Categorizing objects: global and part-based models of appearance

Kristen Grauman

UT-Austin

Generic categorization problem
Challenges: robustness

Realistic scenes are crowded, cluttered, have overlapping objects.

Generic category recognition: basic framework

- Build/train object model
 - Choose a representation
 - Learn or fit parameters of model / classifier
- Generate candidates in new image
- Score the candidates
Generic category recognition: representation choice

Window-based models
Building an object model

Simple holistic descriptions of image content
- grayscale / color histogram
- vector of pixel intensities

Kristen Grauman
Window-based models
Building an object model

- Pixel-based representations sensitive to small shifts

- Color or grayscale-based appearance description can be sensitive to illumination and intra-class appearance variation

Kristen Grauman
Window-based models
Building an object model

- Consider edges, contours, and (oriented) intensity gradients
- Summarize local distribution of gradients with histogram
 - Locally orderless: offers invariance to small shifts and rotations
 - Contrast-normalization: try to correct for variable illumination

Given the representation, train a binary classifier

Kristen Grauman
Discriminative classifier construction

- Nearest neighbor
 - 10^6 examples
 - Shakhnarovich, Viola, Darrell 2003
 - Berg, Berg, Malik 2005...

- Neural networks
 - LeCun, Bottou, Bengio, Haffner 1998
 - Rowley, Baluja, Kanade 1998
 -...

- Support Vector Machines
 - Guyon, Vapnik
 - Heisele, Serre, Poggio, 2001, ...

- Boosting
 - Viola, Jones 2001
 - Torralba et al. 2004
 - Opelt et al. 2006...

- Conditional Random Fields
 - McCallum, Freitag, Pereira 2000; Kumar, Hebert 2003...

Generic category recognition: basic framework

- Build/train object model
 - Choose a representation
 - Learn or fit parameters of model / classifier

- Generate candidates in new image

- Score the candidates
Window-based models
Generating and scoring candidates

Training:
1. Obtain training data
2. Define features
3. Define classifier

Given new image:
1. Slide window
2. Score by classifier

Window-based object detection: recap

Kristen Grauman
Issues

• What classifier?
 – Factors in choosing:
 • Generative or discriminative model?
 • Data resources – how much training data?
 • How is the labeled data prepared?
 • Training time allowance
 • Test time requirements – real-time?
 • Fit with the representation

Kristen Grauman
Issues

• What categories are amenable?
 – **Similar to specific object matching**, we expect spatial layout to be fairly rigidly preserved.
 – **Unlike specific object matching**, by training classifiers we attempt to capture intra-class variation or determine required discriminative features.

What categories are amenable to window-based reps?

Kristen Grauman
Window-based models:
Three case studies

- Boosting + face detection
 - Viola & Jones

- NN + scene Gist classification
 - e.g., Hays & Efros

- SVM + person detection
 - e.g., Dalal & Triggs

Viola-Jones face detector

Main idea:
- Represent local texture with efficiently computable “rectangular” features within window of interest
- Select discriminative features to be weak classifiers
- Use boosted combination of them as final classifier
- Form a cascade of such classifiers, rejecting clear negatives quickly
Boosting intuition

Weights Increased

Boosting illustration

Weights Increased
Boosting illustration

Weak Classifier 2

Weights Increased
Boosting illustration

Final classifier is a combination of weak classifiers
Boosting: training

- Initially, weight each training example equally
- In each boosting round:
 - Find the weak learner that achieves the lowest weighted training error
 - Raise weights of training examples misclassified by current weak learner
- Compute final classifier as linear combination of all weak learners (weight of each learner is directly proportional to its accuracy)
- Exact formulas for re-weighting and combining weak learners depend on the particular boosting scheme (e.g., AdaBoost)

Boosting: pros and cons

- Advantages of boosting
 - Integrates classification with feature selection
 - Complexity of training is linear in the number of training examples
 - Flexibility in the choice of weak learners, boosting scheme
 - Testing is fast
 - Easy to implement

- Disadvantages
 - Needs many training examples
 - Often found not to work as well as an alternative discriminative classifier, support vector machine (SVM)
 - especially for many-class problems
Viola-Jones detector: features

“Rectangular” filters
Feature output is difference between adjacent regions

Efficiently computable with integral image: any sum can be computed in constant time.

