
CS 439: Systems II Professor Mike Dahlin

 1

Lecture sec1: Intro to security: “The security mindset”

Review -- 1 min

Distributed file systems
 Simple RPC
 Complexity
 Performance
 Caching, cache consistency
 Fault tolerance
 Security

Outline - 1 min

Main point: you can’t trust computers
Goal: prevent misuse of computers

Outline
Today: Big picture

o Why do computer systems fail
o General principles
o Key lesson: technical solutions alone insufficient; good

designer needs to think about the big picture; need to consider
how system will be developed, maintained, used

o Other “outside of box” failures
o Can you trust your system?
o Can you trust your environment?

Monday: Basics of authentication technology
• principles: authentication, enforcement
• local authentication (passwords, etc.)
• distributed authentication (crypto)
• pitfalls: really hard to get right
•

Real outline
• Your job is to think big picture. How your technology embeds

in world

CS 439: Systems II Professor Mike Dahlin

 2

o Security is how to circumvent designers intent by
violating designer's assumptions -- "Wow, I can send live
ants to anyone in the country"

o Most security vulnerabilities are "outside" of technical
design (or at least outside of any one module) but we
spend lots of time worrying about technical stuff in our
pieces)

o Business pressure to make insecure, unreliable systems
(security, safety issues). Be responsible.

Lecture - 1 min

1. Security/reliability rant
Theme:
-- Security mindset

(1) Security = break assumptions
Example: Ant Farm

CS 439: Systems II Professor Mike Dahlin

 3

engineer: “What an elegant solution to the problem”
security engineer: "I can send live ants to anyone"

problem: Managing complexity in programming is all about
abstraction layers

example: Tenex (we)hink of functions as black box; reality – they run
on computers()

example: Tempest (we think of computers as things that process
binary bits; reality – physics)

Many dimensions
E.g., for security "what parts of system can affect my security" (e.g.,
postal service/address change)

(2) Security/safety/good design = how does technology embed in
real world

Many/most failures non-technical

• But technologists like to focus on technical stuff
•
• Anderson: top 3 reasons for ATM phantom withdrawals -- (1)

background noise (big system, complex interactions), (2) postal
interception, (3) theft by bank staff

• Anderson: Bank response (UK): Blame user
•

Many/most failures cross-layer
• But engineers like to focus on their little piece

(2b) end-to-end design includes user, environment, other
programmers (API to your modules)

If security problems come when one layer breaks assumptions of
another layer, then important to think about interfaces. Make it hard to
misuse your layer; make it obvious how to use your layer correctly.

CS 439: Systems II Professor Mike Dahlin

 4

Not just software-software interfaces but also user/computer
interfaces (blaming the user is not a security strategy)

CS 439: Systems II Professor Mike Dahlin

 5

non-example: A door with an instruction manual

CS 439: Systems II Professor Mike Dahlin

 6

example: How to label candy machine items

CS 439: Systems II Professor Mike Dahlin

 7

non-example: "Click here to get work done"
Jeff Atwood -- http://www.codinghorror.com/blog/2006/04/windows-
vista-security-through-endless-warning-dialogs.html

"The	
 problem	
 with	
 the	
 Security	
 Through	
 Endless	
 Warning	

Dialogs	
 school	
 of	
 thought	
 is	
 that	
 it	
 doesn't	
 work.	
 All	
 those	

earnest	
 warning	
 dialogs	
 eventually	
 blend	
 together	
 into	
 a	

giant	
 "click	
 here	
 to	
 get	
 work	
 done"	
 button	
 that	
 nobody	

bothers	
 to	
 read	
 any	
 more."	

	

Dialogs train user to hit "OK" (security bugs, Therac)
	

	

	

Not OK to say "My part of system worked as designed, you're just
using my system wrong." No -- you need to fix your system to make it
harder to misuse.

CS 439: Systems II Professor Mike Dahlin

 8

Many dimensions
-- UI (user v. system)
-- API (programmer v. module)
-- Control of physical environment (ATM spy cameras; fake ATM
machines, ...)

-- Operations (training, monitoring, response, diagnose, refine design)

-- When you get bitten by a bug, figure out how not to get bitten
again (e.g., fix bug)
-- When you get bitten by a bug, figure out how not to build a
similar bug into future systems (e.g., programmer, fix thyself)

-- Human resources (background check, firing process, ...)
-- Insider attack (auditing, division of responsibility, ...)
...

Not just "does my code protect against stack smashing attacks" and
"do I encrypt data on the network"

(2c) Ethical engineer

You will be pressed to
-- ship with bugs
-- ship with security bugs
-- ship with safety bugs

Hard to stay "stop the presses"
Not always right to say "stop the presses"
 -- Your job is to work to find a solution not just to say no
(But also hard to estimate risks when systems embedded in real
world)

With these caveats in mind, there are techniques we can use to make it
more likely the systems we build are sufficiently secure

Next couple weeks, discuss some of them.

CS 439: Systems II Professor Mike Dahlin

 9

Tiny subset – even a full semester security class can’t cover
everything…

n today: big picture
n Tuesday: authentication
n Wednesday: TBD

2. Security – problem definition

Types of misuse
1) accidental
2) intentional

protection is to prevent either accidental or intentional misuse
security is to prevent intentional misuse

So far, class has focused on protection. Today focus on security

Security v. reliability
Reliability – system does what is supposed to do
Security – system only does what it is supposed to do (nothing else)

“Why Cryptosystems fail”, Ross Anderson
Plug: Security Engineering by Ross Anderson
Lots of fun

• Standard stuff like Chapter 2 Protocols, Chapter 3 Passwords, Chapter 4 access
control; but also…

• Chapter 11 – Nuclear command and control
• P 19 – the MIG in the middle attack
• P 267 Fingerprint identification in crimes “Even if the probability of a false match

.. is one in ten billion as claimed by police, once many prints are compared
against each other, probability theory starts to bite. A system that worked well in
the old days, whereby a crime scene print would be compared manually with the
records of 57 known local burglars, breaks down once thousands of prints are
compared every year with a database of millions.”

