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Lecture #7: Shared objects and locks 
  
********************************* 
Review  -- 1 min 
*********************************   

Independent v. cooperating threads 
-- can't reason about all possible interleavings 
 
Too much milk: 
Solution #3 to too much milk works, but it is really unsatisfactory: 
1)  Really complicated – even for this simple example, hard to 

convince yourself that it really works 
2)  A’s code different than B’s – what if lots of threads. Code would 

have to be slightly different for each thread. 
3)  While A is waiting, it is consuming CPU time (busy-waiting) 
4)  Even if you get it right, compiler or processor reordering of 

instructions may break your code. There are particular directives 
you have to use to tell the compiler/HW that you need the 
load/store order to be honored exactly… 
To get a flavor of these issues, see 
http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleChecke
dLocking.html 

 
 
Aside: computer science lore: N-process version of this exists and 
works (problem #2). “Bakery algorithm” (Lamport). But still complex 
(I was at a conference in 2001 that had a 1 hour invited lecture on the 
Bakery algorithm…), still have busy waiting, and other performance 
problems 
 
[see next page] 
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// i is thread ID; n is max thread ID 
bakeryLock:Lock(int i){ 
while(true){ 
 int j; 
 choosing[i] = true; 
 number[i] = max(number[0], number[1], …, number[n-1]) + 1; 
 choosing[i] = false; 
 for(j = 0; j < n; j++){ 
  while(choosing[j]){ 
   ; // no-op 
  } 
  while(number[j] != 0 
   && (number[j] < number[i] 
    || (number[j] == number[i] && j<i))){ 
   ; // No-op 
  } 
} 

 
 BakeryLock:Unlock(int i){ 
  number[i] = 0; 
 } 
 
[aside: Compare above code with 5th edition Silbershatz on which it is based; 
text casts this as “The structure of process P_i in the bakery algorithm”. 
Better – object oriented approach] 
 
*********************************  
Outline - 1 min 
********************************** 

(1) Shared objects 
(2) Locks and mutual exclusion 

a. Safety and liveness 
b. Critical section problem  
c. Implementing locks -- hardware support for synchronization 

•  
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*********************************   
Preview - 1 min 
*********************************   
Too much milk showed – implementing concurrent program directly w/ 
loads and stores is tricky and error-prone. Instead, a programmer is going to 
want to use higher level operations such as locks. 
 
Today – how do we implement these higher-level operations 
 
Next lecture – what higher-level primitives make it easier to write correct 
concurrent programs? 
 
*********************************   
Lecture - 30 min 
*********************************   

1. Shared objects 

1.1 The Big Picture 
Coding standards shared objects, concurrent programs 
high-level atomic 
operations (API) 

locks  semaphores  monitors   send&receive 

low-level atomic 
operations 
(hardware) 

load/store  interrupt disable  test&set 

  
 

1.2 Object oriented programming model 
 
PICTURE 
 
 methods that access shared state are critical sections 
 associate a lock with each shared object 
 acquire/release the lock when entering/exiting a method that is a 

critical section 
Warning: Many of the “classic” synchronization problems were 
formulated before OO programming. Many of the textbooks still 
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present the “classic” (non-OO) answers. Much better to think of 
answers in OO format. 
 
 
Programming model is restricted -- each shared variable is only 
accessed within its object's critical sections  only one thread can 
read/write a shared variable at a time 
 
1)  Entry section “Lock” before entering critical section, before 

accessing shared data 
wait if locked 
Key idea – all synchronization involves waiting. 

 
2)  Exit section “unlock” when leaving, after done accessing shared 

data 
 
 

2. Critical section problem 
Shared state – state read or written by more than one thread 

 
Synchronization: using atomic operations to ensure cooperation 
among threads accessing shared state 
 
Lesson from last time – using “load” and “store” as our atomic 
operation is not tractable 
 critical section problem 
 
Consider a collection of shared state and all code that reads or writes 
that shared state 
 
Critical section – a set of code that accesses shared state 
Critical section problem – ensure that all critical sections on a 
collection of shared state appear to execute atomically 

i.e., thread A can never observe a state where thread B has 
partially executed a critical section 

 
Rather than reasoning about atomic load/stores, reason about atomic 
critical sections 
 fewer, coarser-grained interleavings 
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 high-level invariants 
 
Solution to critical section problem must satisfy 3 rules: 
1) Mutual Exclusion:  

roughly:"don't let more than one in at a time" 
precisely: never more than one thread is executing in a critical 
section. One thread in CS excludes others. 

