
CS 439: Systems II Mike Dahlin

 1

Lecture #1: Introduction, History, and Course Organization

Review -- 1 min

Outline - 1 min

Introduction OS=coordination + abstraction

• Why study operating systems?
• What is an operating system?
• Principles of operating system design

Class Organization
History and Future
Dual mode operation
 3 ways to invoke OS (if time)

Preview - 1 min

Today: Overview – basic principles

Then – how does OS manage basic system resources

-- next month CPU: concurrency (threads, synchronization, deadlock,
scheduling)
– then management of memory
Then – IO: disk, networks, distributed systems, …

Next time: anatomy of an OS and a process

CS 439: Systems II Mike Dahlin

 2

Lecture - 20 min

1. "Systems Principles"
Software systems -- here we mean low-level software on which
programs you want to write rely

-- basic services that support programs you want to write
[systems v. applications]

Operating system, library, garbage collector, etc.

(Could add "compilers" in there, but you covered basics in Systems I,
right?)

I'll often call this low-level software the "operating system" (but this
is stretching the definition a bit to include things that are not normally
thought of as the OS -- e.g., garbage collector -- but I regardless of
traditional boundaries of OS, this seems fundamentally right. I could
call it "runtime system" but that is clumsy...

2. Why Study Systems?

Systems software/runtime system/OS is everywhere: coordination
and abstraction are key in any complex system. Plus many
“applications” are really OS’s or network OS’s (e.g., netscape
browser, JVM/Jini, Network Appliance, Akamai, Google, Amazon,
Facebook, Tivoli, Yahoo, …)
--> not only will you use these abstractions when you write programs,
but you may also implement some of them when you write big
programs

Abstraction: OS is a wizard, providing illusion of infinite CPUs,
infinite memory, single worldwide computer, etc.

System Design: tradeoffs between performance and simplicity,
putting functionality in HW v. SW, etc.

CS 439: Systems II Mike Dahlin

 3

How computers work: “look under the hood” of computer systems
-- to program computers well, need to understand how they work
-- CS major should know how computers work

Power tools: Key abstractions for solving common, difficult
programming problems (threads, synchronization, transactions, 2PC,
...)
Project: This class should be particularly fun because it has an
excellent project.

John Ousterhout – “When I read a paper, I can immediately tell
whether the authors ever actually built the system and got it to work”
Proverb – “I hear and I forget, I see and I remember, I do and I
understand”

3. Teach at 3 levels
1) How to approach problems
 fundamental issues -- coordination, abstraction
 design space
 case studies: historical and state of art techniques
Goal: When faced with similar (or very different) problem, you will
be able to devise a good solution
Timescale: big long-term payoff

2) Specific techniques you should be able to apply
 Time-tested solutions to hard problems
 "Hacking" will not succeed
 e.g., concurrent programming, two-phase commit, transactions, …
Goal: be a good engineer
Timescale: immediately useful; still useful in 20 years

3) Details of modern OS
 e.g., FS, network stack, internal data structures, VM, … of XP,

Solaris, Linux, …
 lots of material, changes relatively quickly
 not a priority of this class

 but use "real" examples to help understand/motivate principles

CS 439: Systems II Mike Dahlin

 4

4. What is an Operating System?
Definition: An operating system implements a virtual machine that is
(hopefully) easier to program than the raw hardware:

In some sense: OS is just a software engineering problem: how do you
convert what the hardware gives you into something application
programmers want?

For any OS area (file systems, virtual memory, CPU scheduling)
begin by asking two questions:

What’s the hardware interface? (The physical reality)
What’s the application interface? (The nicer abstraction)

Of course, should also ask why the interfaces look the way they do,
and whether it might be better to push more responsibilities into
applications, the OS, or hardware.

4.1 Operating systems have three general functions:
1. Coordinator: Allow multiple applications/users to work together

in efficient and fair ways

3 aspects of coordination (Draw Picture)

• Security – prevent jobs from interfering with one another
• Communication – let jobs talk to one another
• Resource Management – give jobs fair share of resources

(memory, CPU, disk, …)

Dual Mode Operation
When in OS, program can do anything (kernel mode)
When in a user program, restricted to only touching that program’s
memory

 <----- coordination --------->

Application

Operating System

Hardware

Virtual Machine Interface

Physical Machine Interface

Application Application

/|\
 |
 |
abstra
ction
 |
 |
 |
\|/

CS 439: Systems II Mike Dahlin

 5

Kernel mode:
• can issue physical addresses that are not translated by

translation box (kernel can read/write process memory)
• can modify address translation tables

