CS 395 T: Class Specific Hough Forests for Object Detection

Nona Sirakova

September 2012
Outline:

1. Goal
2. Theme/Motivation;
3. Importance/Applications;
4. Challenges;
5. Background;
6. Key Ideas;
7. Strengths / Contributions;
8. Weaknesses;
9. Experiments:
 a. Cars
 b. Horses & Pedestrians
10. Open Issues/Extensions;
Goal

Recognize a specific object class in images.
 ○ Denote the object's location with a bounding box.
Theme

Car or plane?

Too Many Pictures!

Cat or Lynx?
Importance/ Applications

- Visual search Labeling
- Content-Based Image Indexing
- Object Counting & Monitoring
Challenges

● Objects of same classes vary due to:
 ○ Illumination
 ○ Imaging conditions
 ○ Object articulation
 ○ Intraclass differences

● Challenges of natural scenes:
 ○ Clutter
 ○ Occlusion
Background: (What is done so far)

- Generative Codebooks are expensive
 - Opelt et. al
- Bottom-up approach
 - Leive et. al
- Random forests
- Sparse sampling
 - Use interest points which are rather sparse.
Image:

- Image is used to demonstrate the formation of patches, trees and random forests;

- Grid lines show patches;
Key Ideas 1:

- Hough random forests
 - $\text{patch}_i = (\text{appearance, backgr/foregr, vote});$
 - ex: $\text{patch}_i = (\text{appearance, 1, 7.6 in from horse centroid})$
 - $\text{tree} = \text{patch}_i + \text{patch}_j + ...$
 - ex:
 - forest = $\text{tree}_k + \text{tree}_l + \text{tree}_m + ...$
Key Ideas 2: Tree training

- How do we assign tests at each node?
 - non-leaf node gets a set of binary tests;
 - Test formation: \((p, q)\) and \((r, s)\) are 2 random pixels of a patch. If they differ by less than threshold \(t\), go down one side of the tree. Else, go down the other side.

\[
t_{a,p,q,r,s,\tau}(I) = \begin{cases}
0, & \text{if } I^a(p, q) < I^a(r, s) + \tau \\
1, & \text{otherwise.}
\end{cases}
\]
Key Ideas 3: Tree training

- How do we pick tests?
 - follow random forest framework;
 - Pick tests that minimize uncertainty in Class Labels and uncertainty in Offset Vectors (votes) as we go down the tree.
Key Ideas 4: Tree training

- How do we pick tests?

2. Measure offset (vote) uncertainty given patch:

Low Uncertainty
- Vote vectors point in the similar direction and have similar length

High Uncertainty
- Vote vectors neither point in similar directions nor have similar lengths
Key Ideas 5: Tree training

- How do we pick tests?
 1. Class Label Uncertainty.
Key Ideas 6: Tree training

● How do we pick tests?

3. Ignore background patches. Because Class Labels of those are 0.
Key Ideas 7: Tree training

- How do we pick pixels to test?
 a. At each node, randomly choose if you will minimize Label Uncertainty or Offset Uncertainty;

Do I want to be really sure that what I pick is a horse

Or do I want to be really sure of that the center of the patch is at location x.
Key Ideas 8: Tree training

- How do we pick pixels to test?
 - Choose a pool of pixels to test from a patch
 - Pick the threshold (thao) randomly from the set of differences between the data;
 - Pick the test that gave the min sum of the two types of uncertainties;
Key Ideas 9: Tree training

- What's the result of picking pixels to test in this way?
 - Each node has equal chance to minimize Label Uncertainty or Offset Uncertainty → leaf has low levels of both.
Classification: Find center of object

- Patches vote;
- Center is where we gather the most votes
Strengths / Contributions

- Fast;
- Handles large datasets;
- Matches the performance of state of the art algorithm at the time;
- Dense patch sampling;
- Can work with solid and deformable objects;
Weaknesses