2) Progress:  
roughly: "let someone in" (avoid trivial solution of let no one in) 
precisely: if no threads are executing in a critical section, and a 
thread wishes to enter a critical section, a thread must eventually 
be guaranteed to enter the critical section 

3) Bounded waiting:  
roughly: "be fair" (fairness; avoid trivial solution of "let thread 1 
in") 
precisely: if thread T wishes to enter a critical section, then there 
exists a bound on the number of other threads that may enter the 
critical section before T enters 

 
Assumption: all threads are operating at non-zero speed (over infinite 
time, each ready thread is scheduled an infinite number of times), but 
you cannot make any assumption about the relative speed of the 
threads 
 
 
The rules sound a bit strange. Basic idea is simple ("roughly" above). 
Specific wording of precise version is to couple the progress and 
bounded waiting in a way that works without making assumptions 
about thread behaviors, clocks, schedulers, etc. 
 
 
 
 
 
 
 
 
 
 
 

Power tool: 
 

safety -- the program never does anything bad 
liveness -- the program eventually does something good 
 
QUESTION: which properties above are safety and which are 
liveness? 
 
Safety and liveness are key properties for reasoning about 
programs. Any definition of a correct program can be composed 
of a set of safety properties and a set of liveness properties. 
 
Use in proofs: first prove safety, then liveness 
Use in protocol design: design simple core protocol to be 
“safe” (regardless of scheduling, message order, etc.) Then, add 
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3. Implementing locks 

3.1 Ways of implementing locks 
All require some level of hardware support 
 

3.1.1 Atomic memory load and store 
see too much milk lecture 
 
NB: I used to regard the discussion of how to build locks from 
load and store as (a) important for understanding the issues 
and (b) historically important. But, I assumed that no one would 
actually build a lock this way these days because modern 
architectures have better hardware support. Well, as recently as 
summer 2001 I had to build a lock using load and store. What 
was the “primitive” architecture I was using? Javascript! I used 
the Bakery algorithm (see text!) 

3.1.2 Disable interrupts (uniprocessor only) 
 
Two ways for dispatcher to get control 
1)  internal event – thread does something to relinquish the 

CPU – system call or exception 
2)  external events – interrupt cause dispatcher to take CPU 

away 
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On a uniprocessor, an operation will be atomic as long as a 
context switch does not occur in the middle of the operation.  
• need to prevent both internal and external events 
• preventing internal events is easy 
• prevent external events by disabling interrupts  
 In effect, tell the hardware to delay handling of external 
events until after weʼre done with the atomic operation 
 

3.1.2.1 A flawed, but very simple solution 
Why not do the following: 
 
 Lock::Acquire() { disable interrupts; } 
 Lock::Release() { enable interrupts;} 
 
QUESTION: on a uniprocessor, does this solve too much milk? 
QUESTION: what is wrong with this solution? 
 
1.  Need to support synchronization operations in user-level code; 

Kernel can’t allow user code to get control when interrupts 
disabled (might never get CPU back) 
 
Problem for user-level code running kernel threads 
This one not so much of a problem for kernel-level code running 
kernel threads or user-level code running user-level threads (but 
others are…) 
 
 

2.  Real-time systems need to guarantee how long it takes to respond 
to interrupts, but critical sections can be arbitrarily long. Thus, 
leave interrupts off for shortest time possible. Non-modular. 

 
3.  Simple solution might work for locks, but wouldn’t work for more 

complex primitives, such as semaphores or condition variables 
 

3.1.2.2 Implementing locks by disabling interrupts 
 
class Lock{ 
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 int value = FREE; 
} 
 
Lock::Acquire(){ 
 Disable interrupts; 
 while (value != FREE){ 
  Enable interrupts; // allow interrupts 
  Disable interrupts; 
 } 
 value = BUSY; 
 Enable interrupts; 
} 
 
Lock::Release(){ 
 Disable interrupts; 
 value = FREE; 
 Enable Interrupts; 
} 
 
QUESTION: Why do we need to disable interrupts at all? 
Otherwise one thread could be trying to acquire the lock and could 
get interrupted between checking and setting the lock value, so two 
threads could think they have the lock. 
 
When disabling interrupts, the check and set operations occur w/o any 
other thread having the chance to execute in the middle. 
 
QUESTION: Why do we need to enable interrupts inside the loop in 
Acquire? 
Otherwise, since interrupts are off, the lock holder will never get a 
chance to run, to release the lock. 

