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CS439H: Fall 2011 – Final Exam

Instructions

• Stop writing when“time” is announced at the end of the exam. I will leave the room as soon as I’ve
given people a fair chance to bring me the exams. I will not accept exams once my foot crosses the
threshold.

• This final is closed book and notes.

• If a question is unclear, write down the point you find ambiguous, make a reasonable interpretation,
write down that interpretation, and proceed.

• For full credit, show your work and explain your reasoning and any important assumptions.

Write brief, precise, and legible answers. Rambling brain-dumps are unlikely to be effective.
Think before you start writing so that you can crisply describe a simple approach rather than
muddle your way through a complex description that “works around” each issue as you come to it.
Perhaps jot down an outline to organize your thoughts. And remember, a picture can be worth
1000 words.

• There is no need to fill every nanoacre of paper with writing.

• Write your name and uteid on every page of this exam.
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1. (25 points)

(a) True/False Doubling the block size in a file system like FFS that uses multi-level indexing will
double the maximum file size.

Solution: False. Not only do the leaves grow, but also the internal nodes

(b) Write a one-sentence definition of the term transaction

Solution: A way to update multiple values in stable storage that is guaranteed to be atomic, consistent,
isolated, and durable.

(c) True/False A disk’s average seek time usually paints too optimistic a picture of a disk’s perfor-
mance for most workloads.

Solution: False. Too pessimistic

(d) True/False A disk’s mean time to failure often paints too optimistic a picture of a disk’s reliability
when the disk is deployed.

Solution: True. Advertised failure rates are usually less than 1% per year, but measured rates are often more
than twice that.

(e) Suppose I have 64-bit virtual addresses, 64-bit physical addresses, and 16KB pages. How many
bits from the virtual address are used as the “offset” within a page when computing the physical
address?

i. 10

ii. 12

iii. 14

iv. 16

v. 18

Solution: c. 14

(f) True/False The NFS distributed file system guarantees FIFO/PRAM consistency.

Solution: False. Even if machine A updates file f1 and then file f2, machine B can observe the new version of
f2 and then the old version of f1

(g) True/False The NFS distributed file system guarantees causal consistency.

Solution: False. Even if machine A updates file f1 and then file f2, machine B can observe the new version of
f2 and then the old version of f1

(h) True/False It is impossible for a distributed file system that uses callbacks and leases to imple-
ment FIFO/PRAM consistency.

Solution: False. We can even implement linearizability

(i) True/False It is impossible for a distributed file system that uses callbacks and leases to imple-
ment sequential consistency.

Solution: False. We can even implement linearizability

(j) Suppose machine A encrypts a file using machine B’s public key and sends the encrypted file to
machine B. Which of the following guarantees does this strategy provide?

i. Secrecy (no one but B could read this message)

ii. Authentication (no one but A could send this message)

iii. Both secrecy and authentication

iv. Neither secrecy nor authentication

Solution: (a) secrecy
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2. (10 pts)

SOS (Sleazy Operating Systems, Inc.) has a problem. Their OS has a set of queues, each of which is
protected by a lock. To do an enqueue or dequeue, a thread must hold the lock associated with the
queue.

SOS needs to implement an atomic transfer routine that dequeues an item from one queue and enqueues
it on another. The transfer must appear to occur atomically: there should be no interval of time during
which an external thread can determine that an item has been removed from one queue but not yet
placed on another. An SOS engineer (who didn’t take CS 439H!) implemented the following:

void transfer (Queue *queue1, Queue *queue2) {

Item thing; /* thing being transferred */

queue1->lock.Acquire();

queue2->lock.Acquire();

thing = queue1->Dequeue();

if (thing != NULL) {

queue2->Enqueue(thing);

}

queue2->lock.Release();

queue1->lock.Release();

}

Assume that queue1 and queue2 never refer to the same queue. Also assume that you have a function
Queue::Address() which takes a queue and returns, as an unsigned integer, its address.

(a) What is the concurrency bug with this code?

Solution: It can deadlock. Thread one can try to acqure locks on q1 then q2 while thread 2 tries to acquire
locks on q2 then q1

(b) Implement a better version of the transfer() function.

Solution: TBD: order the lock acquisitions; e.g., check the address of the queues and always acquire the lower
addressed queue before the higehr addressed one.
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3. (15pts) You have been hired by TxDOT to synchronize traffic over a narrow light-duty bridge on a
public highway. Traffic may only cross the bridge in one direction at a time, and if there are ever more
than 3 vehicles on the bridge at one time, it will collapse under their weight. In this system, each car is
represented by one thread, which executes the procedure OneVehicle() when it arrives at the bridge:

OneVehicle(Direction direc, Bridge *bridge){

bridge->Arrive(direc);

printf("Crossing bridge.\n");

bridge->Exit(direc);

}

In the code above, direc gives the direction in which the vehicle will cross the bridge. This is a lightly
travelled rural bridge, so the solution does not need to guarantee fairness or freedom from starvation.

