
cs372 Mike Dahlin

Lecture#18: Intro to I/O; Disk physical characteristics

Review -- 1 min

Scheduling:

General lessons:
• Separate mechanism from policy
• Know your goals
• Compare with ideal

Specific policies:
• FIFO – fair, potentially poor latency
• RR – fair, potentially poor latency
• SJF – optimal latency; potentially unfair; not implementable

(usually)
• Multi-level feedback queue – heuristics to approximate SJF;

often used in practice
• Fair scheduling: Lottery, STFQ

Outline - 1 min

Intro to I/O
performance: Log model: Overhead, latency, BW
Disks
Data layout

Preview - 1 min

File systems
• Performance -- data layout
• Performance/persistence -- naming
• Reliability -- transactions

 Networks
• overview

cs372 Mike Dahlin

• protocols
• RPC
• distributed file systems
Security

Lecture - 20 min

1. IO -- tie back to previous discussions

How does IO relate to memory and interrupts?

What is "I/O" -- input/output

So far we've talked about CPU and memory. Now we want to talk
about IO

-- my laptop (March 2011): keyboard (x3), mouse, disk, display,
ethernet, 802.11, Bluetooth, microphone, speaker, wireless
microphone, touch pad (x2), status lights, printer, scanner, MP3
player, camera

-- Fortunately, a common way to deal with all of these

Low level I: Memory mapped IO
[simplified story:]
-- allocate a region of physical memory for each device
e.g., "whatever device is plugged into slot 7 of my PCI will get
addresses 0x10007000 to 0x10007FFF"

-- Writes/reads to this rang of addresses get sent to device
-- "control registers"
 --> device can treat these writes/reads as requests
 e.g., write value v to address 0x10070F0 means "move disk arm
to location v"
 e.g., read from address 0x10070F4 returns current disk arm
position

cs372 Mike Dahlin

 --> Can create arbitrary function calls by setting arguments and then
"go"

2 modes
(1) Programmed IO -- read/write individual "control registers" one
word at a time
(2) DMA -- hand an address, length to IO device; IO device
reads/writes an array of bytes at that address

QUESTION: Should DMA get a physical address or virtual address?
QUESTION: If DMA gets a virtual address, what happens if OS
changes mappings for that page?

typically "pin" pages shared by OS and devices

Low level II: Interrupts
IO device can interrupt kernel when something interesting happens
-- kernel handler runs and uses device driver to access IO device
-- hardware has multiple interrupt numbers so that different handlers
can be called for different devices

Medium level: Device drivers

Specific control registers and "function calls" are hardware specific.
Vendor produces a device driver which exports some higher-level
procedural interface to OS
-- Possibly a standard interface e.g., "Standard IDE disk", "standard
ethernet"
-- Possibly a standard interface + optional extensions/enhancements
-- possibly non-standard

High level: Standard abstractions
-- file system hides details of disk devices
-- sockets hides details of network devices
...

cs372 Mike Dahlin

2. Terminal: keyboard and display
Terminal connects to computer via serial lie; same concept applies to
modem connections – type characters, get characters back to display.

e.g. RS-232 is bit-serial: start bit, character code, stop bit
Typical BW: 9600 baud (transmission rate in bits/sec)  900
bytes/sec

Even though keyboards/displays reflect a relatively small rate of
transfer, can still swamp CPU due to overhead of handling each byte

e.g. what if interrupt per byte

10 users (vi/emacs) (or 10 people using modem)
900 interrupts/sec per user
overhead of handling interrupt 100usec

 devote whole computer to handling interrpts

Alternative: use Direct memory access (DMA) to group bytes into
blocks.
Instead of interrupt per byte, do block transfer, interrupt CPU when
block is done
 much higher transfer rates

Admin - 3 min

cs372 Mike Dahlin

3. Disk Organization

Disk surface: circular disk, coated with magnetic material
Tracks: concentric rings around disk surface, bits laid out serially
along each track
Each track is split up into sectors: arc of track; also, minimal unit of
transfer