Structure of a Dual-mode operating system
emphasize -- not just kernel

Also, want OS to be portable, so put a layer that abstracts out
differences between different hardware architectures (e.g. Linux runs
on x86 and ARM, Solaris runs on SPARC and x86, NT/win2k runs on
x86 and (until recently) Alpha)

How do the security, communication, resource management facilities
get reflected in dual-mode operation? (draw in picture above)

• Security: application can access its memory but not OS or other
apps

• But OS can access any application’s memory

Application

Standard library

Portable OS layer

Machine-dependent OS layer

User mode

Kernel mode

Typical Operating System Structure

CS 439: Systems II Mike Dahlin

 6

• Communication: application can call OS (how does that work?)
– then OS can read one application’s memory and write
another’s  communication

• Resource management: OS can access hardware registers to, for
instance, grow an application’s memory allocation…

2. Abstraction -- raise level of programming
(a) hide details -- hundreds of different hardware devices --> a few
common abstractions
e.g., hitachi disk, western digital disk, flash memory, CD --> block
device --> FS

(b) better abstraction --
e.g., single-instruction, single-word atomic memory update --> critical
section atomically updating multiple fields of a data structure

3. Standard Services: provide standard facilities that everyone needs

; facilitate sharing (e.g., window system, file cache, file system,
network protocols, …)

Most basic OS: a way to start, stop, and clean up after a program
Modern OS -- much more standard services
-- threads, file system, transactions, network stack, windowing
system, profiling, etc etc.
 -- many/most of these you could do in an ad-hoc way as needed
 -- having standard OS simplifies life
 -- some of these require interoperability (e.g., FS, window
system, ...)
 -- need a standard version of service to use

“standard library” or “standard utilities” don’t run in kernel, but can
be regarded as part of OS

What if you didn’t have an OS?

CS 439: Systems II Mike Dahlin

 7

Source code  compiler  object code  hardware

How do you get object code onto the hardware?
How do you print an answer?
Before OS’s: toggle in program in binary; read out answers from
LED’s!

4.2 Simple OS: What if only one application at a time?

Examples: very early computers, early PC’s, embedded controllers
(elevators, cars, Nintendos, …)

Worry less about coordination, more about abstraction and standard
services

 then OS is just a library of standard services.
Examples: device drivers, interrupt handlers, math libraries, etc.

History of OS – for each new platform, OS starts as abstraction +
standard services (b/c only run one job at a time), evolves into “real”
os that does coordination too
Mainframe, PC, palmtop?, cell phone?, …

4.3 More complex OS: what if we share machine among multiple
applications?

Then OS must manage interactions between different applications and
different users for all hardware resources: CPU, physical memory, I/O
devices (disks, printers, screen, keyboard), interrupts, etc

Of course, OS can still provide library of standard services

Discussion: What are key OS services? Do they do (1) coordination
(resource mgmt, security, communication) or (2) standard services

CS 439: Systems II Mike Dahlin

 8

• Example: file system – what aspects of file system are resource
management? Security? Communication? Standard services?

4.4 Virtual machine monitor/hypervisor
“OS” (e.g., linux, windows, …) runs over hypervisor (e.g., vmware,
Xen)

hypervisor provides protection among guest VMs
hypervisor provides few higher level services

guest OS provides higher level services to guest apps (and protection
among guest apps)

4.5 Distributed systems
“OS” != everything that runs with “supervisor” bit set

NFS (network file service) is part of OS
Amazon S3 (simple storage service) and EC2 (elastic compute cloud)
are OS services

Who knows/who cares if they run with supervisor bit set…

Admin - 3 min

(much more than 3 min today!)

Lectures

1 minute review
1 minute outline
40 minute lecture
3 minute admin
35 minute lecture
5 Q&A
20 "And now for something completely different"
1 minute summary (Don’t get up!)

