
CS 439: Systems II Mike Dahlin

 1

Lecture N4: 2-phase commit

Review -- 1 min

Motivation
Basic NW communication
3 problems

 performance
 reliability
 security

Case study: Distributed file systems

Outline - 1 min

 General’s paradox
 2-phase commit
 Reliable message queues

Preview - 1 min

If time permits: security

Lecture - 20 min

1. TBD Finish file systems

2. Reliability

Lamport: “A distributed system is a system where I can’t get any
work done if a machine I’ve never heard of crashes.”

CS 439: Systems II Mike Dahlin

 2

3. General’s paradox
Want to be able to reliably coordinate activity on two different
machines (e.g., both do the same thing at same time, exactly once
semantics, atomically update state on two different machines, etc.)

e.g., atomically move directory from file server A to file server B
e.g., atomically move $100 from my account to Visa account

Challenge:
 messages can be lost
 machines can crash

Can I use messages and retries over an unreliable network to
synchronize two machines so that they are guaranteed to do same op
at same time?

Remarkably, no. Even if all messages end up getting through. Even if
no machines crash.

General’s paradox: two generals on separate mountains. Can only
communicate via messengers; the messengers can get lost or be
captured

Need to coordinate the attack; if they attack at different times, then
they all die. If they attack at same time, they win.

A B

 11AM OK?

 OK. 11’s good for me

 so, 11 it is?

 Yeah, but what if
 you dont get this
 ack

CS 439: Systems II Mike Dahlin

 3

Even if all messages are delivered, can’t coordinate (B/c a chance that
the last message doesn’t get through). Can’t simultaneously get two
machines to agree to do something at same time

No solution to this – one of the few things in CS that is just
impossible.
Proof: by induction

3.1 Network failures

Since I cannot solve General’s Paradox, let me solve a related problem: at
least once delivery

For now, assume no machine failures. Just network failures.

(1) communication interruption

 lost message
 lost reply
 cut wire
 …

Simple solution:
Request/acknowledge protocol
Common case:
1) Sender sends message (msg, msgId) and sets timer
2) Receiver receives message and sends (ack, msgId)
3) Sender receives (ack, msgId) and clears timer

If timer goes off, goto (1)

How does this work? What does it guarantee?
 What if msg 1 lost?
 What if ack lost?

Guarantees at least once semantics assuming no machines
crash or otherwise discontinue protocol
 Receiver guaranteed to recv message at least once

CS 439: Systems II Mike Dahlin

 4

 Receiver may recv message multiple times. Receiver MAY
use sequence number to filter repeated transmissions so that
each is acted upon just once



3.1.1 At least once delivery

safety: If call at sender returns, message was processed by receiver at
least once
liveness: if sender repeatedly sends until call returns and network
eventually repaired and operates correctly long enough for a
send/receive to occur, then eventually message is processed by
receiver (at least once)

[[until call returns => no crash, no timeout/give up]]

Example: NFS “idempotent” requests

3.1.2 Exactly once delivery
Example: TCP/IP reliable stream

safety: If call at sender returns, message was processed by receiver
exactly once

liveness: if sender repeatedly sends until call returns and network
eventually repaired and operates correctly long enough for a
send/receive to occur, then eventually message is processed by
receiver (exactly once)

[[note: implementation typically requires sender and receiver to
maintain state; cannot lose state in crash...]

3.1.3 Limitation: What if a machine crashes?
Do we still get “at least once” semantics if machines can crash?
NFS/RPC: no.
NFS Solution – blocking calls – don’t return until remote operation
completes.

CS 439: Systems II Mike Dahlin

 5

Note: after a crash, operation may have happened zero, once, or ten
times.