Disks spin continuously

Disks organized as set of platters in a stack

surface

track

sector

cs372 Mike Dahlin

Disk is read/write via a comb – 2 read/write “heads” at end of each
“arm”

cylinder – corresponds to track on each surface

Disk operation is in terms of radial coordinates (not x, y, z) – move
arm to correct track, wait for disk to rotate under head, select head,
then transfer as it is going by

High-end disk today:	
 Seagate	
 Cheetah	
 ST373405LC	
 (March	
 2002)

 Seagate	
 Cheetah	

ST373405LC	
 (March	

2002)

Seageate	
 Cheetah	
 NS	

ST3400755FC	
 (March	
 2008)	

Disk capacity 73 GB 400GB
surfaces per pack 8
cylinders
total # tracks per system

29,549
236,394

#sectors per track 776 (avg)
bytes per sector 512 B 512B
revolutions per minute
 xfer rate
Avg seek time
 1-track seek time
 full disk
Extern xfer rate
Cache size
Idle power
Typical power
MTBF
Annualized failure rate
Nonrecoverable read
error per bit

10000
50-85 MB/s
5.1ms (r) 5.5ms (w)
 .4ms (r) .6ms(w)
 9.4ms(r) 9.8ms(w)

4MB
10W

1,200,000 hours

10075 (2.98ms avg lat)
97MB/s (max)
3.9(r)/4.2(w)
.35(r)/.35(w)

4Gbit/s (500MB/s)
16MB
8.1 W
12.1W
1,400,000 hours
.62%
10^-16

4. Disk performance

cs372 Mike Dahlin

4.1 Simple model

To read or write a disk block: seek + rotation + transfer

1. seek: position heads over cylinder (+ select head)
Time for seek depends on how fast you can move the arm.
Typically ~10-20ms to move all the way across disk
Typically 0.5-1ms to move 1 track (or select head on same cylinder)
“Average” typically 5-7ms to move 1/3 across disk

NOTE: potentially misleading/pessimistic – assumes no locality

2. rotational delay wait for sector to rotate underneath head
 10000 RPM – 166 revolutions per second  6 ms per rotation

3. transfer bytes
0.5 KB/sector * (100-1000)sectors/revolution * 166 Rev per second =
8-80 MB/s

(e.g. 10 MB/s  .5KB sector  0.005ms)

overall time to do disk I/O
seek + rotational delay + transfer

Question: are seek and rotational
Seek and rotational delay are latency
transfer rate is BW

4.2 Caveats/Estimating performance
Modern disk drives more complex -- track buffer, sector sparing, etc.
see "Introduction to Disk Drive Modeling"
http://www.hpl.hp.com/research/ssp/papers/IEEEComputer.DiskMode
l.pdf

avg seek time seldom seen in practice
 -- assumes no locality
 -- assumes no scheduling

cs372 Mike Dahlin

cs372 Mike Dahlin

cs372 Mike Dahlin

Suppose 1000 pending 512 byte read requests, randomly
distributed across Seagate Cheetah ST3600057FC
 -- FIFO --> random seek + random rotate + xfer
3.4ms + 2ms + 512/150MB/s = 5.4ms

 -- SJF --> shortest job first
 NOT IDEAL
 problem with SJF -- starvation

 -- SCAN/CSCAN/Elevator -- widely used
QUESTION what would you estimate? (strict track-track
elevator; elevator + rotational knowledge)

strict: 1000 requests; 8 platters -- average request is .1% of distance
across disk + head switch

smart:

Suppose 1000 pending 512 byte read requests, randomly
distributed across 1GB file on Seagate Cheetah ST3600057FC and
CSCAN scheduler

...now data is spread across

4.3 Sequential >> random
Random access
 avg seek ~4ms

cs372 Mike Dahlin

 ½ rotation ~3ms
 transfer ~0.02 ms
  about 7ms to fetch/put data; mostly seek/rotation
  73 KB/s for random sector reads

Sequential access
What if next sector on same track? Then no seek, no rotation delay
 50-200 MB/s

Key to using disk effectively (and therefore to everything in file
systems) is to minimize seek and rotational delay(1000x difference)