Kristen Grauman

Computing the integral image

Lana Lazebnik
Computing the integral image

Cumulative row sum: \(s(x, y) = s(x-1, y) + i(x, y) \)
Integral image: \(ii(x, y) = ii(x, y-1) + s(x, y) \)

Computing sum within a rectangle

- Let \(A, B, C, D \) be the values of the integral image at the corners of a rectangle
- Then the sum of original image values within the rectangle can be computed as:
 \(\text{sum} = A - B - C + D \)
- Only 3 additions are required for any size of rectangle!
Viola-Jones detector: features

“Rectangular” filters
Feature output is difference between adjacent regions

Value at (x,y) is sum of pixels above and to the left of (x,y)

Efficiently computable with integral image: any sum can be computed in constant time
Avoid scaling images → scale features directly for same cost

Kristen Grauman

Viola-Jones detector: features

Considering all possible filter parameters: position, scale, and type:
180,000+ possible features associated with each 24 x 24 window

Which subset of these features should we use to determine if a window has a face?

Use AdaBoost both to select the informative features and to form the classifier

Kristen Grauman
Viola-Jones detector: AdaBoost

- Want to select the single rectangle feature and threshold that best separates positive (faces) and negative (non-faces) training examples, in terms of weighted error.

Resulting weak classifier:

\[h_t(x) = \begin{cases}
+1 & \text{if } f_t(x) > \theta_t \\
-1 & \text{otherwise}
\end{cases} \]

For next round, reweight the examples according to errors, choose another filter/threshold combo.

Kristen Grauman

Viola-Jones Face Detector: Results

First two features selected
• Even if the filters are fast to compute, each new image has a lot of possible windows to search.

• How to make the detection more efficient?

Cascading classifiers for detection

• Form a cascade with low false negative rates early on

• Apply less accurate but faster classifiers first to immediately discard windows that clearly appear to be negative

Kristen Grauman
Viola-Jones detector: summary

Train with 5K positives, 350M negatives
Real-time detector using 38 layer cascade
6061 features in all layers

[Implementation available in OpenCV:
http://www.intel.com/technology/computing/opencv/]

Kristen Grauman

Viola-Jones detector: summary

• A seminal approach to real-time object detection
• Training is slow, but detection is very fast
• Key ideas
 ➢ *Integral images* for fast feature evaluation
 ➢ *Boosting* for feature selection
 ➢ *Attentional cascade* of classifiers for fast rejection of non-face windows

Viola-Jones Face Detector: Results
Viola-Jones Face Detector: Results

Detecting profile faces?

Can we use the same detector?
Viola-Jones Face Detector: Results

Example using Viola-Jones detector

Frontal faces detected and then tracked, character names inferred with alignment of script and subtitles.

Consumer application: iPhoto

http://www.apple.com/ilife/iphoto/
Consumer application: iPhoto

Things iPhoto thinks are faces

Can be trained to recognize pets!

Window-based models: Three case studies

- Boosting + face detection
 - Viola & Jones

- SVM + person detection
 - e.g., Dalal & Triggs

- NN + scene Gist classification
 - e.g., Hays & Efros

Nearest Neighbor classification

- Assign label of nearest training data point to each test data point

Black = negative
Red = positive

Novel test example
Closest to a positive example from the training set, so classify it as positive.

Voronoi partitioning of feature space for 2-category 2D data

from Duda et al.
K-Nearest Neighbors classification

- For a new point, find the k closest points from training data
- Labels of the k points “vote” to classify

If query lands here, the 5 NN consist of 3 negatives and 2 positives, so we classify it as negative.

Source: D. Lowe

A nearest neighbor recognition example
Where in the World?

Where in the World?
Where in the World?

6+ million geotagged photos by 109,788 photographers

Annotated by Flickr users
6+ million geotagged photos by 109,788 photographers

Annotated by Flickr users

Which scene properties are relevant?
Spatial Envelope Theory of Scene Representation
Oliva & Torralba (2001)

A scene is a single surface that can be represented by global (statistical) descriptors

Global texture:
capturing the “Gist” of the scene

Capture global image properties while keeping some spatial information

Oliva & Torralba IJCV 2001, Torralba et al. CVPR 2003
Which scene properties are relevant?