Do we still get exactly once semantics if machine can crash?
TCP: no
TCP solution:

(1) If sender or receiver crash or network partition causes either to
give up, no guarantee of “at least once” – local send may
complete before data received by remote machine
 if send request not return, data may be received 0 or 1 time
 if send request does return, data may be received 0 or 1 time

(2) at most once semantic – if crash causes sender to reuse sequence
numbers, no guarantee of at most once…s hacks to make it very
unlikely – pick sequence numbers unlikely to overlap with prev
attempts; don’t re-use port numbers until “pretty sure” both sides
know connection is closed (two generals)
 very unlikely that after receiver crashes, a resend will be
accepted as a first send (~at most once semantics…)

Don’t just worry about crashes. What about “giving up.” Suppose
I try to send for 10 seconds and get no reply – should I report
“failure” to the user? 1 minute? 10 hours?

What are at least once/at most once semantics now?

Bottom line:
If machines can crash or give up (e.g., during a network partition),
then messages can be received 0, 1, or N times

 these things help
 but still have corner cases to worry about

 These corner cases sometimes OK (e.g., TCP/IP – if one

side gives up, eventually tear down the connection and hand
an error up to higher level – let the higher level protocol
recover (or exit)

 Sometimes they require recovery protocols (e.g., AFS
callback recovery)

CS 439: Systems II Mike Dahlin

 6

Can we provide a more powerful abstraction?

4. Machine failures
Several variations:

♦ user level bug causes address space to crash
♦ machine failure, kernel bug causes all AS on same machine

to fail
♦ power outage causes all machines to fail

Before, whole system would crash. Now: one machine can crash,
while others stay up.
Now, one machine can crash, while others stay up. If file server goes
down, what do the other machines do?

Example: simple send/ack protocol above -- Difficult to deal with
machine crashes

 If sender crashes (or if sender gives up because it has tried
100 times in a row) what is the post condition?
o Receiver may or may not have received message

 If receiver crashes, filtering repeated messages to act on
them exactly once is tricky  carefully design protocol to
either (a) tolerate at least once semantics or (b) detect/avoid
replication even across sender/receiver failures

Outline:
(1) 2-phase commit – distributed atomic update
(2) persistent message queues

5. 2-phase commit
Since I cannot solve General’s Paradox, let me solve a related
problem

Abstraction – distributed transaction – two machines agree to do
something or not do it, atomically
 (but not necessarily at exactly the same time)

CS 439: Systems II Mike Dahlin

 7

example: my account is at NationsBank, yours is at Wells Fargo.
How to transfer $100 from you to me? (Need to guarantee that both
banks agree on what happened).
Example: file system – move a file from directory A on server a to
directory B on server b
Example: replication -- run k copies of file server so that if one fails,
others can continue operation and files stay available -- need each
replica to execute same series of requests

Two-phase commit protocol does this. Use log on each machine to
keep track of whether commit happened

Ground rules/assumptions
-- all correct nodes must take same action (eventually)
-- reliable network -- if message sent to a node that is up, it is received
in bounded time
-- correct nodes can crash and recover (losing memory but retaining
disk storage) (and failing to send messages for some period of time)

Protocol
Phase 1: coordinator requests
1. coordinator logs REQUEST; sends REQUEST to all participants

e.g. CS1 “delete foo from /”, CS2 “add foo to /”

2. participants recv request, execute transaction locally, write
REQUEST, RESULT, VOTE_COMMIT or VOTE_ABORT to
local log,
and send VOTE_COMMIT or VOTE_ABORT to coordinator

Failure case Success case
S1 decides OK, writes “rm /foo;
VOTE_COMMIT” to log, and
sends VOTE_COMMIT
S2 decides no space on device
and writes and sends
VOTE_ABORT

S1 and S2 decide OK and write
updates and VOTE_COMMIT
to log, send VOTE_COMMIT

Phase 2: coordinator decides
3. case 1: coordinator recv VOTE_ABORT or timeout

CS 439: Systems II Mike Dahlin

 8

 coordinator write GLOBAL_ABORT to log, and send
GLOBAL_ABORT to participants

case 2: coordinator recvs VOTE_COMMIT from all participants
 coordinator write GLOBAL_COMMIT to log, and send
GLOBAL_COMMIT to participants

