
CS 439: Systems 2 Mike Dahlin

 1

Lecture C1: Thread abstraction and implementation

Review -- 1 min

• User/kernel

• 3 reasons (interrupt, exception, trap)
• event,

{switch mode, switch PC, switch stack; save mode, PC, stack}
save remaining state
run handler
restore remaining state
retstore mode, PC, stack

• QUESTION: why switch {mode, PC, stack} atomically? (Why not
first switch mode, then PC and stack or vice versa?}

•
REVIEW QUESTION: How would you implement a hypervisor?
[picture]. What happens on an interrupt? What happens on an
exception/trap?

So, at this point I've hopefully convinced you that it is "obvious/natural" to
have interrupts/trap/execption and for the "natural" semantics to be "save
state + switch PC/stack/mode

That you need this just to have dual mode operation/system call/interrupts

Turns out, I've snuck in almost all of "how to implement threads" -- this
simple set of building blocks also gives you threads!

• Virtual memory

• Protection
• Relocation
• Sharing
• Capacity

• Process
• Thread – concurrency
• Address space – protection
Traditional Process – 1 thread + 1 address space
Multithreaded process – N threads in 1 address

CS 439: Systems 2 Mike Dahlin

 2

Process state:
Process control block – in-kernel data structure containing per-process state
(registers, stack pointer, program counter, priority, open files, …)

Outline - 1 min

Process: Definition
 [from lec2.pdf]
Implementing threads

o Multithreaded processes
o Thread dispatch

Mapped Segments

DLL’s

Stack
 {main’s state}
 {A’s state}

Heap

Initialized Data

Code

main(){
A();
…
}

A(){
…
}

Process
(e.g., state in memory, registers, kernel)

Registers, PC, SP

Process control
block (in
kernel)

Registers
PC
SP
R0
R1
R2
…

List of open files

PID
UID

Priority
…etc, etc. …

In-memory
image

Registers

CS 439: Systems 2 Mike Dahlin

 3

Preview - 1 min

Upcoming: thread abstraction dilemma
• Want an abstraction that makes it seem like my thread is only one

running (my own machine, sequential execution, etc.)
• Want threads to be able to cooperate to do some task.
If threads are cooperating, that breaks the independence abstraction – a
thread can see that other threads have accomplished work.

Example – chess program where coordinator spawns worker threads to
evaluate positions. Coordinator later looks and sees: “whoa! Someone
figured out the answer for me.”

 task is to come up with a new abstraction that allows independence when
we need independence, and that allows cooperation when that’s what we
need.

Lecture - 35 min

1. Multithreaded Processes

real world -- things happen concurrently (musicians in a band, server
handling requests, air molecules streaming past wing of airplane)

computers simulate and interact with real world --> must model
concurrency

example: google earth application

example: operating system uses concurrency so many things can run
on machine "at once"

CS 439: Systems 2 Mike Dahlin

 4

--> multi-threaded process

3 weeks ago: process = 1 thread + 1 address space
(Original definition – pre-1980…)
multithreaded process = N threads + 1 address space
(modern definition)

1.1 Goals of concurrency
(1) Program structure
 google earth example...
(2) Performance -- high-latency IO devices
 google earth example...
(3) Performance -- exploit parallel HW
 google earth example...

1.2 Threads
Address space – all the state needed to run a program
literally – all the addresses that can be touched by the program
provides illusion that program is running on its own machine
protection

Thread – a separately schedulable sequential execution stream within
a process; concurrency

sequential execution stream -- normal programming abstraction

separately schedulable -- virtualize processor; illusion of infinite #
CPUs running at diferent speed (control when threads run)

separately schedulable -- virtualize CPU
Main point: Each thread has illusion of own CPU, yet on a
uniprocessor, all threads share the same physical CPU. How does this
work?

abstraction: each thread runs on virtual processor at unpredictable
speed

CS 439: Systems 2 Mike Dahlin

 5

seems strange to assume completely unpredictable speed
-- simplifies programming model
-- physical reality -- lots of factors affect scheduling

Thread life cycle/state machine
[DRAW]

1.2.1 why separate these concepts?
1) Discuss the “thread” part of a process separate from the “address

space” part of a process
2) many situations where you want multiple threads per address space

Why would you want to do this?
Examples of multi-threaded processes:
1) Embedded systems: elevators, planes, medical systems,

wristwatches, etc. Single program, concurrent operation
2) Most modern OS kernels – internally concurrent because have to

deal with concurrent requests made by multiple users. Note no
protection needed within kernel.

