
CS 439: Systems  Mike Dahlin 

 1 09/27/11 

Lecture C3: Challenge: Independent and cooperating 
threads; too much milk 
  
********************************* 
Review  -- 1 min 
*********************************   

multi-threaded process 
 
User-level v. kernel threads 
Pre-emptive v. non-pre-emptive threads 
Thread control block 
Dispatch  
 
 
 

*********************************  
Outline - 1 min 
********************************** 
Independent v. cooperating threads 
Atomic operations 
Too much milk  
 - 3 solutions 
 
*********************************   
Preview - 1 min 
*********************************   
today – ad-hoc solutions to illustrate issues 
next week – more satisfactory abstractions 
Abstraction dilemma – want “independence” and “cooperation” 
 



CS 439: Systems  Mike Dahlin 

 2 09/27/11 

*********************************   
Lecture - 20 min 
*********************************   

1. Multiprocessing v. Multiprogramming 
 
 

 
Dispatcher can choose to run each thread to completion 
or 
time-slice in big chunks 
or 
time-slice so that each thread executes only one instruction at a time 
(simulating a multiprocessor where each CPU operates in lockstep) 
 
If the dispatcher can do any of the above – programs must work under 
all cases, for all interleavings 
 
So how can you know if your concurrent program works? 
Whether all interleavings will work? 
 
Option 1: enumerate and test all possibilities 
Impossible! 
Option 2: maintain invariants on program state; structure program 
carefully to maintain these invariants 
 
 
 

 

A 
B 
C 

Multiprocessing 

         A                                 B                    C 

  A         B             C        A            B            B 
Multiprogramming 



CS 439: Systems  Mike Dahlin 

 3 09/27/11 

2. Independent v. cooperating threads 

2.1 Definitions 
Independent threads – no shared state with other threads 
• deterministic – input state determines result 
• reproducible 
• scheduling order doesn’t matter 
 
cooperating threads – share state 
• non-deterministic 
• non-reproducible 
 
Non-reproducibility and non-determinism means that bugs can be 
intermittent. This makes debugging hard. 
 
3 problems 
(1) combinatorial explosion in # possible interleavings 
(2) program execution is non-deterministic 
(3) compilers and architectures can reorder operations 
 

2.2 Why allow cooperating threads? 
People cooperate; computers model people’s behavior, so at some 
level they have to cooperate 
 
1.  Share resources/information 

a)  one computer, many users 
b)  one bank balance many tellers 

2.  Speedup 
a)  overlap I/O and computation 
b)  multiprocessors – chop up program into little pieces and run 

them in parallel 
3.  Modularity 

Chop up large problem into simpler pieces 
 
for example – typesetting:  ref | grn | tbl | eqn | 
troff 
 
This makes the system easier to extend; you can write eqn 
without changing troff 



CS 439: Systems  Mike Dahlin 

 4 09/27/11 

4. Fundamentally required – look at thread switch example above – 
different threads share ready queue, scheduling data structures, … 

2.3 Some simple concurrent programs 
 
Most of the time, threads are working on separate data, so scheduling 
order doesn’t matter 
 
Thread A      Thread B 
x = 1;       y = 2; 
 
What are the possible values for x: 
x = 1;       x = 2; 
 
What are the possible values for x: 
  initially: y = 12 
x = y + 1;      y = y * 2; 
 
What are the possible values for x: 
  initially x = 0 
x = x + 1;      x = x + 2; 

2.4 Atomic operations 
atomic operation – always runs to completion or not at all; 
indivisible. Can’t be stopped in the middle. 
 
On most machines, memory reference and assignment (load and store) 
of  words are atomic 
 
Many instructions are not atomic. For example, on most 32-bit 
architectures, double precision floating point store is not atomic. It 
involves 2 separate memory operations. 
 

2.5 A larger concurrent program example 
 
Two threads, A and B, compete with each other. One tries to 
increment a shared counter, the other tries to decrement the counter.  
 



CS 439: Systems  Mike Dahlin 

 5 09/27/11 

For this example, assume that memory load and memory store are 
atomic, but incrementing and decrementing are not atomic 
 
Thread A     Thread B 
I = 0;                   I = 0; 
while(I < 10){    while(I > -10){ 
    I = I + 1;           I = I - 1; 
}      } 
print “A wins”    print B wins 
 
QUESTIONS 
1)  Who wins? 
 could be either 
 
2)  Is it guaranteed that someone wins? Why or why not? 
 
3)  What if both threads have their own CPU, running in parallel at 

exactly the same speed. Is it guaranteed that it goes on forever? 
 