• P 291-295 “How to hack a smartcard (1-7)”
• Chapter 17 – telecom security (phone phreaking and mobile phones)

CS 439: Systems II Professor Mike Dahlin

 10

• … Lots of fun…
Lesson: A good computer security designer needs to be broad
(1) Learn from world around you
(2) Your systems must exist in the real world (payTV, road tolls,

medical records, … not just login to workstation)

3. Problem

3.1 “Why cryptosystems fail”

basic story: technologists designed ATM system and focused on
technical attacks – ‘break crypto; intercept and insert network
messages’

Essentially no recorded security breaches used this mode of attack
(OK, 2 did; but tens of thousands of “phantom withdrawals” from
other sources)

i.e., focus on complex sophisticated crypto attacks

-- Only 2 documented attacks on network messaging/crypto;

“High-tech threats were the ones that most exercised the
cryptographic equipment industry, and the ones that their products
were explicitly designed to prevent. But these products are often so
difficult to integrate into larger systems that they can contribute
significantly to the blunders that caused the actual losses.”

Conclusion
“Our research showed that the organizational problems of building
and managing secure systems are so severe that they will frustrate any
purely technical solution.”

3.2 Real reasons for failures (ATM networks)

“Almost all attacks on banking systems involved blunders, insider
involvement, or both.”

QUESTION: What were the three main causes?

CS 439: Systems II Professor Mike Dahlin

 11

(1) Program bugs
Lower bound on transaction error rate 1/10,000 due to program
bugs for large, heterogeneous transaction processing system [note:
cites a 1991 study here…has this number changed?]
à 600K “phantom withdrawals” in US
[Banks’ response: phantom withdrawals clustered near residences
of cards]

(2) Postal interception of cards
(3) Thefts by bank staff

“British banks dismiss about 1% of their staff each year for
disciplinary reasons…”

“More exotic attacks”

Variations on: Acquire PIN and card #
• Blunders: bad PIN generation, shoulder surfing + “telephone card”

bug [invalid card makes ATM think old card was just re-inserted],
encrypted PIN on magnetic strip not tied to account #, off-line ATM
operation, test-mode password (àspits out 10 bills)

• Acquire card + pin: shoulder surfing + receipt, camera + scanner
[recent attacks at UT], theft of card + PIN written down, bank staff
gives replacement card and PIN, set up fake ATM machine
file:///C:/Documents%20and%20Settings/dahlin/My%20Documents/
research/notes/2005/4/atm.html

Example from UT (2005)

CS 439: Systems II Professor Mike Dahlin

 12

Equipment being installed on front of existing bank card slot.

The equipment as it appears installed over the normal ATM bank
slot.

The PIN reading camera being installed on the ATM is housed in

an innocent looking leaflet enclosure.

CS 439: Systems II Professor Mike Dahlin

 13

 The camera shown installed and ready to capture PINs
by looking down on the keypad as you enter your PIN.

•
• Possible help: Smart cards (but Anderson skeptical …)

QUESTION: Why do smart cards help? Which of these attacks
thwarted

3.3 Technical problems are hard too

Engineer testing: does system behave as expected over
intended/expected operating conditions/workloads/input

Security engineer testing: Does system behave as expected over all
possible operating conditions/workloads/input

Asymmetry attacker v. defender

Defender needs to find and fix all bugs. Attacker needs to find and
exploit one bug.

Doomed if you do, doomed if you don’t:

CS 439: Systems II Professor Mike Dahlin

 14

“Designers…have suffered from a lack of feedback about how their
products fail in practice, as opposed to how they might fail in theory.
This has led to a false threat model being accepted; designers focused
on what could possibly go wrong rather than what was likely to,
and many of their products ended up being so complex and tricky
to use, they caused implementation blunders that led to security
failures.” (emphasis added)

-- try to cover every possible failure à system complex;
implementation errors will make system insecure

-- focus on common failures à missed attacks will be exploited

Black box system

How do I know this program I just downloaded will do what it says it
will.

For that matter, how do I know that this phone isn’t secretly recording
every conversation I have?

How does the government know that the software in the plane will
work as intended? What about the hardware?

Example: First rootkit

3.4 Thompson’s self-replicating program

bury trojan horse in binaries, so no evidence in the source

replicates itself to every UNIX system in the world and even to new
Unix on new platforms. Almost invisible

gave Ken thompson the ability to log into any Unix system in the
world

CS 439: Systems II Professor Mike Dahlin

 15

2 parts
1) make it possible (easy)
2) hide it (tricky)

step 1: modify login.c

A:
 if (name == “ken”)
 don’t check password
 log in as root

idea is: hide change so no one can see it

step 2: modify C compiler

instead of having code in login, put it in compiler:
 B:
 if see trigger,
 insert A into input stream

Whenever the compiler sees a trigger /* gobbleygook */,
puts A into input stream of the compiler

Now, don’t need A in login.c, just need the trigger

Need to get rid of problem in the compiler

step 3: modify compiler to have

 C:
 if see trigger2
 insert B + C into input stream

this is where self-replicating code comes in! Question for reader: can
you write a C program that has no inputs, and outputs itself?

step 4: compile compiler with C present

♦ now in binary for compiler

CS 439: Systems II Professor Mike Dahlin

 16

step 5:

Result is – al this stuff is only in binary for compiler.
Inside the binary there is C; inside that code for B, inside that code for
A. But source only needs trigger2

Every time you recompile login.c, compiler inserts backdoor.
Every time you recompile compiler, compiler re-inserts backdoor

What happens when you port to a new machine? Need a compiler to
generate new code; where does compiler run?