3) Network servers – user applications that get multiple requests
concurrently off the network. Again, single program, multiple
concurrent operations (e.g. file server, web server, airline
reservation system)

4) Parallel programming – split program into multiple threads to
make it run faster. This is called multiprocessing

multiprogramming – multiple jobs or processes
multiprocessing – multiple CPUs

QUESTION: Is it possible for a multiprocessor (machine with
multiple processors) to be uniprogrammed?
Recall from last time – uniprogrammed means runs 1 process at a
time.
 ANSWER: Some multiprocessors are in fact uniprogrammed –
multiple threads in one address space, but only run one program at a
time (e.g. CM5, Cray T3E)

CS 439: Systems 2 Mike Dahlin

 6

1.3 Classification
Real OS’s have
• one or many address spaces
• one or many threads per address space

address spaces:

threads per address
space

one many

one MS/Dos
PalmOS

traditional Unix

many embedded systems,
Pilot (the OS on first
personal computer ever
built – idea was no need
for protection if single
user)

VMS, Mach, NT,
Solaris, HP-UX, …

1.4 Thread programming abstraction
thread_create(procedure, argument) --
Thread fork is much like asynchronous procedure call – it means, go
do this work, where the calling thread does not wait for the callee to
complete.

What if the calling thread needs to wait?
Thread Join() – wait for a forked thread to finish

Thus, a traditional procedure call is logically equivalent to doing a
fork and then immediately doing a join.

This is a normal procedure call:
 A(){
 B();
 }

The procedure A can also be implemented as:
 A(){
 Thread t = new Thread(B);

CS 439: Systems 2 Mike Dahlin

 7

 t->Join();
 }

thread_exit(int status);

Admin - 3 min

So far so good (?)
HW2 due next wednesday
Project 1 due friday
Project 2 available

Lecture - 33 min

CS 439: Systems 2 Mike Dahlin

 8

2. Implementing threads

4 variations:
In-kernel threads -- threads within kernel -- TCP and thread
management all happens within same address space

Single-threaded process -- extends in-kernel threads -- use same
abstraction to run programs in separate address space

Multi-threaded process with kernel supported threads – multiple
threads within process; kernel system calls manage thread
kernel stores multiple TCBs per process and involved in
dispatch/switch between threads (even between threads in same
process)

 thread management calls are handled with system calls
 thread control blocks/ready list are kernel-level data
structures

User level threads – library in user-level program manages threads
within a process
TCB for multiple threads stored at user level; switch between threads
in same process done as user-level library w/o kernel involvement

 all thread management calls (thread_create(), thread_yield(),
switch(), thread_destroy(), …) are handled with procedure calls
 thread control blocks/ready list are user-level data structures

QUESTION: what are advantages/disadvantages of each
 Performance/overhead
 Scheduling policy
 I/O, page faults

 (Actually also have hybrid systems – M user level threads on N
kernel threads. Don’t worry about that for now, but think about it
later…)

Start with kernel-supported threads. Same basic ideas apply to
others...

CS 439: Systems 2 Mike Dahlin

 9

How do we implement threads?
Four key concepts
1) per-thread v. shared state
2) thread control block
3) dispatch/switch
4) thread create/delete

2.1 Thread State

To realize sequential execution stream need separate per-thread state
to represent current state of computation

What state does a thread have?
1) Some state shared by all threads in a process/address space
e.g. global variables, heap, file system
2) Some state “private” to each thread – each thread has its own copy
e.g. Program counter, registers, execution stack
represents "sequential execution" state

CS 439: Systems 2 Mike Dahlin

 10

Registers -- PC, stack pointer, frame pointer, GPRs, ...

Execution stack – where parameters, temporary variables, return PC
are kept while called procedures are executing

Note: “Private” data is still in shared address space. Private by
convention only. Nothing enforces protection. (Similar to “local”
variables of a procedure)

[bottom line: programming model is “heap and global variables can be
shared, stack variables cannot be shared”; the longer answer is “yes,
stack variables in principle could be shared, but it is really a bad idea
to do so and you should basically never do so.]

Notice -- of our 4 key concepts -- if we just had "per-thread state" and
infinite CPUs, we would be done. Remaining 3 concepts are
mechanism -- how do we multiplex multiple threads on finite number
of CPUs?

CS 439: Systems 2 Mike Dahlin

 11

2.1.1 Address space state
Threads encapsulate concurrency
Address spaces encapsulate protection – keep a buggy program from
trashing everything else on the system

Address space state
• contents of main memory
• registers
In-kernel data structures: Unix files, user-ID, priority

2.2 Thread Control Block (TCB) Per thread data structure
look at previous picture – if I only want to run 1 of the threads, I load
its state onto processor (PC, registers, stack pointer) and say “go” and
the right thing happens

If multiple threads, running thread's state on CPU; need to store state
of non-running threads somewhere.