Bridge::Arrive() must not return until it safe for the car to cross the bridge in the given direction
(it must guarantee that there will be no head-on collisions or bridge collapses). Bridge::Exit() is
called to indicate that the caller has finished crossing the bridge; Bridge::Exit() should take steps
to let additional cars cross the bridge. One of the engineers on your team proposes this solution:

class Bridge{

enum Direction {EAST=0, WEST=1, ANY};

Condition direction, number;

Lock lock;

int cars;

Direction currentDir = ANY;

int64 ticket[2] = {0,0}; // Assume these do not

int64 turn[2] = {1,1}; // overflow/wrap around

void Bridge::Arrive(Direction myDir) {

lock.Acquire();

int myTicket = ticket[myDir]++;

while (currentDir != myDir && currentDir != ANY){

direction.Wait(&lock);

}

currentDir = myDir;

while (cars >= MAX_CARS || turn[myDir] < myTicket){

number.Wait(&lock);

}

cars++;

turn[myDir]++;

lock.Release();

}

void Bridge::Exit(Direction myDir) {

lock.Acquire();

cars--;

number.Broadcast(&lock);

if (cars == 0) {

currentDir = ANY;

direction.Broadcast(&lock);

}

lock.Release();

}

}
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(a) Why does Bridge::Exit() call number.Broadcast() rather than number.Signal()?

Solution: Signal may not wake up the right waiting thread, so the system can get stuck

(b) The above code has a serious bug. Identify this bug and explain whether it can cause deadlock,
bridge collapse, head-on collisions, or multiple of these problems.

Solution: We can get a head-on collision if the direction changes while a car is waiting in the second loop.
This can happen because under mesa semantics, there can be a delay from the number::Broadcast()
until a waiting car in the same direction proceeds; during that time, the bridge can drain and change
direction before the waiting care proceeds.

(c) Implement a solution that works by making a small changes to the code for Bridge::Arrive()

or Bridge::Exit() or both. (Or, if you can be neat and precise, annotate the code above with
your changes and write “See previous page” here.)

Solution: (1) We need to wait in just one place. change the first while loop in Arrive to include the conditions
for the second while loop: while(currentDir NEQ myDir AND currentDir NEQ ANY OR (cars GEQ
MAX CARS OR turn(myDir) LESSTHAN myTicket)
(2) Now delete the second while loop
(3) change the first broadcast in Exit() to broadcast on the (now ill-named) direction condition
variable and delete the second broadcast.
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4. (15 points)

Suppose a memory cache server workload consists of network clients sending 64-byte requests containing
a hash key to a server which reads a 1 KB chunk from a hash table in DRAM and sends 1 KB to the
client. 1 Gbit

= 109 bits

1 microsecond
= 10−6 seconds

Each network interface has a bandwidth of 1 Gbits/s (that’s Gbits not GBytes!) and there is a 400
microsecond one-way network latency between a client and the server. The network interface is full-
duplex: it can send and receive at the same time at full bandwidth. The CPU has an overhead of
100 microseconds to send or receive a network packet. Additionally, there is a CPU overhead of .01
microseconds per byte sent, and doing the hash table lookup takes 10 microseconds.

For the back of the envelope type of calculations being asked for here, we are usually happy to be
within 10% for these numbers, so feel free to do appropriate rounding and to ignore negligible terms.

• How many requests per second can each network interface satisfy?

Solution: Each NIC is limited by send bandwidth. Each response has 1024*8 = 8192 bits; 109/8192 = 122070
requests/sec per NIC

• How many requests per second can the server CPU satisfy (assuming the system has a sufficient
number of network interfaces?)

Solution: Each request requires 2 packets (200microseconds)and 1088 bytes (10.88 microseconds) to be sen-
t/received and a hash table lookup (10 microseconds), so the CPU overhead is 221 microseconds
per request. 106/221 = 4525 requess/sec

• When the server and network loads are low, what is the latency from when a client begins to send
the request until it receives and processes the last byte of the reply (ignore any queuing delays).

Solution: The key steps are: CPU send 1 request + nw send 1 request + 1-way latency for last bit + CPU
recv 1 request + hash lookup + CPU send 1 reply + nw send 1 reply + 1 way latency for last bit
+ CPU recv 1 reply
= 100us + .64us + 64*8/109 + 400us + 100 + .64us + 10 + 100us + 81.92us + 8192/109 + 400us
+ 100us + 81.92us
= 1100us + 10us + 163.84us + .512us + 8.192us
= 1282.544us

1 ms
= 10−3 seconds

• Assuming that requests come from many different clients whose activities are uncorrelated and
assuming that you must keep average response time below 2 ms, how many requests per second
can a system with 4 network interfaces and 4 CPUs handle?