- No option for detecting a variety of objects.
- Must pre-train on the exact object to detect.
- Disregarding background can be a disadvantage.
Weaknesses

- No option for detecting a variety of objects.
- Must pre-train on the exact object to detect.
- Disregarding background can be a disadvantage.
Weaknesses

- No option for detecting a variety of objects.
- Must pre-train on the exact object to detect.
- Disregarding background can be a disadvantage.
Experiments 1: Cars Data

- (UIUC cars)
 - 170 imgs with 210 cars of same scale.
 - 108 imgs with 139 cars of different scale.
 - Variation: occlusion, contrast, background clutter, illumination.
 - Constant in: overall shape of the objects.

Figure 2. For the set of training images shown in (a), we visualize the data recorded in some of the leaves of the constructed class-specific Hough forest in (b). This data consists of the object patch proportion C_L and the list of the offset vectors for object patches D_L. Note that the leaves of the Hough forest form a discriminative class-specific codebook as shown in (c): the training examples falling inside each of the first three leaves can be associated with different parts of a car.
Experiments 2: Cars

● Summary
 ○ 20 000 binary tests considered for each node;
 ○ Resized images;
 ○ Balanced training sets - 25k/ +25k ;
 ○ 5 scales;
 ○ Precision Recall curves formed by changing the threshold for acceptance (to be accepted we need: 100 votes, 70 votes, 40 votes...)

[Images of a car and a horse]
Experiments 3: Cars

- Summary of UIUC car implementation:
 - Training
 - 550 positive examples;
 - 450 negative examples;
 - 3 channels:
 1. intensity,
 2. absolute value of x derivative;
 3. absolute value of y derivative;
 - 15 trees;
Experiments 4: Cars

- Results:
 - 98.5% accuracy for UIUC-Single
 - 98.6% accuracy for UIUC-Multi
 - Matches exactly the performance of state of the art algorithm, but is faster.

- Explanation:
 - Larger training set
 - Denser patch sample
Experiments 5: Cars

Significance of results:

- Outperformed approaches based solely on:
 ii. Boundary Shape (A. Opelt, A. Pinz, and A. Zisserman. Learning an alphabet of shape and appearance for multi-class object detection. IJCV, 2008.)
Experiments 1: Horses & Pedestrians

- **Data**
 - TUD Pedestrians - side views
 - variation in: occlusion, scale, illumination, poses, clothing, weather.
 - INTRA Pedestrians - front & back views
 - variation in: occlusion, scale, illumination, poses, clothing, weather.
 - Weizmann Horses
 - variation in: scale, poses
Experiments 2: Horses & Pedestrians

- **Summary of data sets:**
 - **TUD:**
 - 400 training images;
 - 250 testing images with 311 pedestrians
 - **INTRA**
 - 614 training images
 - 288 testing images with pedestrians; 453 imgs with no pedestrians
 - **Horses**
 - 200 training images, 100 images
 - 228 testing images with horses and 228 without.
Experiments 3: Horses & Pedestrians

● Summary of UIUC car implementation:
 ○ Training
 ■ 16 channels:
 1. 3 color channels of LAB color space (insert pic of LAB)
 2. absolute value of x derivative;
 3. absolute value of y derivative;
 4. absolute value of second order x derivative;
 5. absolute value of second order y derivative;
 6. 9 HOG channels
 ■ 15 trees
Figure 5. Hough forests (red and orange curves) demonstrate a competitive performance with respect to the previous state-of-the-art methods (blue curves) on several challenging datasets. See text for a more detailed discussion.
Experiments 5: Horses & Pedestrians

- Significance of results:
 - Outperformed approaches based solely on:
 ii. **Boundary Shape** (A. Opelt, A. Pinz, and A. Zisserman. Learning an alphabet of shape and appearance for multi-class object detection. IJCV, 2008.)
Open Issues / Extensions

- Multi-class hough forests;
- Testing on more challenging datasets;