Need to keep this per-thread state somewhere: TCB

Thread control block
• one per thread
• execution state: registers, program counter, pointer to stack
• scheduling information
• etc. (add stuff as you find a need)

So: for each process, kernel has list of TCBs – one per thread. Kernel
can switch running thread by (1) taking state of running thread and
moving to TCB and then (2) taking state from TCB and putting it on
processor.

2.3 Dispatch/switch

how to switch which thread is running

CS 439: Systems 2 Mike Dahlin

 12

Looks just like interrupt handler we talked about last time, but instead
of restoring state of interrupted thread, restore some other thread's
state

Thread is running
Switch to kernel
Save thread state (to TCB)
Choose new thread to run
Load its state (from TCB)

Thread is running
…

2.3.1 Switch to kernel
When thread is running, how does dispatcher get control back?

Let's focus on timer-interrupt case for kernel threads
-- basically the same as kernel-supported threads' system call and
interrupt cases

Internal events:

1) system call, e.g.,
• Thread blocks for I/O (examples: for disk I/O, or emacs

waits for you to type at keyboard
• Thread blocks waiting for some other thread to do

something synchronization
• Yield – give up CPU to someone else waiting

2) exception
What if thread never does any I/O, never waits, never yields, and
never has an exception? Dispatcher has to gain control back
somehow.
External events:

3) interrupt e.g.,
• I/O (type character, disk request finishes)  wakes

dispatcher so it can choose another thread to run
• Timer – like an alarm clock

CS 439: Systems 2 Mike Dahlin

 13

Pre-emptive v. non-pre-emptive threads

2.3.2 Save thread state
What state do you need to save/restore when the dispatcher switches
to a new thread?

Anything the next thread may trash: PC, registers, change execution
stack

Why: Want to treat each thread in isolation

(Note: generally need a bit of HW support to help you save the state
of the running thread. In x86, exception or trap

(1) changes stack pointer to the exception stack (in a
hardware register)

(2) push the old stack pointer, old stack segment, old
execution flags (interrupt mask, etc), old code segment,
old PC onto exception stack

(3) change PC to exception handler
software then has to save the rest of the interrupted program’s state.

In project 3, you will build interrupt/trap handler that assembles a
trapframe on the stack when an interrupt/trap occurs:
struct Trapframe {
 u_int tf_edi;
 u_int tf_esi;
 u_int tf_ebp;
 u_int tf_oesp; /* Useless */
 u_int tf_ebx;
 u_int tf_edx;
 u_int tf_ecx;
 u_int tf_eax;
 u_short tf_es;
 u_int : 0; /* 0-length unnamed bit field forces next field to
 * be aligned on an int boundary */
 u_short tf_ds;
 u_int : 0;
 u_int tf_trapno;

CS 439: Systems 2 Mike Dahlin

 14

 /* below here defined by x86 hardware */
 u_int tf_err;
 u_int tf_eip;
 u_short tf_cs;
 u_int : 0;
 u_int tf_eflags;
 /* below only when crossing rings (e.g. user to kernel) */
 u_int tf_esp;
 u_short tf_ss;
 u_int : 0;
};

2.3.3 Choosing a thread to run
Dispatcher keeps a list of ready threads – how does it choose among
them?

• One ready thread – easy
• More than one ready thread: scheduling policies (discuss in a few

weeks)

(Avoid “zero ready threads” case by having low-priority “idle
process” that spins in an infinite loop.)

2.3.4 Running a thread
How do I run a thread? Load its state (registers, PC, stack pointer)
from TCB into the CPU (e.g., reti)

(Note: HW support to restore state. Reverse what was done above.)

2.4 Extending abstraction to processes

Same concurrency abstraction + mechanisms
Memory -- some "shared" state is now "per-process"

Multi-threaded kernel with single-threaded processes:

CS 439: Systems 2 Mike Dahlin

 15

Multi-threaded kernel with multi-threaded processes:

CS 439: Systems 2 Mike Dahlin

 16

2.5 Observations

2.5.1 What does this look like from kernel’s point of view?
User level interrupt  “lightning strikes” and a trap-frame appears on
the stack and handler is running

When kernel gets done handling trap or interrupt, it executes “reti”

Notice: this “reti” is not a regular return!

QUESTION: Suppose kernel is several procedure calls deep when
“reti” is called, what happens to kernel stack? What does kernel stack
look like on next trap?
  it disappears; next trap handler starts on empty stack!