On old machine – C compiler is written in C! So every time you go to
a new machine, you infect the new compiler with the old one.

Lessons

o Abuse of privilege is a hard problem
o Once system compromised, you are in BIG trouble (not robust!)

3.5 Tenex – early ‘70s BBN (discussed above)
Most popular systems at universities before Unix

Thought to be v. secure. To demonstrate it, created a team to try to
find loopholes. Give them all source code and documentation (want
code to be publicly available as in Unix). Give them a normal account

in 48 hours, had every password in the system

Here’s the code for the password check in the kernel:

for(I = 0; I < 8; I++){
 if(userPasswd[I] != realPasswd[I]
 go to error

Looks innocuous – have to try all combinations – 26^8

CS 439: Systems II Professor Mike Dahlin

 17

But! Tenex also had virtual memory and it interacts badly with above
code

Key idea – force page fault at carefully designed times to reveal
password

Arrange first character in string to be last character in page, rest on
next page. Arrange that the page with first character in memor, and
rest on disk
 a|aaaaaa

Time how long password check takes
 if fast – first character is wrong
 if slow – first character is right; page fault; one of others was
wrong

so try all first characters until one is slow
Then put first two characters in memory, rest on disk
try all second characters until one is slow
…

 à takes 256 * 8 to crack password

Fix is easy – don’t stop until you look at all characters
But how do you figure that out inadvance?

Timing bugs are REALLY hard to avoid!!

Broad principle: computer scientists think in digital world – what bits
go back and forth;

n Attackers succeed when they violate designer’s model of
world

n Analog v. digital – timing, tempest
n Environment – ATM designed in ’70’s to be deployed by

banks in banks; now deployed by ??? in gas stations;
reasonable trade-offs in closed, mainframe environment
may no longer work in portable laptop environment…

CS 439: Systems II Professor Mike Dahlin

 18

3.6 See notes for other examples…really hard to build secure
system

4. Solutions (principles)
Be broad; understand big picture;
Valuable to be able to know technical means well but also be able to
apply them to business problems (easy to make a system secure. Hard
to make a system usable and secure.)

4.1 Broad principles (Anderson)

(1) Don’t lose sight of the big picture and focus just on sophisticated

technical means of attack; know why real systems get
compromised and recognize that a system that is more complicated
to design or use may be significantly less secure in practice than a
simpler system with “weaker” technological safeguards

(2) “Moral hazard” -- The entity responsible for verifying

authentication should be the one that pays the penalty for
authentication errors.

Special cast/higher-level application of "(2a) e2e design"

-- societal/incentives

"cost should be borne by party that is in a position to prevent/fix
problems"

Very general principle –
example: accepting a signature (nod, handshake, click, fax, sign,
notarize, guarantee)

Traditional business practice for handwritten signatures “In
general, if someone wishes to enforce a document against you on
the basis that you signed it, and you deny that you signed it, then it

CS 439: Systems II Professor Mike Dahlin

 19

is for them to prove that the signature was made by you or
authorized by you.” [_Security Engineering_ p 483]
à balance convenience v. security [continuum: handshake deal,
“press 9 to agree”, faxed signature, original signature, compare
original signature against reference [e.g., on back of card],
witnessed signature, notarized signature, bank signature guarantee]

example: ATM (customer v. bank)

“If…the system operator carries the risk, as in the United States
[for ATM transactions], then the public-interest issue disappears,
and security becomes a straightforward engineering problem for
the bank (and its insurers and equipment suppliers).”

example: credit card

(why no “chip and PIN” in US?

example: Diebold voting machine v Diebold casino machine

Note: Legal/policy issue here – natural for entity to try to transfer
the legal risk to the other party

o Efforts to create a technical digital signature standard s.t.
signatures are presumptively genuine

o Phone model v. credit card model – you are generally liable
for all charges made to your phone (à GSM security is
primarily there to prove that a call made by a customer not
to protect your account from having minutes stolen…)

o …

QUESTION: How does incorrect moral hazard definition in Britain
contribute to three main causes of ATM phantom withdrawals.

4.2 Suggested solution/approach (Anderson)
“Caveat…problems…are so severe that they will frustrate any purely
technical solution.”

CS 439: Systems II Professor Mike Dahlin

 20

Robustness and Explicitness

Robustness
Goal: Robustness – provide resilience against minor errors in design
and operation and component failure

“Aircraft engineers are also aware that accidents usually have multiple
causes, while security researchers tend to use threat and risk models in
which only one thing goes wrong at a time. Yet in the majority of
ATM frauds, the cause was a combination: carelessness by insiders
plus an opportunistic attack by outsiders (or by other insiders.)”

Explicitness

o Explicit goals
o Protocols that make their requirements and assumptions explicit

(and “that cannot be fitted together in unsafe ways”)
o Techniques from safety-critical systems (formal methods, sw

engineering, ….)

Advice
(1) Explicitly list failure modes

“The specification should list all possible failure modes of the
system. This should include every substantially new accident or
incident that has ever been reported and that is relevant to the
equipment being specified.”

(2) Explicitly state how failure modes addressed
“[the specification] should explain what strategy has been adopted
to prevent each of these failure modes, or at least make them
acceptably unlikely.”