4. participant receives decision; write GLOBAL_COMMIT or
GLOBAL_ABORT to log

What if
• Participant crashes at 2? Wakes up, does nothing. Coordinator will

timeout, abort transaction, retry
• Coordinator crashes at 3? Wakes up,

• Case 1: no GLOBAL_* in log  Send message to participants
“abort”

• Case 2: GLOBAL_ABORT in log  send message to
participants “abort”

• Case 3: GLOBAL_COMMIT in log  send message to
participants “commit”

• Participant crashes at 4? On recovery, ask coordinator what
happened and commit or abort

This is another example of the idea of a basic atomic operation. In this
case – commit needs to “happen” at one place

Liveness
Limitation of 2PC – what if coordinator crashes during 3 and doesn’t
wake up? All nodes block forever

You would like to be able to declare the coordinator dead and either
commit or abort the transaction (so that we can release the locks and
move on...)
-- e.g., crash during transfer of cash from my account at BofA to your
account at Wells Fargo -- my account should not be locked forever!

Termination Protocol

CS 439: Systems II Mike Dahlin

 9

What if a participant time out waiting in step 4 for coordinator to say
what happened. It can make some progress by asking other
participants
1. if any participant has heard “GLOBAL_COMMIT/ABORT”, we

can safely commit/abort
2. if any participant has said “VOTE_ABORT” or has made no vote,

we can safely abort
3. if all participants have said “VOTE_COMMIT” but none have

heard “GLOBAL_*”, can we commit?
A: no – coordinator might have written “GLOBAL_ABORT” to
its disk (e.g., local error or timeout)
Turns out – 2PC always has risk of indefinite blocking

Problem: Can't tell if coordinator has crashed (in which case, OK
to abort) or is just slow/disconnected/temporarily crashed (in
which case we need to do whatever it said to do)

-- 2PC has undesirable property -- if nodes can permanently fail it can
block indefinitely if coordinator fails, even if all participants are up
and able to communicate

3PC/Non-blocking commit
Crash at wrong time --> 2PC is stuck forever (requires manual intervention
to fix and restart)

Fundamental problem: nodes can be in a state where they could transition
directly to either commit or abort --> if can't talk to coordinator, don't know
which should happen

CS 439: Systems II Mike Dahlin

 10

3PC
-- always ensure that working participants can complete, as long as a
majority are functioning
-- assumes reliable network -- max delay from when message sent to
received
-- If you are paranoid enough about the corner case for 2pc, then "reliable
network" is an aggressive assumption; better to use asynchronous, unreliable
network model (e.g., Paxos; see below)

Key idea: Get rid of direct transition from "uncertain" to "commit" or
"abort"
--> 3PC can complete as long as at most one node is unresponsive
(disconnected, slow, or crashed)
"precommit" state -- process knows it will commit unless it fails

CS 439: Systems II Mike Dahlin

 11

1. Coordinator sends VOTE-REQ to all participants

2. Participant recvs VOTE-REQ and logs and sends decision
(VOTE_COMMIT or VOTE_ABORT); if VOTE_ABORT, done.
Timeout: log, send VOTE_ABORT
State: COMMIT->UNCERTAIN; ABORT->ABORTED

3. (a) If recv VOTE_COMMIT from all participants, log PRE-COMMIT,
and send PRE-COMMIT to all participants
(b) recv VOTE_ABORT, log GLOBAL_ABORT and send
GLOBAL_ABORT to all participants
Timeout: log, send GLOBAL_ABORT

4. Participant recvs PRE-COMMIT or GLOBAL_ABORT, logs it, and
sends ACK to coordinator
Timeout: See below
State: PRE-COMMIT->COMMITABLE; GLOBAL ABORT -> ABORTED