In fact, if they start at the same time, with A ½ an instruction ahead, B 
will win quickly 
 
4)  Could this happen on a uniprocessor? 
 
Yes! Unlikely, but if you depend on it not happening, it will 
eventually happen, and your system will break and it will be very 
difficult to figure out why. 
 

3. fundamental problem 
Independent v. cooperating threads 
 

(1) must work with all possible interleavings 
(2) not feasible to reason about all interleavings 

a. mentally compile code down to assembly 
b. think about every possible interleaving 
c. [intuition is a poor guide…] 

 
Atomic operations – a start 

 but 3-line program still takes 200 work-minutes to analyze 



CS 439: Systems  Mike Dahlin 

 6 09/27/11 

 mentally disassemble code, compute all interleavings, … 
 

 
fundamental problem 
concurrency breaks modularity 
 
key idea for reasoning about programs -- modularity. Structure system 
so that I only need to look at this code to understand what this code 
will do. 
 
but with threads I need to reason about how different pieces of code 
interact -- I don'tjust get to step though (locally) this happens, then 
this happens... 
 
Challenge -- need to restore modularity to our reasoning! 

 
 
*********************************   
Lecture - 20 min 
*********************************   
 
 

4. Too much milk 
 Person 1    Person 2 
3:00 Look in fridge; out of milk. 
3:05 Leave for store   
3:10 Arrive at store   Look in fridge; out of milk 
3:15 Buy milk    Leave for store 
3:20 Arrive home; put milk away. Arrive at store 
3:25      Buy milk 
3:30      Arrive home; put milk away. 
      Oh no! 
 
 
 
******************** 
ADMIN 
******************** 



CS 439: Systems  Mike Dahlin 

 7 09/27/11 

 
******************** 
 

4.1 Too Much Milk: Solution #1 
Suppose I write a program to model the too much milk problem. 
People act in parallel, so model each person as a thread. Model "look 
in fridge" and "put away milk" as reading/writing a variable in 
memory. 
 
What are the correctness properties for the too much milk problem? 
QUESTION: what is the safety property? What is the liveness 
property? 
♦ never more than one person buys 
♦ someone buys if needed 
 
Restriction: only use atomic load and store operations as building 
blocks. 
 
Basic idea of solution #1 
try to arrange so that only one thread is deciding/buying at a time 
1)  Leave a note (kind of like “lock”)  

{store "1" to location NOTE} 
2)  Remove node (kind of like “unlock”) 

{store "0" to location NOTE} 
3)  Don’t buy if note (wait) 

{load from NOTE, BEQ…} 
 
Solution #1 

if (milk == 0){ 
  if(note == 0){ 
    note = 1; // leave note 
    milk++;   // buy milk 
    note = 0; // remove note; 
  } 
} 

 
Is this protocol safe? 
Why doesn’t this work? Thread can get context switched after 
checking note but before leaving note. 



CS 439: Systems  Mike Dahlin 

 8 09/27/11 

 
Our “solution” makes problem worse – fails only occasionally. 
Makes it really hard to debug. Remember, constraint has to be 
satisfied, independent of what the dispatcher does – timer can go off 
and context switch can happen at any time. 



CS 439: Systems  Mike Dahlin 

 9 09/27/11 

4.2 Too much milk solution #2 
How about labeled notes? That way, we can leave the note before 
checking the milk or note. 
 
Solution #2 
Thread A     Thread B 
noteA = 1;                noteB = 1; 
if (noteB == 0){ // Y  if(noteA==0){  // Z1 
  if(milk == 0){     if(milk==0){ // Z2 
    milk++;   //X    milk++;  // Z3 
  }        }            // Z4 
}      }              // Z5 
noteA = 0;          noteB = 0; 
 
Is this protocol safe? Proof sketch: 
 
Assume for the sake of contradiction that both A and B buy. 
 
Consider the state of “(noteB, milk)” when thread A was at Y 
 
case 1: “(1,X)” – Impossible --  contradiction with assumption A buys 
milk and reaches X  
case 1: “(0, 1)”  Impossible --  contradiction with assumption 
because milk != 0 is a stable property (once true, it remains true) in 
this simple program 
case 2: “(0, 0)”  B is not in “Z” when A was at Y 
       if B below Z  B will not buy  safe 
       if B above Z  

• B is not in Z1-Z5 
• noteA OR milk is a stable property 
• --> B will not buy 

 
Is it live? 
Possible for neither thread to buy milk; context switch at wrong time 
can lead to each thinking the other is going to buy 

• Illustrates starvation: thread waits forever 
 
 



CS 439: Systems  Mike Dahlin 

 10 09/27/11 

Too much milk solution #3 
Solution #3: 
Thread A     Thread B 
noteA = 1;    noteB = 1; 
while(noteB) { // X1  if(noteA==0){  // Y1 
  do nothing;  // X2    if(milk==0){ // Y2 
}     // X3   milk = 1;  // Y3 
if(milk == 0){ // X4    }            // Y4 
  milk = 1;   // X5  }              // Y5 
}     // X6  noteB = 0; 
noteA = 0; 
 
QUESTION: does this work? 
 