(3) Explicitly state implementation plan – both technical and
managerial
“[the specification] should then spell out how each of these
strategies is implemented, including the consequences when each
single component fails. This explanation must cover not only
technical factors, but training and management issues too. If the
procedure when an engine fails is to continue flying with the other
engine, then what skills does a pilot need to do this and what are
the procedures whereby these skills are acquired, kept current, and
tested?”

CS 439: Systems II Professor Mike Dahlin

 21

(4) Explicitly test specification; analyze failures
“The certification program must include a review by independent
experts, and test whether the equipment can in fact be operated by
people with the stated level of skill and experience. It must also
include a monitoring program whereby all incidents are reported to
both the equipment manufacturer and certification body.”

5. Basic principles – Saltzer and Shroeder
Saltzer and Schroeder: “Protection of information in computer systems”

Broadly used checklist for computer security design

1. economy of mechanism (keep design simple; integrate pieces into a
whole)
 small TCB – trusted computing base
 -- volume (TCB is simple; few lines of code; simple design…)
 -- surface area (interfaces are narrow and simple)

e.g., hypervisor + domain 0 OS may be safer than OS
 alone (more volume but less surface area)

2. Fail-safe defaults – default should be no access; explicitly grant
access

3. Complete mediation – all requests should be checked

4. Open design – security is a function of explicit secrets not on
obscurity of design or algorithm; systems is secure even against
someone who knows its design

v. security by obscurity

(But, still a place for obscurity as added barrier)

5. Separation of privilege – “Where feasible, a protection mechanism
that requires two keys to unlock it is more robust and flexible than one
that allows access to the presenter of only a single key”

CS 439: Systems II Professor Mike Dahlin

 22

Common approach – “authentication from a combination of
something they have [smart card, fingerprint, retinal scan,
trusted machine] and something they know [password, pin,
…]”

6. Lease privilege – every program and user should operate using the
least set of privileges needed to do the job

7. Least common mechanism – minimize mechanism depended on by
all users (avoid single point of failure, allow flexibility to customize
mechanism to different requirements)

8. Psychological acceptability

QUESTIONS
(1) Are there conflicts between any of these? (à engineering
judgement/trade-offs)
(2) Compare these issues to Anderson robustness theme (tolerate
minor failures or avoid misuse/misdesign) how do principles relate to
robustness?

6. Other case studies
Some classic attacks
How do they relate to robustness themes?
How well would 4 strategies from Anderson or 8 rules from Saltzer
address these issues?

6.1 abuse of privilege
if superuser is evil, we’re all in trouble

no hope…

Problem magnified by requiring lots of programs to have superuser
privilege (more programs à more opportunities for insider; more
exploitable bugs; more misconfigurations)

o Backup – needs to read all users’ files
o Mail – need to copy data from protected shared mail file/socket

to protected per-user mail file (à sendmail follies)

CS 439: Systems II Professor Mike Dahlin

 23

o …

QUESTIONS:
How violate principles?
Solutions?

o Fine grained access control: Mail user with access to specific
files, backup user that can copy but not read or write, …
Evaluate from standpoint of robustness: Which of Saltzer’s
principles is helped? Which hurt?

o Auditing: legal/technical combination to combat abuse of
privilege by insiders

o …

6.2 trojan horse
one army gives another a present of a wooden horse, army hidden
inside

trojan horse appears to be helpful, but really does something harmful

e.g. “click here to open this attachment/download this plugin”

How relate to robustness, principles…
“Social engineering” – psychological acceptability, robustness issues
Least privilege?
…

6.3 internet worm

1990 - broke into thousands of computers over internet
2001 – code red – millions of machines compromised
…

1990 worm:
Three attacks
1. dictionary lookup
2. sendmail
--debug mode – if configured wrong, can let anyone log in

CS 439: Systems II Professor Mike Dahlin

 24

3. fingerd – buffer overflow
 -- finger dahlin@cs

Fingerd didn’t check for length of string, but only alocated a fixed
size array for it on the stack. By passing a (carefully crafted) really
long string, could overwrite stack, get the program to call arbitrary
code!

Got caught b/c idea was to launch attacks on other systems from
whatever systems were broken into; so ended up breaking into same
machine multiple times, dragging down CPU so much that people
noticed

variant of problem – kernel checks system call parameters to prevent
anyone from corrupting it by passing bad arguments

so kernel code looks like:
 check parameters
 if OK
 use arguments

But, what if application is multithreaded? Can change contents of
arguments after check but before use!

Interesting paper “How to own the internet in your spare time” –
exponential growth of aggressive worm à can take over all
vulnerable machines on internet in minutes!

7. Conclusions
Lots of conflicting goals – no silver bullet

o Need to understand big picture – not just technical issues but
also how system will be designed, maintained, used

o Learn why systems really fail, don’t just guess (design, audit,

feedback)

o Consider moral hazard when designing system

CS 439: Systems II Professor Mike Dahlin

 25

o Design for robustness

o Lots of (conflicting) goals/principles

Monday – discuss some technical issues; but remember that’s not the
whole story!