Simple example: do random read/writes of varying size; assume
~10ms avg seek + rot (no locality) and 100MB/s bandwidth

 EffectiveBW(size) = size/(10ms + size/BW)
(Note: for an access larger than 1 track, the 100MB/s bandwidth term
neglects ~.5ms per rotation to resettle on next track; e.g., this
simplification -- if a rotation is 6ms, then this simplification is about
10%)

Size Time EffectiveBW
.5KB 10ms 50KB/s
1KB 10.01ms 100KB/s
10KB 10.1ms 1MB/s
100KB 11ms 10MB/s
1MB 20ms 50MB/s
10MB 110ms 90MB/s

3 orders of magnitude better BW to read 1MB than to read 1 sector

“The secret to making disks fast is to treat them like tape” (J.
Ousterhout)

cs372 Mike Dahlin

5. Reliability
[[INSERT LAST PART OF LEC22.DOC HERE]]

6. Technology trends
1. Disks getting smaller for similar capacity
smaller  disk spins faster (less rotational delay, higher BW)
smaller  less distance for head to travel (faster seeks)
smaller  lighter weight (for portables)
2. disk data getting denser (more bits/square inch; allows smaller

disks w/o sacrificing capacity)
Tracks closer together  faster seeks
3. Disks getting cheaper (per MB) (2x/year 1991-2005; 7x/5yr 2006-

2011)

1983: 44MB disk $4395 [byte magazine ad]
2006: 300GB EIDE disk $94 [pricewatch.com]
2008: 500GB SATA disk $82 [pricewatch.com]
2011: 2TB Western digital disk $89 [buy.com]

4. Disks getting (a little) faster
seek, rotation – 5-10%/year (2-3x per decade)
bandwidth – 20-30%/year (~10x per decade)

Overall – disk density ($/byte) improving much faster than
mechanical limitations (seek, rotation)

Key to improving density: get head close to surface

Heads are spring loaded, aerodynamically designed to fly as close to
surface as possible (also, lightweight to allow for faster seeks)

What happens if head contacts surface? Head crash – scrapes off
magnetic material (and data)

6.1 Form factors
Why not read from multiple platters in parallel?

cs372 Mike Dahlin

Why don’t disks improve performance by having multiple
independent arms?

Innovator’s dilemma case study: form factor server->mini->desktop…
kills old guard

Low-end product initially worse than high end product
 Incumbents stick with high end
But low end product has volume
 low end supplants high end

2008: In 10 years, will we still have magnetic disk or will solid
state drives supplant? Seagate says we’ll have both (2008). But
the scenario has some resemblance to past disruptive
technologies in this market…

7. Solid state drives

Different physical characteristics:
(1) no moving metal --> good random access
BUT
(2) write in 2 phases

(1) Clear group of pages (SLOW)
(2) Write individual pages (fast)

(3) Low power (no moving metal)
(4) Wear out (--> wear leveling)

 Spinning SSD
Cost (2010) $.10/GB $2/GB (<10:1)

Random read/s ~100/s ~10K/s (>100:1)
Random writes ~100/s ~200-1000/s (*) (~= or better)
Read BW ~50MB/s ~50MB/s (~=)

Power (active) ~10W <1W
Random read/s/w ~10/s/W ~10K/s/W (>1000:1)
Sales volume Lots LOTS

(* To write a flash drive you first clear a group of pages (128KB-
256KB) and then write individual sectors. Clear group is slow. Write

cs372 Mike Dahlin

sector is pretty fast. Bad design: write one sector --> need to re-write
many sectors from block to new location --> slow. Newer systems
keep spare sectors around and use something like a log structured file
system and can have pretty good write performance (though still not
as good as read).

Conclude: If you are capacity-bound, buy spinning. If you are IO
bound or power or form-factor bound, buy SSD

Supplanting spinning drives in some markets (palmtop, smart phone,
camera, music player)

Competing with spinning drives in some markets (laptop -- low
power, small size v. capacity; server -- high IOPS/$ v. high
capacity/$)

8. Data layout on (spinning) disk
2 driving forces
1) technology: avoid seeks, rotation
(last time)
2) workloads:
How do users access files?

