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Video Example

Red Dialogue
Yellow Walking Dialogue
Green Discussion

Light Blue Walking Discussion
Dark Blue Monologue

None Background

Link

http://player.vimeo.com/video/37507972?title=0&amp;byline=0&amp;portrait=0


Features

Features are constructed based on first- and third-person
information.

1. Dense optical flow (first-person movement).
2. Face locations (relative to first person)
3. Attention and Roles. For each person x :

I Faces looking at x
I Whether first person looks at x
I Mutual attention between x and first person
I Number of faces looking at where x is looking
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Conditional Random Fields

CRFs are described in Lafferty et al. [2001].

I Observations and labels form a Markov chain.
I Nodes pend on neighbors.

y1 y2 y3

x1 x2 x3

y3

p(y3|y2, x3)



Hidden Conditional Random Fields
A micro view of the HCRF model as described in Quattoni et al.
[2007].

I Y is a label for the whole sequence.
I xi is a single observation in the sequence.
I Each hi is a possible hidden state.

Y
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Hidden Conditional Random Fields (cont.)
A macro view of the HCRF model as described in Quattoni
et al. [2007].

I Y is a label for the whole sequence.
I Each xi is a single observation in the sequence.
I Each hi is the hidden state label assigned to xi .
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Hidden Conditional Random Fields (cont.)
A macro view of the HCRF model as described in Quattoni
et al. [2007].

I Y is a label for the whole sequence.
I Each xi is a single observation in the sequence.
I Each hi is the hidden state label assigned to xi .

Y

h1 h2 h3

x1 x2 x3

p(Y |{hi}) = p(Y |{xi})

Y



HCRF Example

Suppose we want to find the likelihood of “walking dialogue” (WDlg) vs
“walking discussion” (WDisc).

I Each xi is now a feature extracted from video frames.
I Each hi is determined from training:

I h1: John wants to hear about my weekend.
I h2: I’m feeling talkative.
I h3: Mary wants to listen to her iPod.
I If p(WDlg) > p(WDisc), assign Y = WDlg.

WDlg
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Experiment 1: Video Processing
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11,340 intervals @ 24 hours per 20 intervals > 18 months
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Experiment 1: Video Processing (cont.)

My Results Their Results
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Experiment 2: Caltech Dataset

Experiment 2 focuses on the Caltech image dataset.

I Multi-class HCRF evaluated
I Classes are evaluated in isolation.
I Temporal context is simulated with clustering
I Initial parameters are based on Fathi et al. [2012]:

I Hidden States: 5
I Window Size: 5
I Max Iterations: 100
I Optimizer: Broyden–Fletcher-Goldfarb-Shanno (BFGS)
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Exp. 2a: Initial Settings (cont.)
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Exp. 2b: Low Iterations
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Exp. 2c: Low Hidden States
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Exp. 2d: CG Optimizer
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Exp. 2e: Increased Iterations
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Exp. 2f: Increased Hidden States
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Exp. 2g: Clustering + 15 Hidden States
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Exp. 2g: Clustering + 15 Hidden States (cont.)
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Exp. 2h: Clustering + 20 Hidden States
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Exp. 2i: LDCRF with 20 Hidden States
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Exp. 2j: CRF with Initial Parameters
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Exp. 2j: CRF with Initial Parameters (cont.)
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Overall Results

I SVM, CRF, and LDCRF perform best

I CRF almost outperforms all with negligible memory and
processing requirements

I Hidden states increase accuracy but at significant memory
cost
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Conclusion

I HCRF is accurate, but has a heavy performance cost.
I May be optimal for particular domains.
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