CS 439: Systems II Mike Dahlin

 9

1 minute preview

Break up class (admin, break) b/c attention span
outline/summmary important to all presentations
 “say what you’re going to say, say it, say what you said”
preview – feedback from last class I taught

Philosophy
• Write on board instead of slides (or I’ll go too fast)

• feedback from class I taught – copies of my notes
available on line (warning – not “polished”)

• encourage discussion
• feedback – I’ll hand out 3x5 cards in a month or so;

feedback welcome any time

Discussion sections
 W - focus on problem sets
 F - focus on labs

Syllabus

see notes on syllabus

Book experiment "OSPP"
Excited to teach class
Using new (in progress) book
-- alpha testing; feedback please

-- most likely outcome -- substantially better class
 - working through details; talking to 3 other faculty
as interested in this stuff as I am; best ideas from all of us...
-- moderately likely outcome -- no significant effect for better
or worse
-- non-negligible outcome -- substantially worse ("book is bad",
"rough form of book is problem", "dahlin diving into too much
detail", "dahlin too busy with book"
[[very likely outcome -- schedule will slip]]

OSPP + Bryant and O'Hallaron + outside readings

CS 439: Systems II Mike Dahlin

 10

 Project
 Overview and schedule
 Language C/C++ for the rest
 Project 1 begins now; due in 1 week;

Homework
Weekly problem sets
1-2 problems to be turned in each week
 -- Wednesday deadline; will shift as needed
 -- No late homeworks accepted
remaining problems "required but not turned in"
 -- You need to do them to do well on exam!

 Piazza

DEMO:
MDD: To set this up, get the bochs.img and fs.img files. Put on
USB key
Boot machine dual-hard-drive using ubuntu live CD
Insert USB key

 cd /media/usbdrive/bochdemo
 sudo dd if=bochs.img of=/dev/hda
 sudo dd if=fs.img of=/dev/hdb

NOTE: current demo code corrupts the file system, so if you get a
kernel page fault, reload fs.img to /dev/hdb as above

Enrollment
Probably can't take more
Implications and adjustments
 Bad news: load v. response time
 Adjustment: Project design
 Mal-adjustment: Homework
 Adjustment: newsgroup
 Adjustment: START EARLY, keep up with reading,
HW, etc.

CS 439: Systems II Mike Dahlin

 11

 Adjustment: Exam design/grading

Lecture - 23 min

5. OS evaluation criteria

5.1 Reliability
reliability -- system does what it is supposed to do

OS breaks --> user stuck, may lose work
application breaks --> more limited effect (bc OS isolates failures)

Challenge -- hostile environment
v. debugging application.
Adversary v. random/incidental/accidental failures
--> test cases less effective

availability -- % time system is usable

disk crash --> data lost --> reliability failure
machine turned off/freezes --> can't read from disk --> availability
failure

How would you create an operating system that is ultra-reliable and
ultra-available?

5.2 Portability
portable -- does not change as the hardware changes

many dimensions
-- different IO devices (graphics cards, network interfaces, etc.)
 don't want different code for each
 --> OS defines common abstractions
-- different machine
 different architecture -- (x86 v. amd v. SPARC v. Atom v. ...)
 different generations of same architecture

CS 439: Systems II Mike Dahlin

 12

 (VAX v. Core 2 -- many abstractions from early 70's
unix still there today)

 porting applications expensive
 --> OS presents common abstractions independent of HW
 porting million-line OS expensive/difficult
 --> OS built over HAL (hardware abstraction layer)

Within application, you know how you are going to use a module, and
if you get some module's API wrong, you can change it.
For OS, we have to design abstractions for a wide range of
applications. some of which don't even exist yet; and if we get it
wrong, user may not be able to easily change it.
--> We think a lot about abstraction and interface design (and this
training can help you even when you are facing the "simpler" problem
of designing abstractions/APIs within applications)

What are the right, long lasting abstractions to present to
applications?

5.3 Performance
several dimensions

overhead -- added resource cost of implementing abstraction
efficiency (inverse of overhead)

fairness among applications

response time (delay) -- time from start to end of task

throughput -- rate of task completion (efficiency of group of tasks, not
just one)

NOTE: response time and throughput may not be directly related
(pipelining)

predictability -- variation of response time (or throughput)

CS 439: Systems II Mike Dahlin

 13

which is better system that always has .5 second response time or a
system that has .4 second average response time where most requests
take .35 seconds but a few take 10 seconds? (A: almost always the
former)

How do we build a system with minimal overhead, minimum response
time, maximum throughput, high predictability? (v. "right long lasting
abstractions" which may hide details (hurting predictability) or add
overheads or interfere with pipelining or ...)

5.4 Trade-offs

portability v. performance (see above)

performance v. reliability
example: shave 1 instruction from assembly language path by
assuming max size of OS kernel; years later, random crashes.