- **Gist scene descriptor**
- **Color Histograms** - L*A*B* 4x14x14 histograms
- **Texton Histograms** – 512 entry, filter bank based
- **Line Features** – Histograms of straight line stats

Scene Matches

Scene Matches

Scene Matches

Quantitative Evaluation Test Set
The Importance of Data

Nearest neighbors: pros and cons

- **Pros:**
 - Simple to implement
 - Flexible to feature / distance choices
 - Naturally handles multi-class cases
 - Can do well in practice with enough representative data

- **Cons:**
 - Large search problem to find nearest neighbors
 - Storage of data
 - Must know we have a meaningful distance function
Window-based models:
Three case studies

- Boosting + face detection
 - Viola & Jones

- NN + scene Gist classification
 - e.g., Hays & Efros

- SVM + person detection
 - e.g., Dalal & Triggs

Linear classifiers
Linear classifiers

• Find linear function to separate positive and negative examples

\[\mathbf{x}_i \text{ positive: } \mathbf{x}_i \cdot \mathbf{w} + b \geq 0 \]
\[\mathbf{x}_i \text{ negative: } \mathbf{x}_i \cdot \mathbf{w} + b < 0 \]

Which line is best?

Support Vector Machines (SVMs)

• Discriminative classifier based on optimal separating line (for 2d case)

• Maximize the margin between the positive and negative training examples
Support vector machines

- Want line that maximizes the margin.

\[\mathbf{x}_i \text{ positive (} y_i = 1) : \quad \mathbf{x}_i \cdot \mathbf{w} + b \geq 1 \]

\[\mathbf{x}_i \text{ negative (} y_i = -1) : \quad \mathbf{x}_i \cdot \mathbf{w} + b \leq -1 \]

For support, vectors, \(\mathbf{x}_i \cdot \mathbf{w} + b = \pm 1 \)

For support vectors:

\[\frac{\mathbf{w}^T \mathbf{x} + b}{||\mathbf{w}||} = \pm 1 \]

\[M = \frac{1}{||\mathbf{w}||} - \frac{-1}{||\mathbf{w}||} = \frac{2}{||\mathbf{w}||} \]

Support vector machines

- Want line that maximizes the margin.

\[wx + b = 1 \]
\[wx + b = -1 \]

\[\mathbf{x}_i \text{ positive (} y_i = 1): \quad \mathbf{x}_i \cdot \mathbf{w} + b \geq 1 \]
\[\mathbf{x}_i \text{ negative (} y_i = -1): \quad \mathbf{x}_i \cdot \mathbf{w} + b \leq -1 \]

For support vectors, \(\mathbf{x}_i \cdot \mathbf{w} + b = \pm 1 \)

Distance between point and line:
\[\left| \frac{\mathbf{x}_i \cdot \mathbf{w} + b}{\| \mathbf{w} \|} \right| \]

Therefore, the margin is \(\frac{2}{\| \mathbf{w} \|} \)

Finding the maximum margin line

1. Maximize margin \(\frac{2}{\| \mathbf{w} \|} \)
2. Correctly classify all training data points:

\[\mathbf{x}_i \text{ positive (} y_i = 1): \quad \mathbf{x}_i \cdot \mathbf{w} + b \geq 1 \]
\[\mathbf{x}_i \text{ negative (} y_i = -1): \quad \mathbf{x}_i \cdot \mathbf{w} + b \leq -1 \]

Quadratic optimization problem:

Minimize \(\frac{1}{2} \mathbf{w}^T \mathbf{w} \)
Subject to \(y_i (\mathbf{w} \cdot \mathbf{x}_i + b) \geq 1 \)
Finding the maximum margin line

- Solution: \(\mathbf{w} = \sum_i \alpha_i y_i \mathbf{x}_i \)

\[b = y_i - \mathbf{w} \cdot \mathbf{x}_i \quad \text{(for any support vector)} \]

\[\mathbf{w} \cdot \mathbf{x} + b = \sum_i \alpha_i y_i \mathbf{x}_i \cdot \mathbf{x} + b \]