1. Sequential access – bytes read in order (give me the next X bytes,

then give me the next)
2. Random access - read/write elements out of middle of array (give

me bytes j-k)

How are files typically used?
1. Most files are small (e.g. .login, .c files)
2. Large files use up most of the disk space
3. Large files account for most of the bytes transferred to/from disk

Bad news: need everything to be efficient

• Need small files to be efficient since lots of them

cs372 Mike Dahlin

• need large files to be efficient, b/c most of the disk space,
most of the I/O due to them

9. Understanding IO Performance

You need to buy a new RAID (Redundant array of inexpensive disks)
system for your transaction server. Vendor A shows you this graph:

“Buy our system. It is twice as fast as B’s”

But then vendor B shows you:

“Buy our system – it is twice as fast as A’s”

Response
time

B A

Throughput

A B

cs372 Mike Dahlin

What should you buy? Who is lying?

What graph did you really want to see?

Response
time

throughput

cs372 Mike Dahlin

You buy one of them because it is faster than what you have. You
plug the new RAID into your server and keynote measures the
performance your users receive:

Why didn’t the $100K you just spent on faster hardware speed things
up? How can you avoid making this mistake at your next job?

Two key ideas –
(1) queuing theory
(2) pipelining in IO systems, LogP model

10. A little queuing theory

Quesion: when should you buy a faster computer?
One approach – buy when it will pay for itself in improved response
time

Queuing theory allows you to predict how response time will change
as a function of hypothetical chnges in # users, speed of CPU, speed
of disk, etc

Might think you shouldn’t buy a faster X when X has spare capacity
(utilization of X < 100%), but for most systems, response time goes to
infinity as utilization goes to 100%

How does response time vary with # users?

Before After

cs372 Mike Dahlin

Worst case: all users submit jobs at same time. Thus response time
gets linearly worse as add extra users, linearly better as computer gets
faster

Best case: each user submits job after previous one completes.
As increase #users, no impact on rsponse time (until system
completely utilized)

What if we assume users submit jobs randomly and they take random
amounts of time. Possible to show mathematically:

 response time = service time / (1-utilization)

fine print – exponential distribution

10.1.1 Bottom line
To measure system, plot throughput v. response time

Measuring response time at just one load level could be very
misleading.

Often see something like this:

Question: What’s wrong with this picture?

Reponse time

Throughput

Reponse time

clients

cs372 Mike Dahlin

Common mistake: measure “offered load” rather than “throughput”

10.2 LogP model (moved to lec24)

Your system really is client + NW + front end + back end + raid…

• Pipelining of computation and networks (I/O) really important for understanding
performance

• Understanding pipelining more complex than CPU pipeline: variable stage depth,

different ``functional units'', etc.

• LogP model is useful pipelining model for I/O

10.2.1 Performance != Bandwidth

• Performance: "how fast is your network?" "how fast is your disk?" -- people tend to
answer in terms of bandwidth

• bandwidth is the MIPS of I/O
• In architecture, MIPS is one of three factors (cycles per instruction, instruction count,

instructions per second) -- only looking at one is misleading

Similar issue for I/O
Suppose I have a 100Mbps and 1000Mbps network. Is second
network 10x faster?
Not if I use it to do a “remote read” (50 byte request, 50 byte
response)

Graph: (lab) 510us (100Mbps), 501us (1000 Mbps)
(Graph: fixed portion + variable portion…)

 Cross-country: 50.5ms (10Mbps), 50.5ms (100Mbps)
What’s going on?

How to understand I/O performance LogP:

• Latency from X to Y: real time from X to Y. Delay to initiate 1-byte operation (can be
overlapped). ``Latency'' alone is ambiguous -- must always specify latency of what to
what? (E.g., network hardware latency = latency from when bit appears on one end of
wire until it is taken off other end) [Delay from starting first to exiting last pipeline stage]

• Overhead: bottleneck time to initiate operation (can’t be overlapped) [Time consumed
by first pipeline stage]

• Bandwidth: (“gap”) bottleneck rate of large number of operations once initiated [Time
consumed by slowest pipeline stage]

cs372 Mike Dahlin

E.g., suppose you open a TCP connection and start sending 1KB
messages to another node on a 10Mbit/s Ethernet

1) What is "bottleneck rate"? (for overhead, BW)
The only tricky thing about this is that you have complex pipelining
models (e.g., a disk request "occupies" CPU, bus, scsi controller, scsi
bus, disk arm)
Which one is the bottleneck depends on configuration (how many
disks? How many SCSI busses? How fast CPU?)