5. Coordinator receives all ACKs --> log GLOBAL_COMMIT and send
GLOBAL_COMMIT to all participants
Timeout: log, send GLOBAL_COMMIT

6. Participant recvs GLOBAL_COMMIT, logs it, and is done
Timeout: See below
State: COMMITTED

Strange: receiver knows what messages will be before receiving them. Why
send them at all?
B/c messages allow nodes to track other nodes progress...
-- Key idea: Make sure no process is COMMITTED while any process is
UNCERTAIN

CS 439: Systems II Mike Dahlin

 12

Termination protocol -- timeout at step 4 or 6
I. Election protocol --> new coordinator
II. New coordinator sends STATE_REQ to all (live) participants
III. Coordinator collects responses
(a) Some process ABORTED --> log and send GLOBAL_ABORT to all
(b) Some process COMMITTED --> log and send GLOBAL_COMMIT to
all
(c) All processes UNCERTAIN --> log and send GLOBAL_ABORT tot all
(d) All processes COMMITTABLE --> log and send PRE_COMMIT to all;
continue steps 4, 5, 6 above

Key idea: Participants are always in compatible states:

CS 439: Systems II Mike Dahlin

 13

[table from: Chapter 7, "Concurrency Control in Database Systems",
Bernstein, Hadzilacos, Goodman]

Better than 3PC -- paxos; also allows unreliable network and majority
progress

BUT

Requires reliable network, no spurious timeouts

Can we avoid this? Yes
(a) Good protocol: Paxos
(b) I'll show a simple variation
[[see 3pc.txt]]

Bottom line

If you come to a place where you need to do something across
multiple machines, don’t hack
 use 2PC (or Paxos)
 if 2PC, identify circumstances under which indefinite blocking can

occur (and decide if acceptable engineering risk)

CS 439: Systems II Mike Dahlin

 14

In practice 2PC usually good enough – but be aware of the limits

up until recently non-blocking commit was seldom used in practice;
recently, becoming not uncommon

QUESTION: is 2PC “at most once”, “at least once”, “exactly once”
or “none of the above”?

6. Persistent message queues

MQSeries, etc.

Use 2-phase commit for message passing – guarantee exactly once
delivery even across machine failures, long partitions

Send:
 Add msgID++, msg to log
 Send <msgID, msg> on NW (keep repeatedly sending

all items in log)

Recv <msgID, msg>
 If <msgID> != largest stored msgID + 1
 If <msgID> <= largest stored msgID

Send ack <msgId> to sender;
Drop message;
break;

 Add <msgId, msg> to log
 Send ack <msgId> to sender

Recv ack:
 Remove <msgID, msg> from log and stop retransmission

Process next msg:
 Transaction begin
 remove next msg from log
 process message
 transaction commit

CS 439: Systems II Mike Dahlin

 15

E.g., AFS consistency state recovery – how would this now work?

QUESTION: is basic persistent message queue “at most once” “at
least once” “exactly once” or “none of the above”?

How would you make it “exactly once?” (combine “at least once”
with local transaction?)

7. Summary
RPC – “transparent” way to change local program into distributed
program
 Generalization RMI, CORBA, SOAP – object-oriented versions of

this

Case against RPC – RPC provides wrong abstraction – implies that
local and remote programs can be/should be similarly structured
 focuses attention/abstraction on “common case” of everything

works
 Some argue – this is wrong way to think of distributed programs.

“Everything works” is the easy case –RPC encourages you to think
about that case. But, the case of partial failures is the case you
should focus your attention on.

 E.g., don’t assume that each request will get a reply, etc.
 “Exception paths” need to be as carefully considered as the

“normal case” procedure call/return paths  RPC wrong
abstraction

Lower-level message passing abstraction may help program writer
avoid making implicit “everything usually works” assumption and
may encourage structuring programs to handle failures elegantly

Persistent message queues can greatly simplify message passing (but
at a potentially significant overhead.)