*********************************   
Admin - 3 min 
*********************************   

 
*********************************   
Lecture - 33 min 
*********************************   
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3.1.3 Atomic read-modify-write instructions 
On a multiprocessor, interrupt disable doesn’t provide atomicity – it 
stops context switches from occurring on that CPU, but it doesn’t stop 
other CPUs from entering the critical section 
 
Instead, every modern processor architecture provides some sort of 
atomic read-modify-write instruction 
These instructions atomically read a value from memory into a 
register, and write a new value. The hardware is responsible for 
implementing this correctly on both uniprocessors (not too hard) and 
multiprocessors (requires special hooks in the multiprocessor cache 
coherence strategy) 
 
Unlike disabling interrupts, this can be used on both uniprocessors 
and multiprocessors 
 

3.1.3.1 Examples of read-modify-write instructions 
test&set (most architectures) – read value, write “1” back to memory 
 
exchange (x86) – swaps value between register and memory 
 
compare&swap (68000) – read value, if value matches register, do 
exchange 
 
load linked and store conditional (R4000, Alpha) – designed to fit 
better with load/store architectures 
♦ read value in one instruction 
♦ do some operations 
♦ when store occurs, check if value has been modified in the mean 

time. If not, OK. If it has changed, abort, and jump back to start 
 

3.1.3.2 Implementing locks with test&set 
Test&set reads a location, sets it to 1, and returns old value 
 
Inially, lock value = 0 
 
Lock::Acquire() 
 while(test&set(value) == 1) // while busy 
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  ; 
 
Lock::Release 
 value = 0; 
 
 
If lock is free – test&set reads 0 and sets value to 1, so lock is now 
busy; it returns 0 so Acquire completes 
 
If lock is busy – test&set reads 1 and sets value to 1 (no change), so 
lock stays busy and Acquire will loop 
 

3.2 Busy-waiting 
busy-waiting: thread consumes CPU cycles while it is waiting 
 
solutions above use busy-waiting 
• Inefficient 
• problems if threads have different priorities 

• If the busy-waiting thread has higher priority than the thread 
holding the lock, the timer will go off, but (depending on the 
scheduling policy), the lower priority thread might never run 

• for semaphores and monitors, waiting thread may wait for an 
arbitrary length of time; thus, even if busy waiting was OK for 
locks, could be very inefficient for implementing other primitives 

 

3.2.1 Locks using interrupt disable, without busy waiting 
 
waiter gives up the processor so that release can go forward more 
quickly 
 
Lock::Acquire() 
 disable interrupts 
 if (value == BUSY){ 

put TCB on queue of threads waiting 
for lock 
switch // copy state to TCB; copy TCB’ 
       // to CPU 

} else{ 
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 value = BUSY 
} 
enable interrupts; 

 
Lock::Release() 

disable interrupts 
if anyone on wait queue{ 

take a waiting thread off 
put it on ready queue 

} else{ 
 value = FREE; 
} 
enable interrupts 

 

 
 
Why is it OK to context switch to a different thread with interrupts 
turned off? 
When does Acquire re-enable interrupts in going to sleep? 
 
Option 1: before putting thread on the wait queue? 

Then release can check queue, and not wake the thread up 
Option 2: after putting thread on wait queue, but before calling 
switch? 

Then Release puts thread on ready queue, but thread is already 
on ready queue! When thread wakes up, it will call switch (go 
to sleep), missing the wakeup from Release. 
 

solution – maintain invariant: interrupts disabled in core switch() 
routine  each thread disabled interrupts at some particular point 
before calling switch()  each thread responsible for enabling 
interrupts at corresponding point on way out. 
 e.g.   call Lock(); // enabled 
          disable interrupts 
  call switch(); 
  return switch(); 
  enable interrupts 
  return Lock(); // enabled 
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Interrupt disable and enable pattern across context switches 

 
 

QUESTION: is it OK for thread to check the while() condition when 
it wakes up? 
 