Review

• Understand how system will be used – psychological acceptability (for designer
and user) is key

• Think about (and measure) how system might/does fail

• Design for robustness

Outline: Authentications
Local – passwords and pitfalls
Remote -- encryption

8. Authentication

3 key components of security
Authentication – identify principal performing an action
Authorization – figure out who is allowed to do what
Enforcement – only allow authorized principals to perform specific
actions

CS 439: Systems II Professor Mike Dahlin

 26

Principal – an entity associated with a security identifier; an entity
authorized to perform certain actions

Authentication – an entity proves to a computer that it is particular
principal

Basic idea – computer believes principle knows secret
 entity proves it knows secret
à computer believes entity is principal

8.1 Local authentication -- Passwords
common approach – passwords

advantage: convenient
disadvantage: not too secure

“Humans are incapable of securely storing high-quality cryptographic
keys, and they have unacceptable speed and accuracy when
performing cryptographic operations. (They are also large, expensive
to maintain, difficult to manage, and they pollute the environment. It
is astonishing that these devices continue to be manufactured and
deployed. But they are sufficiently pervasive that we must design our
protocols around their limitations.)” – Kaufman, Perlman, and
Speciner “Private communication in a public world” 1995

fundamental problem – Passwords are easy to guess

passwords must be long and obscure

paradox: short passwords are easy to crack;
 long ones, people write down

technology à need longer passwords

Orig unix – 5 letter, lowercase password
 how long to crack (exhaustive search) 26^5 = 10M

1975 – 10ms to check password à 1 day

CS 439: Systems II Professor Mike Dahlin

 27

1992 – 0.001 ms to check password à 10 seconds

Many people choose even simpler passwords
e.g. english words – Shakespeare’s vocabulary 30K words
e.g. all english words, fictional characters, place names, person
names, astronomy names, english words backwards…

some (partial) solutions

b) require more complex passwords – example: 6 letter w/ upper,

lower case, and number, and special character:
 70^6 ~600B à 6 days

 except: people still pick common patterns (e.g. 5 lower case letters + 1
number)

c) Make it take a long time to check each password. For example,
delay each rlogin attempt by 1 second

d) assign very long passwords – give everyone a calculator (or

smartcard) to carry around to remember the password. Requires
physical theft to steal password

This is state of the art -- if you care about security you do this

Implementation techniques to improve security

(1) Enforce password quality

On-line check at password creation time (e.g., Require “at least X
characters, mix of upper/lower case, include at least one number,
include at least one punctuation, no substring in dictionary, …”)

[Can do on-line check to get rid of really bad passwords. But if
attacker is willing to spend 1 week cracking a password, do you want
to wait a week before accepting a user password…]

Off-line checking …

CS 439: Systems II Professor Mike Dahlin

 28

(2) Don’t store passwords

system must keep copy of secret to check against password. What if
attacker gets access to this list of passwords? (design for robustness,
right?)

Encryption: transformation that is difficult to reverse without the right
key

solution: system stores only encrypted version, so OK even if
someone reads the file!
When you type password, system encrypts it; compares encrypted
versions

System believes principal knows secret
à Store <principal> {Password}K

Entity proves it knows secret
à Input password. System generates {Password}K and compare
against stored value. If they match, input must have been password.

example: UNIX /etc/passwd file
 passwd à one-way transform à encrypted password

(3) Slow down guessing -- Interface

Passwords vulnerable to exhaustive search

Slow down rate of search
e.g.,

n Add pause after incorrect attempt
n Lock out account after k incorrect attempts

(4) Slow down guessing – Internals

CS 439: Systems II Professor Mike Dahlin

 29

Salt password file:

extend everyone’s password with a unique number (stored in
password file) so can’t crack multiple passwords at a time (otherwise,
takes 10sec to crack every account in the system; now have to do 1 at
a time)

e.g., store <userID> <salt> <{password + salt}K>

(5) Think carefully about password reset protocol

(6) Implementation details matter…

8.2 Tenex – early ‘70s BBN
Most popular systems at universities before Unix

Thought to be v. secure. To demonstrate it, created a team to try to
find loopholes. Give them all source code and documentation (want
code to be publicly available as in Unix). Give them a normal account

in 48 hours, had every password in the system

Here’s the code for the password check in the kernel:

for(I = 0; I < 8; I++){
 if(userPasswd[I] != realPasswd[I]
 go to error

Looks innocuous – have to try all combinations – 256^8

But! Tenex also had virtual memory and it interacts badly with above
code

Key idea – force page fault at carefully designed times to reveal
password

Arrange first character in string to be last character in page, rest on
next page. Arrange that the page with first character in memor, and
rest on disk
 a|aaaaaa

CS 439: Systems II Professor Mike Dahlin

 30

Time how long password check takes
 if fast – first character is wrong
 if slow – first character is right; page fault; one of others was
wrong

so try all first characters until one is slow
Then put first two characters in memory, rest on disk
try all second characters until one is slow
…

 à takes 256 * 8 to crack password

Fix is easy – don’t stop until you look at all characters
But how do you figure that out inadvance?

Timing bugs are REALLY hard to avoid!!

8.3 2-factor authentication
Passwords limited by human capabilities

Current state of art for authentication – 2 factor authentication

Identify human by
(1) Something you know (secret e.g., password)
(2) Something you have (smart card, authentication token)
(3) Something you are (biometrics – fingerprint, iris scan, picture,

voice, …)

Example: timer-card authentication

Human knows password. Computer stores {password, salt}K1
Timer card and computer share secret key K2 and both have accurate
clock and so know current time (30-second window). Card has a
display window and displays {time}K2

User enters <userID> <password> <{time}K2>

CS 439: Systems II Professor Mike Dahlin

 31

Computer checks <password salt>K1
Computer checks <{time}K2>

Lecture - 20 min

9. Authorization in distributed systems
Today, many/most services we rely on are supplied by remote
machines (DNS, http, NFS, mail, ssh, …)

9.1 How not to do distributed authentication I

Consider authentication in distributed file system

Adversary model
Typical assumption – we don’t physically control the network so adversary
can (a) see my packets, (b) change my packets, (c) insert new packets, (d)
prevent my packets from being delivered

In some environments, this is a pretty good model of the adversary (I walk
into a coffee shop that provides free wi-fi – their wifi router has nearly

File server

client

adversary ReadAt(file,off
set, length,
userID,
clientID)

CS 439: Systems II Professor Mike Dahlin

 32

complete control over my network.) In other environments, we hope the
adversary would have to work hard to get this much control (e.g., someone
sitting next to me in a coffee shop might have to download some scripts to
watch all of my network traffic and might even have to write some code to
stomp on my wireless packets and replace them with their own if they want
to modify my connection; e.g., department network – they might have to buy
a ladder, a screwdriver, some cat-5 cable tools, and a $100 programmable
router box)

Problems with the above protocol? Does it look familiar?