The system stack contains a record of all system calls/interrupts that
have been made but not yet returned. In a normal procedure
call/return stack, each call is eventually returned from, and the stack
holds what needs to be remembered while a call is pending. When OS
does reti, it has completed processing of the system call/interrupt (and
updated any kernel data structures appropriately). It has nothing
more to remember. So, it is OK to just throw away the current
contents of the system stack!

OS creates process environment for user-level processes, but it does
not run as a process itself.
~When user process is running, there exists no kernel thread.

CS 439: Systems 2 Mike Dahlin

 17

Variation: Multi-threaded kernel – several kernel threads exist, have
their own stacks, and own thread control blocks. These stacks
continue to exist when user thread running (with state of kernel
threads in TCBs.) Trap handler still runs on interrupt stack and can
pass data to/from kernel threads via multi-threaded programming
techniques we will discuss in coming weeks.

2.5.2 What does this look like from user-level process’s point of
view?

System call looks just like a procedure call (it is unaware that in the
mean time, the stack pointer has pointed somewhere else and maybe
even another process has run)

Timer (or other) interrupt looks like nothing. Process is unaware that
it was ever taken off CPU

2.5.3 What does this look like from processor’s point of view?
Thread 1 Thread 2 System stack CPU
while(1)
call Yield
trap

return Yield
call Yield
trap

while(1)
call Yield
trap

save state 1
choose thread 2
load state 2
reti

save state 2
choose thread 1
load state 1
reti

save state 1
choose thread 2

while(1)
call Yield
trap
save state 1
choose thread 2
load state 2
reti
while(1)
call Yield
trap
save state 2
choose thread 1
load state 1
reti
return Yield
call Yield
trap
save state 1
choose thread 2

CS 439: Systems 2 Mike Dahlin

 18

…

…

load state 2
reti
…

load state 2
reti
…

2.5.4 How would you change this to go to “low power mode” when
idle?

Idle process calls “syscall(low power mode)”
Need to restore power mode on trap handler

OR
Have idle loop in kernel (how would this work?)

3. User-level threads
Threads are useful programming abstraction – rather then implement
with system calls in kernel, can implement with procedure calls as
user-level library

(Notice: many user-level threads thus share 1 kernel thread)

--> TCB/ready list stored in user memory not kernel memory
--> switch happens at user level (thread create, lock, unlock, yield, etc.
all are procedure calls not system calls)

3.1 User-level dispatcher:
Thread is running
Switch to kernel Call dispatcher
Save thread state (to TCB)
Choose new thread to run
Load its state (from TCB)

Thread is running
…

Just about the same as kernel threads…

3.1.1 Call dispatcher
When thread is running, how does dispatcher get control back?
Internal events:

CS 439: Systems 2 Mike Dahlin

 19

1) thread library call, e.g.,
• Thread blocks waiting for some other thread to do

something
• Yield – give up CPU to someone else waiting

External events:
2) signal e.g.,

• signal handler provides a way for user-level code to be
called when (a) timer goes off (b) some other process sends
a signal to this one

Again, very similar to kernel threads
Notice: main disadvantage of user-level threads – if one user level
thread blocks for I/O (system call), they all are blocked – kernel
scheduler has no way to know that there are other runnable user-level
threads

user-level signal handler ~= kernel interrupt handler
handler code in process handler code in kernel
tell kernel address of handler tell hardware address of handler
tell kernel addr of handler stack tell hardware addr of handler stack

What happens on timer interrupt
(1) HW switches from running process to kernel handler
 (safe PC, SP, mode; change PC, SP, mode)
(2) Kernel handler saves remaining state, does stuff
 in this case "does stuff"
 save state of interrupted thread to process handler stack
 reti to proces handler and handler stack

From process's point of view
It is running "normal code"
Then "virtual hardware" switches PC, SP and saves old PC, SP on
exception stack

3.1.2 Thread context switch: Saving/restoring state
As with kernel – need to store/restore registers to/from TCB

CS 439: Systems 2 Mike Dahlin

 20

Tricky code
switch()

Replace current running thread with a different one from ready list

CS 439: Systems 2 Mike Dahlin

 21

Thread 1 Thread 2 CPU
while(1)
call Yield
call Switch
Save state 1
choose thread 2
load state 2

If?  my turn!
return Switch
return Yield
call Yield
call Switch
save state 1
choose thread 2
load state 2

…

while(1)
call Yield
call Switch
save state 2
choose thread 1
load state 1

If?  my turn!
return Switch
…

while(1)
call Yield
call Switch
Save state 1
choose thread 2
load state 2
while(1)
call Yield
call Switch
save state 2
choose thread 1
load state 1
If?  my turn!
return Switch
Return Yield
call Yield
call Switch
save state 1
choose thread 2
load state 2
If?  my turn!
return Switch
…

