
CS 439: Systems II  Mike Dahlin 

 1 

Lecture S4: File system – data layout, naming 
  
********************************* 
Review  -- 1 min 
*********************************   

Intro to I/O  -- overhead, latency, BW 
Disks – avoid seeks, rotations 
Header – given file header find rest of file 
 Contiguous allocation 

Linked allocation 
 FAT 
 Indexed allocation 
 Multi-level index 
 

*********************************  
Outline - 1 min 
********************************** 

Data layout 
 files: file header, locating the rest of the file 
Contiguous allocation 

Linked allocation 
 FAT 
 Indexed allocation 
 Multi-level index 
 naming, directories – given name, find header 

 

*********************************   
Preview - 1 min 
*********************************   
Wednesday: Guest lecture – IBM JFS and volume mgr 
Next time: finish file systems 

In-memory data structures 
Scheduling 
Transactions 
 



CS 439: Systems II  Mike Dahlin 

 2 

*********************************   
Lecture - 35 min 
*********************************   

 

1. Naming and directories 
ok: once I find a file header, I can find the rest of the file 
How do you find a file header? Name lookup 
 
Directory: table of  
 <name>  <pointer to file header> 
 

1.1 File header 
File header =  
(1) root of data structure that allows you to get to all blocks of file 

(linked: pointer to first block; FAT: first entry; index: array of 
pointers; multi-level index: root node of tree; NTFS: array of 
pointers to extents) 

(2) file metadata – owner, group, size, last accessed, last modified, 
permissions… 

 
Where is file header stored on disk? 
 
In (early) unix – special array in outermost cylinders: 

 

File header array 



CS 439: Systems II  Mike Dahlin 

 3 

 
Unix refers to file by index into array – tells it where to find the file 
header 
UNIX-isms 
 “I-node” – file header 
 “I-number” – index into array 
  i-number is unique identifier for file 
 
Unix file header organization seems strange 
1)  header not anywhere near data blocks. To read a small file, seek to 

get header, seek back to data 
2)  Fixed size, set when disk formatted. Means maximum # files that 

can be created 
 
Why not put headers near data? 
+ reliability – whatever happens to the disk, you can find all of the 
files 
+ Unix BSD 4.2 puts portion of the file header array on each cylinder. 
For small directories – can fit all data, file headers, etc in same 
cylinder – no seeks! 
+ file headers are much smaller than a whole block (a few hundred 
bytes), so multiple file headers fetched from disk at same time 
 
QUESTION: do you ever look at a file header w/o reading the file?  
If not – put the file header in first block of the file! 
 
Turns out – fetching the file header is about 4x more common in Unix 
than reading the file (ls, make, etc) 
 

 
Bottom line: 
array of headers  (array of inodes) 
index of array ("inumber")  header  bytes of a file 

1.2 Naming 

1.2.1 Options 
1.  Use index (ask user to specify I-node number) 
2.  text name 
3.  icon 



CS 439: Systems II  Mike Dahlin 

 4 

 
With icon or text, need to map nameindex 
 

1.2.2 Directories 
Directory maps name file index (where to find file header) 
 
Directory just a table of file name, file index pairs 
 I could write it on a piece of paper and carry it around in my 
pocket… 
 
Directory is just a file 
Only OS permitted to modify directory 

♦ so it always contains namefile index 
Any program can read directory file 
 this is how ls works 
 

1.2.3 Directory hierarchy 
 
Take this one step at a time, starting at the bottom: 
 
Ok – how do you find blocks of a file? 
 find its header – header has pointers to blocks of a file 
how do you find a header? 
 find its I-number – inumber is pointer to header 
how do you find a file’s inumber? 
 read its directory – directory maps name to inumber 
But wait, directory is a file – how do you find it? 
 
How do you find a file? 
 find its header 
… 
 
 
You’re seniors – a little recursion shouldn’t bother you! 
 lets you nest directories – directories of directories, etc 
 
Interpret: 
 /foo/bar/baz 



CS 439: Systems II  Mike Dahlin 

 5 

 
♦ baz is a file 
♦ bar/ is a directory that contains the inumber of file baz 
♦ foo/ is a directory that contains the inumber of file bar 
 

What do you need with recursion? A base case 
♦ “/” is a directory that contains the inumber of file foo 
♦ the inumber of “/” is 2 

 

2 Inode for “/” 

Block addr 
1 98 
2 
3 
… 

Name inum 
foo 38 
 

File “/” 

Inode for “/foo” 

Block addr 
1 67 
2 
3 
… 

Name inum 
bar 18 
 

File “/foo” 

Inode for “/foo/bar” 

Block addr 
1 111 
2 
3 
… 

Name inum 
baz 99 
 

File “/foo/bar” 

Inode for “/foo/bar/baz” 

Block addr 
1 118 
2 
3 
… 

To be or not to be… 
Block 0 File “/foo/bar/baz” 

 
Indirect block File “/foo/bar/baz” 



CS 439: Systems II  Mike Dahlin 

 6 

 
 
 
How many disk I/Os needed to access first byte of file 
1)  read in file header for root (always from fixed location) 
2)  read in first data block for root 
3)  read in file header for foo 
4)  read in first block of foo 
5)  read in file header for bar 
6)  read in first block of bar 
7)  read in file header for baz 
8)  read in first data block for baz 
 
How can this possibly be efficient?  
 
(1) Caching 
 
(2) current working directory: short cut for both user and system. 
Each address space stores file index for current directory. 
Allows user to specify relative file name instead of absolute path (if 
no leading “/”) 
 
Thus, to read first block of file, just last 4 steps above 
 
(3) Open file table 
Open a file using path name. 
OS stores file number in a table, returns key to table entry ("file 
descriptor" 
read/write calls use this key to identify the file 
 fd = open("foo"); // Open file foo in current working directory 
          read(fd, 512, buffer); // read 512 bytes of file into buffer 
 
This, to read second block of file, just last 2 steps above 

1.3 Links 
Hard link 
 
 store reference to same header in two different directories 
 QUESTION: what happens on delete? 

 [keep reference count in header] 



CS 439: Systems II  Mike Dahlin 

 7 

 
Soft link 
-- store path name in directory entry 
 
QUESTION: Why is it hard to implement hard links in FAT? 
 
 
 

*********************************   
Summary - 1 min 
*********************************    

 