9.2 How not to do distributed authentication II

Consider remote login

Problems? Does it look familiar?

9.3 Solution: encryption
Two roles for encryption:
a) Authentication (+tamper resistance)

Show that request was sent by someone that knows the secret w/o
sending secret across the network

Dept machine

client

adversary User: userID
Password: password
> ls
> emacs foo.txt

CS 439: Systems II Professor Mike Dahlin

 33

b) secrecy – I don’t want anyone to know this data (e.g. medical
records, etc.)

9.4 Network login
example: telnet login
 sends password across the network!

solution: challenge/response

Compute function on secret and challenge

Common function: Cryptographic hash AKA 1-way hash
(e.g., SHA-256)

Cryptographic hash easiest to understand under random oracle model

Random oracle cryptographic hash

n given any input, produce a truly random bit pattern of
target length as output

n same input produces same output

properties h = H(x)
• Produce a fixed length array of bits h from variable-length input x
• given h and H, difficult to generate an x ;

Local
terminal

Remote login
terminal

password

badguy

Local terminal
Remote login
terminal

f(secret, 492348)

badguy

492348

secret

secret

=
f(secret, 492348)

CS 439: Systems II Professor Mike Dahlin

 34

• given x, H, and h, difficult to generate x’ s.t. h’ = H(x’) == h;
• changing 1 bit of input “randomly” changes each bit of output
• à for above example, Can’t learn secret from seeing network

traffic; cannot predict correct response to a future challenge based
on responses to past challenges

Example functions: MD5 (insecure), SHA-1 (borderline), SHA-256
(pretty good; current best practice)

NOTE: cheap to compute – 150MB/s SHA-1 on my 2GHz laptop

(spring 2009)

Secret:
Typically, local terminal uses password to get secret
• Could use Unix approach – secret = encrypt 0 with password

o Problem: dictionary attack via network
• Secret can be random string of 256 bits (much more random than

password); encrypt secret with password and store on local
terminal

Good news: Adversary doesn’t learn my password
Bad news: Adversary can eavesdrop on my session
Bad news: Adversary can hijack my session (start sending what
appear to be TCP packets from my session) and read or write any of
my files!

Note: Above challenge/response protocol is simpler than typically
used for login – generally have a stronger goal – login and establish
encrypted connection

9.5 Encryption primitives
Cryptographic hash – see above
Secret key (symmetric) encryption
Public key (asymmetric) encryption

9.5.1 Private key encryption
encryption – transform on data that can easily be reversed given the
correct key (and hard to reverse w.o key)

private key – key is secret (aka symmetric key)

CS 439: Systems II Professor Mike Dahlin

 35

(plaintext)^K à cipher text
(cipher text)^K à plaintext

from cipher text, can’t decode w/o key
from plaintext, cipher text, can’t derive key

Note, if A and B both know Kab, and A sends (X)^Kab, B just
receives a random string of bits. How does B know which key to use?
How does B know it got the right data?

• Low level protocol for (X)^Kab assumed to include sufficient redundancy for
decrypter to know if it used a valid key on a valid message – magic number,
checksum, cryptographic hash of message contents, ASCII text, …

• Typically, messages include a hint that helps receiver know what key to use
(e.g., “A claims to have sent this message”) Only a hint (if it is wrong, we might
use wrong key and fail to decode the message (could try all of my keys) à
impacts performance/liveness but not safety)

How big a key is needed?

56-bit DES key isn’t big enough (was it ever?)
-- Michael Wiener 1993 built a search machine (CMOS chips)
 $1M à 3.5 hours
 $10M à 21 minutes
 Key idea – easy to parallelize/build hardware – no per-key IO.
Just load each chip with “start key”, “encrypted message”, “plaintext
message” an then GO

-- 2009 – assume costs halve every 2 years (conservative?)
 $5K à 3.5 hours
 $50K à 21 minutes
 Don’t throw the machine away after cracking one key!
 Cost per key (assuming 10 year operational life)
$5000/(8 keys/day * 365 days/year * 10 years/machine) à $0.17 per
key

n adding 1 bit doubles search space. 2^128 is a big search
space

n Brute force not feasible
n Look for flaws in algorithm to restrict search space

(“differential cryptography” “integral cryptography”, …
n AES-128 and AES-256 are current “best practice” and

believed to be quite secure

CS 439: Systems II Professor Mike Dahlin

 36

o Performance pretty good: AES-128 is 48MB/s on my 2008
laptop; AES-256 is 35MB/s

9.5.2 Public key encryption
public key encryption is alternative to private key – separate
authentication from secrecy

9.5.2.1 Definitions and basics

Each key is a pair – K-public, K-private

(text)^K-public = ciphertext
(ciphertext)^K-private) = text

(text)^K-private = ciphertext’
 NOTE: not same ciphertext as above!
(ciphertext)^K-public) = text

and
(ciphertet)^K-public != text
(ciphertext’)K-private != text

and can’t derive K-public from K-private or vice versa

Idea – K-private kept secret; K-public put in telephone directory

For example:
 (I’m mike)^K-private

♦ everyone can read it, but only I can send it (authentication)

 (Hi)^K-public

♦ anyone can send it but only target can read it (secrecy)

((I’m mike)^K-mike-private Hi!)^K-you-public

♦ only mike can send it, only you can read it
♦ QUESTION: Should this message convince you that “mike

says hi?”