Solution: We can have at most 2000 - 1282.544 = 717us of queuing delay. Since each NIC is able to handle
more than an order of magnitude more requests/sec than each CPU, essentially all queuing delay
will be at the CPU not the network.
Since requests are uncorrelated, we will use an exponential distribution to model them. For an
exponential distribution, the CPU queuing + service time = .221ms * (1/1-utilization); so the
queuing time is queuing time = 221 * (1 - 1/1-utilization); we need 717 = 221 * (1-1/1-u)
A bit of algebra now:
717 = 221 - 221/1-u
496 = 221/1-u
(1-u)496 = 221
496u = 275
u = 0.5544
So, we can only allow each CPU to be 55% utilized. At 100% utilization, each CPU can handle
4525 requests/second, so at 55% each can handle 4525*.55 = 2489 requests/sec. With 4 cpus, we
can handle just under 10K requests/sec: (9955 requests/sec).
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5. (15)

Consider a cluster file system that stores data in 10MB chunks on chunkservers, that identifies each
chunk with a 8-byte chunkID, and that identifies each chunk server with a 2-byte server ID; to read
a file, a node first asks a master which chunk server to go to, and then reads from that chunk server.
Assuming that the chunk servers have disks with a 10ms avg seek + 10ms average time for 1/2 rotation
and and 100 MB/s of bandwidth for sequential access, and assuming that the single-processor master
can process a lookup request in 5 microseconds of CPU processing time, what is the maximum read
bandwidth this system can support (assuming an unlimited number of chunk servers and clients and
assuming that the network is not a bottleneck.)

Solution: The master can handle 200K requests/second. Each request reads 10MB. So, the max bandwidth
is 200 MB/s = 2TB/s

For this file system if 1TB disks cost $100, each chunk server has 10 1TB disks attached, each chunk
server costs $1,000 plus the cost of its disks, the master server costs $1,000 plus the cost of its memory,
and DRAM costs $20 per GB, what percentage of total system cost is the master server’s DRAM for
a 100 chunk-server system (considering only the components listed here and assuming that the master
keeps in DRAM all of the information necessary to do its job)?

Solution: 100 * (1000 + 1000) + 1000 + DRAM. 1000 TB of disk is 10**9 MB; each MB of storage needs 10
bytes of DRAM, so we need 10**10 bytes of DRAM (10GB); 1GB of DRAM costs $20, so we need
to spend $200 for 10GB of DRAM. So, the total system cost is $201,200, of which $200 is master
DRAM; .09940%
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6. (20 points) A few years ago some people begain to “sign” their email by including, at the bottom of an
otherwise normal email message, the senders name and the date encrypted in the senders private key.
The message itself is unencrypted, but the signature can be validated by using the finger command
to retrieve the sender’s public key.

(Finger is an old utility for getting basic information about a user. If I run the command

> finger userID@linux.utexas.edu

my local machine will send a message to a well known port on the machine linux.utexas.edu where
the finger daemon will respond with the contents of the file .finger from the user userID’s home
directory. So, users in this problem would just store their public key in their .finger file.)1

Explain why this gives a completely false sense of security, by outlining 5 different ways that you could
make it appear that the sender signed mail saying “Prof. Mike is a fink”. The definition of “different”
is that each attack has a unique fix. For each of the five attacks you list, give a countermeasure that the
sender/receiver could take to protect themselves against just that one attack, where the countermeasure
would not help against any of the other attacks you list.2

You may assume that the sender and receiver are on different machines, that both are running on
“diskless” workstations whose files are provided by NFS, and that you have the ability to spy on
and/or alter packets on any network at the sender or receivers site. However, you do not have the
power to break into either the sender or receiver’s machine — you can just view/change network
packets.

Hint: You may find it helpful to draw a picture showing the flow of network messages in the system.

Solution:

Problem Exploit Solution
Signature not tied to mes-
sage

attacker can do a replay at-
tack by capturing a “sig-
nature” from one message
and including it in the
forged message

include hash of message in
signed portion

Finger request/response
not authenticated

attacker can create signa-
ture with a different key
and send wrong public key
in response to finger (or
change user ID being fin-
gered)

encrypt channel between
client and finger server

DNS not authenticated attacker can direct finger
request to a server he con-
trols

authenticate DNS server

finger binary not secure attacker can change finger
binary to print any public
key

authenticate NFS server at
receiver

same:
fingerd binary not secure attacker can change fingerd

binary to send wrong pub-
lic key

authenticate NFS server at
sender

.finger file data not secure attacker can change con-
tents of file to different
public key

authenticate NFS server at
sender

1The UTCS department has configured finger to only allow such requests from other UGCS department machines. Ignore
this limitation. For the purposes of this problem, assume any client can use finger to access the file .finger for any account.

2You don’t need to provide complete designs; just give the essence of the idea; a couple lines should suffice for each
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