When the sleeping thread wakes up, it returns from Sleep back to 
Acquire. Interrupts are still disabled, so it is OK to check lock value, 
and if it is free, grab the lock and turn on interrupts 
 
Aside: 
 the above works for case when Lock() is implemented as a 

procedure call (e.g., for user-level code using user-level threads or 
for kernel-level code using kernel level threads) 

 a bit different in the case when user-level code uses kernel-level 
threads (since system call may often disable interrupts/save state to 
TCB), but same basic idea 

 also think about case where timer interrupt happens (rather than 
call to Lock()) – how do Lock() –initiated switches and timer-
interrupt-initiated switches interleave? Turns out it works – just 

 
Time Thread A 

 
   . 
   . 
   . 
 
  disable 
  switch 
 
 
 
 
 
 
 
  switch return 
  enable 

 Thread B 
 
 
 
 
 
 
 
switch return 
enable 
 
 
 
disable 
switch 

switch 

switch 
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maintain the invariant that interrupts turned off before calling 
switch() and turned back on when switch() returns 

  
 e.g. call foo() 
  timer interrupt // disables interrupts 
  call switch(); 
  return switch(); 
  enable interrupts 
  rti  // enabled 
  keep processing foo() // enabled 
Notice that if you interleave these things, the right thing still happens. 
 
 

3.2.2 Locks using test&set, with minimal busy waiting 
How would we implement locks with test&set, without busy waiting? 
 
Turns out you can’t, but you can minimize busy-waiting.  
Idea – only busy wait to atomically check lock value; if lock is busy, 
give up CPU 
 
THIS CODE IS NOT QUITE RIGHT (also need 
interrupt disable before taking self off ready 
list and/or when touching ready list). See 
textbook draft. 
 
Lock::Acquire() 
 while (test&set(guard)) 
      ; 
 if(value != free) 
  disable interrupts; // Must finish  

put on queue of threads waiting for lock 
set guard to 0 
call switch 
enable interrupts; 

 } else{ 
  value = BUSY 
  guard = 0 
    } 
 
 
 
Lock::Release() 
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 while(test&set(guard)) 
  ; 
 if(anyone on wait queue) 
  take a waiting thread off 
  disable interrupts; // Must finish  
  put it on ready queue 

enable interrupts; 
 } else { 
  value = free 
 } 
 guard = 0 
 
 
Why disable interrupts? 
 NOT mutual exclusion (safety) 
 instead: liveness: Make sure I always finish my work 
 

(1) After I take myself off ready list but before I put myself on 
waiting list, if I am interrupted I would be on no list and never 
rescheduled 
(2) Ready list is (likely) protected by spinlock; once grab ready 
list spinlock, cannot be interrupted or system grinds to a halt 

[older approaches/discussions before I talked about disabling 
interrupts here...] 
 
[tricky bit: When do I take thread off ready queue and mark myself 
not runnable? Before release guard  if I am descheduled, no one 
will be able to grab guard. After relase guard  other thread could 
move me off waiting queue before I mark my self not runnable, and 
I’ll never be seen again. 
 
One solution is to accept a bit of busy waiting – switch() just yields 
and I still occasionally get scheduled for a moment to check state 
[need to fix code above to deal with “spurious rescheduling” – 
recheck value].  
 
Another solution is to make switch mark me “not runnable” but only 
if I am still on queue.  Switch needs to be called while still holding 
guard, and it needs a pointer to the wait queue. Inside of switch, on 
return path (after someone else switches to me), I am still holding 
“guard” from prior thread and if queue pointer non-null, I look to see 
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if prior thread is on waiting queue; if so, I make prior thread not 
runnable; then I release prior thread guard. 
 
Details depend on exact semantics; test&set v. turn off interrupts; 
library v. kernel; …  This bit of code tends to be tricky… 
 
We do something of this flavor in lab 6.  

3.3 Summary 
Load/store, disabling and enabling interrupts, and atomic read-
modify-write instructions are all ways we can implement higher level 
atomic operation 

 
 

*********************************   
Summary - 1 min 
*********************************   
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4. Case study: Linux 2.6 kernel/mutex.c, kernel/mutex.h, 
include/linux/mutex.h, include/asm_x86/mutex_32.h 

 
(Debugging info, signal handling, and compiler hints omitted…) 
 
struct mutex { 
 /* 1: unlocked, 0: locked, negative: locked, possible waiters */ 
 atomic_t  count; 
 spinlock_t  wait_lock; 
 struct list_head wait_list; 
}; 
 
void inline fastcall __sched mutex_lock(struct mutex *lock) 
{ 
 … 
 _mutex_fastpath_lock(&lock->count, _mutex_lock_slowpath); 
} 
 
/** 
 * Change the count from 1 to a value lower than 1, and call <fn> if it 
 * wasn't 1 originally. This function MUST leave the value lower than 1 
 * even when the "1" assertion wasn't true. 
 */ 
#define __mutex_fastpath_lock(count, fail_fn)    \ 
do {  