- Classification function:

\[f(x) = \text{sign} \left(\mathbf{w} \cdot \mathbf{x} + b \right) \]

\[= \text{sign} \left(\sum_i \alpha_i \mathbf{x}_i \cdot \mathbf{x} + b \right) \]

If \(f(x) < 0 \), classify as negative,
if \(f(x) > 0 \), classify as positive

Histograms of Oriented Gradients for Human Detection

Navneet Dalal and Bill Triggs
INRIA Rhône-Alps, 655 avenue de l’Europe, Montbonnot 38334, France

Abstract
We study the question of feature sets for robust visual object recognition, adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of Histograms of Oriented Gradient (HoG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1600 annotated human images with a large range of pose variations and backgrounds.

1 Introduction

We briefly discuss previous work on human detection in §2, give an overview of our method §3, describe our data sets in §4 and give a detailed description and experimental evaluation of each stage of the process in §5–6. The main conclusions are summarized in §7.

2 Previous Work

There is an extensive literature on object detection, but here we mention just a few relevant papers on human detection [18, 17, 22, 16, 20]. See [6] for a survey. Papageorgiou et al [18] describe a pedestrian detector based on a polynomial SVM using scifit Haar features as input descriptors, with a parts (subwindow) based variant in [17]. Deponte et al give an optimized version of this [2]. Gavrila & Philomin [9] take a more direct approach, extracting edge images and matching them to a set of learned exemplars using chamfer distance. This has been used in a practical real-time pedestrian detection system [7]. Viola et al [22] build an efficient

Person detection with HoG’s & linear SVM’s

- Map each grid cell in the input window to a histogram counting the gradients per orientation.
- Train a linear SVM using training set of pedestrian vs. non-pedestrian windows.

Dalal & Triggs, CVPR 2005

Code available: http://pascal.inrialpes.fr/soft/olt/
HoG descriptor

![Diagram showing the process of HoG descriptor](image)

Person detection with HoGs & linear SVMs

![Image showing person detection](image)

Questions

- What if the data is not linearly separable?
- What if we have more than just two categories?

Non-linear SVMs

- Datasets that are linearly separable with some noise work out great:

- But what are we going to do if the dataset is just too hard?

- How about… mapping data to a higher-dimensional space:
Non-linear SVMs: feature spaces

- General idea: the original input space can be mapped to some higher-dimensional feature space where the training set is separable:

\[
\Phi: \mathbf{x} \rightarrow \phi(\mathbf{x})
\]

Slide from Andrew Moore’s tutorial: http://www.autonlab.org/tutorials/svm.html

The “Kernel Trick”

- The linear classifier relies on dot product between vectors \(K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j \)

- If every data point is mapped into high-dimensional space via some transformation \(\Phi: \mathbf{x} \rightarrow \phi(\mathbf{x}) \), the dot product becomes:

\[
K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)
\]

- A kernel function is similarity function that corresponds to an inner product in some expanded feature space.

Slide from Andrew Moore’s tutorial: http://www.autonlab.org/tutorials/svm.html
Example

2-dimensional vectors $x = [x_1 \ x_2]$;
let $K(x_i,x_j) = (1 + x_i^T x_j)^2$

Need to show that $K(x_i,x_j) = \phi(x_i)^T \phi(x_j)$:

\[
K(x_i,x_j) = (1 + x_i^T x_j)^2, \\
= 1 + x_{i1}^2 x_{j1}^2 + 2 x_{i1} x_{j1} x_{i2} x_{j2} + x_{i2}^2 x_{j2}^2 + 2 x_{i1} x_{j1} + 2 x_{i2} x_{j2} \\
= [1 \ x_{i1}^2 \ \sqrt{2} x_{i1} x_{i2} \ x_{i2}^2 \ \sqrt{2} x_{i1} \ \sqrt{2} x_{i2}]^T \\
[1 \ x_{j1}^2 \ \sqrt{2} x_{j1} x_{j2} \ x_{j2}^2 \ \sqrt{2} x_{j1} \ \sqrt{2} x_{j2}] \\
= \phi(x_i)^T \phi(x_j),
\]

where $\phi(x) = [1 \ x_1^2 \ \sqrt{2} x_1 x_2 \ x_2^2 \ \sqrt{2} x_1 \ \sqrt{2} x_2]$