CS 439: Systems II Professor Mike Dahlin

 37

♦ E.g., public key crypto is orders of magnitude slower than
private key crypto, so often the goal of a public key protocol
is to do a “key exchange” to establish a shared private key.
Suppose you receive
((I’m mike)^K-mike-private Use Kx)^Kyou-public
Should you believe that Kx is a good key to use for
communicating with mike?

♦ Problem 1: Got the secrecy and authentication backwards –
we know Kmike-private said “I’m mike” but we don’t know
that it said anything about Kx!
Should have been:
((Use Kx)^Kyou-public mike you)^Kmike_private

♦ Problem 2: freshness
♦ Problem 3: how do you know Kmike-public?

You can build the above protocol using these as well.
But can get rid of key server
Instead, publish a dictionary of public keys
If A wants to talk to B
 A->B (I’m A (use Kab)^K-privateA) ^K-publicB

Problem – how do you trust dictionary of public keys?
Trusted authentication service S
 (Dictionary)^K-privateS

Kpublic-S is distributed by hand (or pre-installed on your computer –
internet explorer, netscape)

Performance is horrible – RSA-1024 can do 170 sign/sec (about 5ms
per sign) and 3827 verify/sec (about .3ms/verify) on my 2008 laptop

CS 439: Systems II Professor Mike Dahlin

 38

9.6 Encrypted session

In distributed system, point is not just to prove “its me” but to issue
some series of commands.

The above protocol can prove it is me. But then what?

What’s wrong?

9.6.1 Example protocol (simplified)

I know K^private-mike and K^public-server and server knows
K^public-mike and K^private-server

9.6.2 Issues
3 problems with above protocol
(1) Initialization – how do I know K_public_server and how does

server know K_public_mike?
a. Walk or pre-install list of all public keys on all machines
b. Certificate Authority can bind names to keys (pre-install

certificate authority key on machines)

Local terminal
Remote login
terminal

492348

secret

secret

=
f(secret, 492348)

data

Client
Server

K^priv-mike
K^pub-server

{{data}K^privServer}K^pubMike

{ReadFile(…)}K^priv-mike}K^pub-serv

K^pubike
K^priv-server

CS 439: Systems II Professor Mike Dahlin

 39

{BIND Mike Dahlin K_public_mike}K_private_CA
(2) Slow – public key operations very slow

a. Authentication: Sign hash of message not message
{mike says [longwinded msg]}K_private_mike
=
mike says [longwinded msg] {H(mike says [longwinded
msg])}K_private_mike

b. Authentication + secrecy: Use public keys to set up
symmetric secret key (much faster) [see below]

(3) Freshness -- Vulnerable to replay attacks
n attacker can resend old read request (for read, limited

effect. What about command “buy 100 shares of IBM”?)
n attacker can send old read reply (how does client match

requests to replies?}
n à Include timestamps or nonces in messages, expiration

times in certificates

9.6.3 Example protocol (realistic)

(1) Exchange certificates

Client->server: {CA, K_pub-mike, mike, expires}K_priv-CA
Server->client: {CA, K_pub-server, server, expires} K_priv-CA

(2) Exchange private key

CS 439: Systems II Professor Mike Dahlin

 40

9.7 Private key encryption

As long as key stays secret, get both secrecy and authentication

How do you get shared secret to both sender and receiver
 Send over network? Not secret any more
 Encrypt it? With what?

server client
(ReadAt(…))^KsC

(Data)KsC

Client
Server

K^priv-mike
K^pub-server

{{REPLY sessionID reqId data}K^session

{RequestSession mike client
server time}K^priv-mike}K^pub-
serv K^pub-server

K^priv-server
K^session

{SessionStart mike client server
time K^session}K^priv-
serv}K^pub-mike

{{REQUESTsessionID reqId READ file …}K^session

{{REQUEST sessionID reqId Write file …}K^session

…

CS 439: Systems II Professor Mike Dahlin

 41

9.7.1 Authentication server (example: kerberos)
server keeps list of passwords, provides a way for two parties, A and
B, to talk to one another (as long as they trust server)

Notation:
 Kxy is key for talking between x and y
 (….)^K means encrypt message (…) with key K

Example (simplified1 kerberos)
A asks server for key
 A à S: A B // Hi! I’d like key for AB

Server gives back special “session” key encrypted in B’s key:
 // S says to A “use Kab for communication between

// A and B {A B Kab}^Ksb”
 S à A: {A B Kab {A B Kab}^Ksb}^Ksa

A gives B the ticket
 // S says to B “use Kab for communication between
 // A and B”
 A à B: {A B Kab}^Ksb

Hint for reading crypto protocols
(1) Ignore the “X à Y” part – a hint only; but you are assuming that

adversary can forge headers, intercept communication, etc, so the
meaning of a message can only depend on the contents not on who
(claims to have) sent it

(2) Interpret “{X}^Ky” as “y (the holder of key Ky) once said X”
(then you need to decide if the message is fresh (y recently said X)
and whether you believe X (y has authority over X)

See Burrows, Abadi, Needham “A logic of authentication”
http://www.cs.utexas.edu/users/dahlin/Classes/GradOS/papers/p18
-burrows.pdf

1 For simplicity, I have omitted timestamps from this description, so the protocol sketched above
may be vulnerablele to “replay attacks” where an adversary stores messages from a previous
execution of the protocol and uses them to fool you during a new execution of the protocol.
Technically, the above protocol is sufficient to convince A and B that S once said that Kab is a
good key for communication between A and B, but not to convince them that S believes Kab is a
good key and therefore not enough to convince A or B to believe it either.