6. Operating Systems Principles
Throughout this course you will see four common themes recurring
over and over:
• OS as illusionist – abstraction -- make hardware limitations go

away. OS provides illusion of dedicated machine with infinite
memory and infinite processors

• OS as government – protection -- protect users from each other
and allocate resources fairly and efficiently

• OS as complex system – keeping things simple is key to getting it
to work!!!

• OS as history teacher – learn from past to predict the future

Meta-principle: OS design tradeoffs change as technology changes

What is exciting about computer science v. other engineering
disciplines – underlying technology changes rapidly  lets us do
things that were unthinkable a few years ago (v. bridge building)

CS 439: Systems II Mike Dahlin

 14

7. History of Operating Systems: Change!
Typical academic computer in 1981, 1996, 2005

 1981 1996 2005 factor
SPECint/
MIPS

1 300 3000 300, 3000

$/SPECint $100K $33 $.33 3000,
300K

DRAM
capacity

128 KB 128MB 1024MB 1000, 10K

Disk
Capacity

10MB 4 GB 400GB 400, 40K

Net BW 9600 b/s 100
Mbit/s

100Mbit/s 10K, 10K

#addr bits 16 64 64 4, 4
#users/ma
chine

100 <1 <1 100, 100

Impact: Techniques have to vary over time, adapt to changing
tradeoffs

7.1 History Phase 1: Hardware expensive, humans cheap
Computers cost millions of $  optimize to make most efficient use
of hardware

1) User at console – one user at a time; OS is a subroutine library
 (Literally a stack of cards you pulled off a shelf to, say, do a matrix
multiply)

Problem – have to wait between jobs while user enters next job
(innovations make job entry faster: binary switches  keyboard 
card reader  tape reader)

2) Batch monitor – load program, run print
Advantage – can load next job immediately as previous one finishes

CS 439: Systems II Mike Dahlin

 15

2 problems
♦ no protection – what if program has a bug and crashes the batch

monitor  waste time rebooting
♦ computer idle during I/O

3) Data channels, interrupts: overlap I/O and computation
DMA – direct memory access for I/O devices.

OS requests I/O, goes back to computing, gets interrupt when
I/O device finishes (PICTURE)

4) Memory protection + relocation

Multiprogramming – several programs run at same time; users share
the system

Multiprogramming benefits

• Small jobs not delayed by large jobs
• more overlap between I.O and CPU

Multiprogramming requires memory protection to keep bugs in one
program from crashing the system or corrupting other programs

Bad news: OS must manage all these interactions between programs.
Each step seems logical, but at some point, fall off cliff – just gets too
complicated
• Multics – announced in 1963; ran in 1969
• OS360 released with 1000 bugs

UNIX based on multics, but simplified so they could get it to work!

7.2 History Phase 2: Hardware cheap, humans expensive
5) interactive time sharing

Use cheap terminals to let multiple users interact with the system at
the same time.
Sacrifice CPU time to get better response time for users

OS does timesharing to give illusion of each user has own computer

CS 439: Systems II Mike Dahlin

 16

7.3 History Phase 3: Hardware very cheap, humans very
expensive

6) Personal computing
Computers are cheap, so give everyone a computer.

Initially, OS became a subroutine library again (MSDos, MacOS)

Since then, adding back in memory protection, multiprogramming,
etc. (when humans are expensive, don’t waste their time by letting
programs crash each other)

7.4 History phase 4: Distributed systems
Computers soo cheap – give people a bunch of them

I have a PC at home, 2 in my office, a portable, a palmtop and
share some machines in a lab
 how do I coordinate a bunch of machines?

Networks fast – allow machines to share resources and data easily

Networks cheap – allow geographically distributed machines to
interact

Distributed systems abstractions mature --> can spread program over
1000s of machines (but we're back to sharing!)

Question: What does all this mean to OS?

Summary - 1 min

1) Key ideas: coordination (resource management, isolation),
abstraction

2) Application of ideas changes
a. Over time
b. Across applications, services (not just kernels)
c.

Point of describing change isn’t “Look how stupid batch processing
is” – it was right for tradeoffs of the time, but not anymore

CS 439: Systems II Mike Dahlin

 17

Point is: have to change with changing technology

Situation today is much like it was in the late 60’s – OS’s today are
enormous, complex things
 small OS – 100K lines
 big OS – 50M lines
100 - 1000 people-year
Key aspect of this course, understand OS’s so we can simplify them!