…      \ 
 __asm__ __volatile__(      \ 
  LOCK_PREFIX "   decl (%%eax) \n"   \ 
   "   jns 1f  \n"   \ 
   "   call "#fail_fn" \n"   \ 
   "1:   \n"   \ 
         \ 
  :"=a" (dummy)      \ 
  : "a" (count)      \ 
  : "memory", "ecx", "edx");    \ 
} while (0) 
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/* 
 * Lock a mutex (possibly interruptible), slowpath: 
 */ 
static inline int __sched 
__mutex_lock_common(struct mutex *lock, long state, unsigned int subclass, 
         unsigned long ip) 
{ 
 struct task_struct *task = current; 
 struct mutex_waiter waiter; 
 unsigned int old_val; 
 unsigned long flags; 
 
 preempt_disable(); 
 
 spin_lock_mutex(&lock->wait_lock, flags); 
 
 … 
 
 /* add waiting tasks to the end of the waitqueue (FIFO): */ 
 list_add_tail(&waiter.list, &lock->wait_list); 
 waiter.task = task; 
 
 old_val = atomic_xchg(&lock->count, -1); 
 if (old_val == 1) 
  goto done; 
 
 … 
 
 for (;;) { 
  /* 
   * Lets try to take the lock again - this is needed even if 
   * we get here for the first time (shortly after failing to 
   * acquire the lock), to make sure that we get a wakeup once 
   * it's unlocked. Later on, if we sleep, this is the 
   * operation that gives us the lock. We xchg it to -1, so 
   * that when we release the lock, we properly wake up the 
   * other waiters: 
   */ 
  old_val = atomic_xchg(&lock->count, -1); 
  if (old_val == 1) 
   break; 
 
  … 
 
  /* didnt get the lock, go to sleep: */ 
  spin_unlock_mutex(&lock->wait_lock, flags); 
        preempt_enable_no_resched(); 
  schedule(); 
             preempt_disable(); 
  spin_lock_mutex(&lock->wait_lock, flags); 
 } 
 
done: 

… 
 /* got the lock - rejoice! */ 
 mutex_remove_waiter(lock, &waiter, task_thread_info(task)); 
 … 
 
 /* set it to 0 if there are no waiters left: */ 
 if (likely(list_empty(&lock->wait_list))) 
  atomic_set(&lock->count, 0); 
 
 spin_unlock_mutex(&lock->wait_lock, flags); 
 



CS 439: Systems II  Mike Dahlin 

 18 

 … 
 
 return 0; 
} 
 
 
 

4.1 Unlock 
 
void fastcall __sched mutex_unlock(struct mutex *lock) 
{ 
 /* 
  * The unlocking fastpath is the 0->1 transition from 'locked' 
  * into 'unlocked' state: 
  */ 
 __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath); 
} 
 
/** 
 * try to promote the mutex from 0 to 1. if it wasn't 0, call <fail_fn>. 
 * In the failure case, this function is allowed to either set the value 
 * to 1, or to set it to a value lower than 1. 
*/ 
#define __mutex_fastpath_unlock(count, fail_fn)    \ 
do {         \ 
 unsigned int dummy;      \ 
         \ 
 … 
         \ 
 __asm__ __volatile__(      \ 
  LOCK_PREFIX "   incl (%%eax) \n"   \ 
   "   jg 1f  \n"   \ 
   "   call "#fail_fn" \n"   \ 
   "1:   \n"   \ 
         \ 
  :"=a" (dummy)      \ 
  : "a" (count)      \ 
  : "memory", "ecx", "edx");    \ 
} while (0) 
 
 
/* 
 * Release the lock, slowpath: 
 */ 
static fastcall inline void 
__mutex_unlock_common_slowpath(atomic_t *lock_count, int nested) 
{ 
 struct mutex *lock = container_of(lock_count, struct mutex, count); 
 unsigned long flags; 
 
 spin_lock_mutex(&lock->wait_lock, flags); 
 … 
 
 /* 
  * some architectures leave the lock unlocked in the fastpath failure 
  * case, others need to leave it locked. In the later case we have to 
  * unlock it here 
  */ 
 if (__mutex_slowpath_needs_to_unlock()) 
  atomic_set(&lock->count, 1); 
 
 if (!list_empty(&lock->wait_list)) { 
  /* get the first entry from the wait-list: */ 
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  struct mutex_waiter *waiter = 
    list_entry(lock->wait_list.next, 
        struct mutex_waiter, list); 
 
  … 
 
  wake_up_process(waiter->task); 
 } 
 
 … 
 
 spin_unlock_mutex(&lock->wait_lock, flags); 
} 