Yes. Can guarantee at X and Y that either 
i)  safe for me to buy 
ii)  other will buy; ok to quit 
 
Is it safe? 
Lemma M: (milk == true) is a stable property 
Claim I. B buys   A doesn’t buy 
Suppose that B buys milk (reaches Y3), consider the instant that the 
load at Y1 completes,  
consider states (noteA, milk) at that instant 
case 1: (1,X)  contradiction (we assume B reaches Y3) 
case 2: (0,1)  contradiction (lemma M; we assume B reaches Y3) 
case 3: (0,0)  A is not in region X 
      if below  A will not buy  safe 
      otherwise,  A must be above region X at that instant 

assume A buys 
 remove B happens before  X3 (exit while loop) 
 X4 HB Y3 (A’s check milk HB B’s buy milk) 
Also, we know X3 HB X4 (program order) 
.: remove B HB X3 HB X4 HB  Y3  
 Y3 HB remove B 
 contradiction (program order)  A cannot buy  safe 

 
Claim II. A buys   B doesn’t buy 
Suppose that A buys milk (reaches X5), consider instant that the load 
at X1 completes and sees “0” 



CS 439: Systems  Mike Dahlin 

 11 09/27/11 

Consider state of (noteB, milk) at that instant 
(1, X)  contradiction (assumed load at X1 sees “0”) 
(0, 1)  contradiction  (lemma M; assume X5 reached) 
(0, 0)  B is not in region Y 

if B below region Y  B will not buy  safe 
otherwise B above region Y 
assume B buys (reaches Y3) 
 remove A HB Y1 
 Y2 HB X5  
We also know Y1 HB Y2 
 removeA HB Y1 HB Y2 HB X5 
 remove A HB X5  contradiction (program order) 

 
 
 
is it live? 
A must eventually reach “if(noMilk)” 
Case 1: milk == 1  milk bought  Live 
Case 2: milk == 0  A will buy  live 
 
 

4.3 Too much milk summary 
Solution #3 works, but it is really unsatisfactory: 
1)  Really complicated – even for this simple example, hard to 

convince yourself that it really works 
Every year when I teach this, I end up revising the proofs 
History is littered with published proofs of these types of 
algorithms followed 5 years later with published errors! 

2)  A’s code different than B’s – what if lots of threads. Code would 
have to be slightly different for each thread. 

3)  While A is waiting, it is consuming CPU time (busy-waiting) 
4)  doesn't work on modern hardware/compilers 

Modern HW and compilers reorder instructions. Loads/stores still 
atomic, but may not be executed in program order. (Can fix with 
"barrier" instructions, but even more complexity...) 

 
There is a better way: 
1)  Have hardware provide better (higher-level) primitives than atomic 

load and store. Explain next lecture 



CS 439: Systems  Mike Dahlin 

 12 09/27/11 

2)  Build even higher-level programming abstractions on this new 
hardware support. For example, why not use locks as an atomic 
building block (how we will do this in the next lecture) 

 
Lock::Acquire() – wait until lock is free, then grab it 
Lock::Release() – unlock, waking up a waiter, if any 
 

These must be atomic operations – if two threads are waiting for the 
lock, and both see it is free, only one grabs it! 
 
With locks, the too much milk problem is really easy! 
 
Too much milk solution #4 

Lock->Acquire(); 
if(milk == 0){ 
  milk++; 
} 
Lock->Release(); 
 
 

*********************************   
Summary - 1 min 
*********************************    

Atomicity is key building block 
Synchronization solutions will involve using low-level atomicity 
(load/store and others) to bootstrap higher-level atomicity 
(lock/unlock and others) 
 
Use safety and liveness and stable properties to reason about 
programs 

 
 
*********************************   
Summary - 1 min 
*********************************    

Thread programming – nondeterministic, irreproducible, intuition not 
always a good guide 

I repeat: it is impossible to enumerate and reason about all 
possible interleavings! 



CS 439: Systems  Mike Dahlin 

 13 09/27/11 

Key notions 
Invariants – facts that must always hold true 
atomic actions – the only thing you can trust 
 

Next 2 weeks – learn how to structure program so that we can use 
atomic actions to build higher level programs that have invariants about 
which we can reason 

 
 


