
CS 372: Operating Systems Professor Mike Dahlin

 1

Lecture #21: File system naming + location – putting it all
together

Review -- 1 min

fs data layout – how to find blocks of a file given its header
♦ trees, linked lists, etc
♦ how to get good sequential layout

Transactions –
 ACID
 Logging (redo, undo, commit, rollback)
 LFS

Outline - 1 min

Kernel data structures
 Open/close/read/write v. mmap
project overview
Scheduling

Preview - 1 min

M – midterm
Then, memory systems, protection

Lecture - 20 min

1. Disk scheduling
Disk can only do 1 request at a time; what order do you choose to do
the requests

CS 372: Operating Systems Professor Mike Dahlin

 2

if 0 or 1 request queued, easy
>1 – try to arrange requests in some order that reduces seek time

1.1 FIFO
QUESTION: how will this work?
Fair among requestors, but order of arrivals may be random  long
seeks

1.2 SSTF – shortest seek time first
pick the request that is closest on disk (although called SSTF, today
include rotational delay b/c rotation can be as long as seek)

QUESTION: how will this work

good at reducing seeks
can cause starvation

Is it optimal?

1.3 SCAN
SCAN implements elevator algorithm – take the closest request in the
direction of travel
No starvation, but retains flavor of SSTF

1.4 CSCAN

2. API and caching/
Kernel data structures for file system

2.1 Read/write interface
Kernel maintains per-process open file table --
each entry -- pointer OpenFile object stored in kernel memory

system call (user) | kernel action
open("path")  put a pointer to right file in FD table;
 return index

CS 372: Operating Systems Professor Mike Dahlin

 3

close(fd)  drop entry from fd table

read(fd, buffer, length)  user refers to open files with index
write(fd, buffer, length) of file descriptor table

What needs to be in OpenFile object to support read/write?
 Inumber (or, if caching, pointer to in-memory FileHeader object)
 per-open-file data (e.g., file position, …)

Why have a separate fd table
 why not just give user pointer to FileHeader object in kernel?
 o how does kernel know when it can free object?
 o convenience: per-open-file data (file position, …)
 why not just use path for all operations (e.g., read(path, offset, …))

o efficiency – string operations, protection checks

2.2 Caching
Read and write end up calling disk block read/disk block writes

We’ve stated several times that we need good caching for file systems
to work well. How does this work?

Simple answer: block cache

Replace all uses of

ReadDisk(blockNum, buffer)
With
 ReadDiskCache(blockNum, buffer){
 ptr = cache.get(blockNum); // just a hash table
 if(ptr){
 copy BLKSIZE bytes from ptr to buffer
 }
 else{
 newBuf = malloc(BLKSIZE);
 ReadDisk(blockNum, newBuf);
 cache.insert(blockNum, newBuf);
 copy(blockNum, buffer, BLKSIZE);
 }

CS 372: Operating Systems Professor Mike Dahlin

 4

 }

Advantage: simple – write all FS code as if always reading from disk
and insert the cache at the lowest level

Issues: replacement policy --> in a few weeks when we talk about
memory systems

Disadvantage: copy overhead – each read copies block into a new
buffer

For in-kernel use, we could return a pointer to cached version
 More complex: need to deal with reference counting, etc., but we

could make it work…

What about avoiding copies to user space?

2.3 Mmap interface

void *mmap(int fd, size length, …)

map the specified open file into a region of my virtual memory, and
return a pointer to that region

How might we implement this?
How would we update your page table?
How do I read a file?
How do I write a file?
What happens if a page is evicted from the cache?
What happens if a page is brought back into the cache?

Admin - 3 min

Midterm postmortem
Guest lecture thursday
Project 4 out. Start early.

CS 372: Operating Systems Professor Mike Dahlin

 5

Lecture - 23 min

3. RAIDS and availability
moved to S7.doc

Summary - 1 min