QUESTION: what if switch due to timer interrupt?
Pre-emptive v. non-preemptive
 suppose we want to implement round robin scheduler
 set up a timer that interrupts (signals) this process every few

milliseconds
 set up signal handler

signal(SIG_INT, void (*handleInterrupt(int));

 Option 1: handleInterrupt() gets called on same stack
 Option 2: handleInterrupt(pointer to saved context) gets called

CS 439: Systems 2 Mike Dahlin

 22

QUESTION: how will this be implemented for kernel threads?

4. Implementation details

4.1 Thread create
Thread_create() – create a new thread

thread_create(pointer_to_procedure, arg0, …){

 // Q: What per-thread state do I need
 // to create?

//Allocate a new thread control block and
//execution call stack
TCB tcb = new TCB();
Stack stack = new Stack();

// Q: How should that state be
// initialized?
//Initialize TCB and stack with initial
//register values and the address of the
//first instruction to run
tcb.PC = stub;
tcb.stack = stack;
tcb.arg0Reg = procedure;
tcb.arg1Reg = arg0;
tcb.arg2Reg = arg1;
..

// Q: What else?
//Tell dispatcher that it can run the
//thread (put thread on the ready list)
readyQ.add(tcb);

}

Why PC = stub? What is stub?

stub(proc, arg0, arg1, …){

CS 439: Systems 2 Mike Dahlin

 23

 (*proc)(arg0, arg1, …);
 deleteCurrentThread();
}

4.2 Thread exit

deleteCurrentThread() puts TCB on a list of
threads to be cleaned up, and then invokes
scheduler to pick a thread to run from the
ready list

QUESTION: Why not delete/free TCB and stack
itself?

Thread_exit(int status){
 save status so that join() can get it;
 deleteCurrentThread();
}

QUESTION: How to save status?

4.3 Thread switch

user->kernel -- straightforward (interrupt/trap/exception save state...)

kernel->kernel (or user-level threads)

Example: user-level thread yield()

CS 439: Systems 2 Mike Dahlin

 24

thread_yield(){
switch();

}
//
// First look at bold face – basic pseudo-code
// Then look at red QUESTION – how do we get\
// out?

 // Then, how do we fix?
 //

// Need to tell if first or second
// time through. "Volatile" tells compiler
// not to optimize out the "if" below
// because "someone else might change it"
volatile int doneThat;

switch(){
 doneThat = 0;

// save current thread’s context
getcontext(&(runningThread->TCB));

Question: When/how often do we get here?

if(!doneThat){

 doneThat = 1;

 // Select new thread to run
 nextTID = schedulePolicy();
 runningThread = thread[nextTid];

 // copy new thread’s state to processor
 setContext(&thread[nextTid])
 QUESTION: when do we get here?
}
QUESTION: When do we get here?

}

CS 439: Systems 2 Mike Dahlin

 25

4.4 Thread states
Each thread can be in one of 5 states:
0) Start – allocate resources
1) Running – has the CPU
2) Blocked – waiting for I/O or synchronization with another thread
3) Ready to run – on the ready list, waiting for CPU
4) Done – deallocate resources

Where is thread state?

• Running: thread state on CPU
• Ready: thread state in TCB on ready queue
• Blocked: thread state in TCB on waiting queue (mutex lock,

condition variable, or semaphore)

PROJECT ULT
Overview/goals

Suggestions/Hints
(1) Start with ULT_Yield()
-- save my state to TCB and move to ready list
-- Pick a thread from ready list (me!)
-- Restore state of chosen thread (me!)
--> Can test, debug yield, switch w/o implementing thread create/destroy

Running

Blocked
Ready

scheduled I/O request,
Thread Synch

I/O or Thread
complete

Yield,
timer

start

end

CS 439: Systems 2 Mike Dahlin

 26

(2) Then add create/delete; then interrupts; then lock/unlock
-- my time breakdown was about 25% yield, 20% create/delete, 25%
interrupts, 30% lock/unlock [last one would have been less except for stupid
bug]
-- so, part 1/3 is about half of project
-- (re)factor for code-reuse (as you go or up front)(core of yield gets used in
several places)

(3) "tricky" bits
-- makecontext returns twice (see above)
-- interrupt discipline/invariant
-- understanding code well enough to refactor it
 -- important b/c it will be hard to diagnose/fix bugs if you save/restore
context slightly differently in 3 different places in your code...

Summary - 1 min