Nonlinear SVMs

- The kernel trick: instead of explicitly computing the lifting transformation $\phi(x)$, define a kernel function K such that

\[
K(x_i, x_j) = \phi(x_i) \cdot \phi(x_j)
\]

- This gives a nonlinear decision boundary in the original feature space:

\[
\sum_i \alpha_i y_i K(x_i, x) + b
\]
Examples of kernel functions

- **Linear:**
 \[K(x_i, x_j) = x_i^T x_j \]

- **Gaussian RBF:**
 \[K(x_i, x_j) = \exp\left(-\frac{\|x_i - x_j\|^2}{2\sigma^2}\right) \]

- **Histogram intersection:**
 \[K(x_i, x_j) = \sum_k \min(x_i(k), x_j(k)) \]

SVMs for recognition

1. Define your representation for each example.
2. Select a kernel function.
3. Compute pairwise kernel values between labeled examples.
4. Use this “kernel matrix” to solve for SVM support vectors & weights.
5. To classify a new example: compute kernel values between new input and support vectors, apply weights, check sign of output.
Questions

• What if the data is not linearly separable?
• What if we have more than just two categories?

Multi-class SVMs

• Achieve multi-class classifier by combining a number of binary classifiers

• One vs. all
 – Training: learn an SVM for each class vs. the rest
 – Testing: apply each SVM to test example and assign to it the class of the SVM that returns the highest decision value

• One vs. one
 – Training: learn an SVM for each pair of classes
 – Testing: each learned SVM “votes” for a class to assign to the test example
SVMs: Pros and cons

Pros
- Kernel-based framework is very powerful, flexible
- Often a sparse set of support vectors – compact at test time
- Work very well in practice, even with very small training sample sizes

Cons
- No “direct” multi-class SVM, must combine two-class SVMs
- Can be tricky to select best kernel function for a problem
- Computation, memory
 - During training time, must compute matrix of kernel values for every pair of examples
 - Learning can take a very long time for large-scale problems

Scoring a sliding window detector

If prediction and ground truth are *bounding boxes*, when do we have a correct detection?

Kristen Grauman
Scoring a sliding window detector

We’ll say the detection is correct (a “true positive”) if the intersection of the bounding boxes, divided by their union, is > 50%.

Scoring an object detector

If the detector can produce a confidence score on the detections, then we can plot the rate of true vs. false positives as a threshold on the confidence is varied.

\[
TPR = \text{fraction of positive examples that are correctly labeled.}
\]

\[
FPR = \text{fraction of negative examples that are misclassified as positive.}
\]
Window-based detection: strengths

- Sliding window detection and global appearance descriptors:
 - Simple detection protocol to implement
 - Good feature choices critical
 - Past successes for certain classes

Window-based detection: Limitations

- High computational complexity
 - For example: 250,000 locations x 30 orientations x 4 scales = 30,000,000 evaluations!
 - If training binary detectors independently, means cost increases linearly with number of classes
- With so many windows, false positive rate better be low
Limitations (continued)

- Not all objects are “box” shaped

Limitations (continued)

- Non-rigid, deformable objects not captured well with representations assuming a fixed 2d structure; or must assume fixed viewpoint
- Objects with less-regular textures not captured well with holistic appearance-based descriptions
Limitations (continued)

- If considering windows in isolation, context is lost

![Sliding window](image1.png) ![Detector’s view](image2.png)

Figure credit: Derek Hoiem

Limitations (continued)

- In practice, often entails large, cropped training set (expensive)
- Requiring good match to a global appearance description can lead to sensitivity to partial occlusions

![Image credit: Adam, Rivlin, & Shimshoni](image3.png)

Kristen Grauman
Summary

• Basic pipeline for window-based detection
 – Model/representation/classifier choice
 – Sliding window and classifier scoring

• Discriminative classifiers for window-based representations
 – Boosting
 • Viola-Jones face detector example
 – Nearest neighbors
 • Scene recognition example
 – Support vector machines
 • HOG person detection example

• Pros and cons of window-based detection