure: Base. SYM | 036 4038 | 1434076 | 20,0 £+ 09.0

pascal-side-only A-S5VM 2.2+ 055 | 297 £ 060 | 309 + 04.3

DA-SVM 209 + 056 | 202 £ 06.0 | LS+ 039

Test-procedure: Base. SYM | 036 +036 | 1003 +026 | 10.6 =018

pascal-default A-SVM 1L+ 040 | 145032 | 138+ 033

DA-SVM 113+ 045 | 1424034 | 13.6 £ 03.0

| Number of Samples | 7 10 | 15 | 20 | 30 | 50 |

Test-procedure: Base. SVM [ 2504073 | 209+ 043 | 3594057 | 40.1 =028 | 438 =026 | 47.1 023
pascal-side-only A-SVM 264047 | 3534030 | 378056 | 40.4 033 | 436 035 | 454 4+ 01.3
DA-SVM 321 +044 | 3661028 | 37.24047 | 403 4+029 | 4204031 | 4404 01.0
Test-procedure: Base. SVM 127+ 020 | 1384033 | 146 4+024 | 166 =0L1 | 199+ 0.9 | 21.1 £+ 0L5
pascal-de fault A-SVM 1521+ 034 | 16,0+ 01.8 160+028 | 17.6 =010 | 199+ 01.4 | 206 4+ 00.8
DA-SVM 1534030 | 1624017 | 161 +027 | 17.6 010 | 198 +01.9 | 208 + 004

(Once again we note that by ~15-20 examples, basic SVM has
caught up with us...)



Discussion
* Pros:

— An interesting and fairly straightforward expansion
of the basic category detection scheme.

— Provides a far better starting point for classifying
new categories.

— A different perspective on multi-category settings.

* Cons:
— “Closeness” between classes is very poorly defined.
— One-shot experiments not particularly convincing.
— Advantage degrades the more samples you have.
— PMT-SVM doesn’t scale very well...



Something Related (But Different)

(“If you liked Aytar & Zisserman, you might also enjoy this paper”)

“Hedging Your Bets: Optimizing Accuracy Specificity
Trade-Offs in Large Scale Visual Recognition”, Deng et
al., 2012

— Object categories form a semantic hierarchy.

— Make more reliable predictions about less specific
classification when faced with uncertainty.
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Deng et al. — cont. |

Given a hierarchy graph, a label is correct
either if it’s the right leaf, or any of its
ancestors.

In this setting, maximizing accuracy alone
cannot work.

Instead — maximize information gain while

maintaining an error rate = a required
threshold.

Done via a generalization of the Lagrange
multipliers method, with regular SVM one-vs-
all classifiers for posterior probabilities on the
leaves.



Deng et al. — cont. 1
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