Which one is the bottleneck depends on how question is asked:
E.g., "For a Seagate Barracuda 5100 disk, what is the average
overhead per 1-sector disk request?" v. "For a Dell Dimension 5100,
what is the overhead per 1-sector disk request?" The first is asking
how long a disk seek and rotation take; the second is asking how long
the CPU is busy to set up a request.
Need to consider: What bottleneck is the question asking about?
For throughput, steady state bottleneck is the same in both cases.
For overhead, first stage overhead differs.

How does overhead differ from latency?

Overhead: resource usage
Latency: real-time end-to-end delay

How would you measure latency of a network request?

How does overhead differ from bandwidth?
How would you measure overhead of sending a packet?

Overhead – initially
100us to enqueue each
packet

Latency from send to ack

…
Gap ~1ms: At some point, the local
buffer fills. Now, we can only send
one packet per acknowledgement we
recv.

…

cs372 Mike Dahlin

How would you measure bandwidth of a network?

2) Batching
General rule of thumb: OS provides abstraction of byte transfers, but
batch into block I/O for efficiency (pro-rates overhead and latency
over larger unit)

Example

• Suppose CPU takes 100us of processing to issue one 512 byte
write request

• Each request is to a random sector on disk
• Disk has parameters as above (4ms avg seek, 3ms ½ rot,

transfer .02ms)
• 32KB write buffer on disk (producer/consumer bounded buffer)
• Writes are issued asynchronously (CPU can issue k+1 as soon

as k is in write buffer)

(1) Suppose CPU issues k back-to-back requests, when does CPU

complete?

cpu disk

32 KB buffer

o: 100us | 0 | 7ms
l 100us | 0-64*7=448ms | 7ms

cs372 Mike Dahlin

(2) When does first write to disk complete at the disk?

(e.g., latency from when first write starts at CPU until done at disk?)

7.1ms

(3) Suppose there are 500 writes in a burst, when does the last write

complete at the disk?

100us + 500 * 7ms

10.3 Case study: sector layout
What is the fastest way to lay out a sequential file on disk

answer 1:
a series of sequential sectors on a track

problem (in old systems)
read sector 1
process sector 1
read sector 2 -- whoops, sector 2 is already past
wait 1 rotation
read sector 2
…
 N rotations to read N blocks
 BW for sequential read is 512 bytes/rotation = 100KB/s

100us

k

7ms

Time per
request

cs372 Mike Dahlin

answer 2: (in old systems)
skip 1 sector (or 2 sectors) between sequential blocks
 2 rotations to read N blocks

answer 3: (modern systems)
track buffer -- on-disk cache
read entire sector into track buffer
in parallel (once sector 1 arrives…) read sector 1 (from track)
then read sector 2
…
 1 rotation to read N blocks

Moral: OS designer needs to understand physical properties of disk

Latency, overhead, bandwidth:
From disk -- what is overhead for a 1-sector read?
 what is latency for a 1-sector read?
 what is bandwidth term for a series of 1-sector reads to
random blocks on disk?
From CPU/memory system

 what is overhead for a 1-sector read
 what is latency for a 1 sector read
 what is BW term for 1-sector reads to random blocks on

disk?

Be careful: What is end-to-end average bandwidth for a 1-sector read
(people phrase this question to mean end-to-end bytes/sec including
latency and overhead)

Lecture - 23 min

Physical reality Desired abstraction
disks are slow fast access to data
sector addresses (“platter 2, cylinder 42, sector 15”)
 named files, directories
write 1 sector at a time atomic writes, transactions

cs372 Mike Dahlin