CS 439: Systems II Professor Mike Dahlin

 42

(3) Always include everything needed to interpret message in
message (don’t rely on “previous messages” in protocol b/c
adversary might reorder them and/or use messages from previous
round of protocol (e.g., above – suppose we get rid of “A” and “B”
in ticket)

Results
Each client machine still needs to know a key for communicating with
authentication server But no longer need to know a key for each
service

This “master key” distributed out of band (e.g., sneaker-net or at
machine installation time)

Store master key Ksa (or Ksb) locally at A (or B) encrypted with A’s
(or B’s) password
 à only A (or B) can get Kab (Ksb) from S

Details
1) Add in timestamp to limit how long a key will be used
(to prevent a machine from replaying messages later)

2) want to minimize # of times password must be typed in, and

minimize amount of time password stored on machine à initially
ask server for temp password, using real passwd for authentication

AàS (give me temp secret)
SàA (A use Ktemp-sa for next 8 hours)^Ksa

Can now use Ktemp-sa in place of Ka above

10. Authorization
authorization – who can do what?

Access control matrix: formalization of all permissions in the system

 file1 file2 file3 …
userA rw r --
userB -- rw --

CS 439: Systems II Professor Mike Dahlin

 43

userC rw rw rw

potentially huge # users, objects à impractical to store all of these

2 approaches
1) access control lists – store all permissions for all users with each

object
 still – might be lots of users! Unix approach - have each file
store r, w, x for owner, group, world. More recent systems provide
way of specifying groups of users and permissions for each group

2) capability list – each process stores all objects the process has

permission to touch
Lots of capability systems built in the past – idea out of favor
today
Example – page tables – each process has list of pages it has
access to (not each page has list of processes that are peritted to
access it)

11. Enforcement
enforcer checks psswords, access control lists, etc

Any bug in enforcer means: way for malicious user to gain ability to
do anything!

In UNIX, superuser has all powers of the kernel - can do anything.
Because of coarse-grained access control, lots of stuff has to run as
superuser in order to work. If a bug in any of thse programs, you’re
hosed!

Paradox:
a) make enforcer as small as possible

 easier to make correct, but simple-minded protection model
b) fancy protection – only minimal privilege needed

 hard to get right
…

CS 439: Systems II Professor Mike Dahlin

 44

Admin - 3 min

•

Lecture - 25 min

12. State of the world in security
ugly

Authentication – encryption
 but almost nobody encrypts

Authorization – access control
 but many systems provide only coarse-grained access contrl
(e.g. UNIX file – need to turn off protection to enable sharing)

Enforcement – kernel mode
 hard to write a million line program without bugs, and any bug
is a potential security loophole

13. Classes of security problems

13.1 abuse of privilege
if superuser is evil, we’re all in trouble

no hope

13.2 imposter
break into system by pretending to be someone else

example – if have open X windows connection over the network, can
send message appearing to be keystrokes from window, but really is
commands to allow imposter access

CS 439: Systems II Professor Mike Dahlin

 45

13.3 trojan horse
one army gives another a present of a wooden horse, army hidden
inside

trojan horse appears to be helpful, but really does something harmful

e.g. “click here to download this plugin”

13.4 Salami attack
superman 3 (terrible movie) but happened in real life

idea was to build up hunk one bit at a time – what do you do with
partial pennies of interest?
Bank keeps it! This guy re-programmed it so that partial pennies
would go into his account. Doesn’t seem like much, but if you are
Bank of America, add up pretty quickly.

This is part of why people are so worried about credit cards on
internet. Today – steal credit card, charge $1000 – credit card
company, merchant, owner notice
Tomorrow – steal 1000000 credit cards, charge $1; no one notices

13.5 Eavesdropping

listener – tap into serial line on back of terminal, or onto ethernet. See
everything typed in; almost everything goes over network
unencrypted. For example, rlogin to remote machine à your
password goes over the network unencrypted!

…

14. Examples

14.1 Tenex – early ‘70s BBN
Most popular systems at universitives before Unix

CS 439: Systems II Professor Mike Dahlin

 46

Thought to be v. secure. To demonstrate it, created a team to try to
find loopholes. Give them all source code and documentation (want
code to be publicly available as in Unix). Give them a normal account

in 48 hours, had every password in the system

Here’s the code for the password check in the kernel:

for(I = 0; I < 8; I++){
 if(userPasswd[I] != realPasswd[I]
 go to error

Looks innocuous – have to try all combinations – 256^8

But! Tenex also had virtual memory and it interacts badly with above
code

Key idea – force page fault at carefully designed times to reveal
password

Arrange first character in string to be last character in page, rest on
next page. Arrange that the page with first character in memor, and
rest on disk
 a|aaaaaa

Time how long password check takes
 if fast – first character is wrong
 if slow – first character is right; page fault; one of others was
wrong

so try all first characters until one is slow
Then put first two characters in memory, rest on disk
try all second characters until one is slow
…

 à takes 256 * 8 to crack password

Fix is easy – don’t stop until you look at all characters
But how do you figure that out inadvance?

CS 439: Systems II Professor Mike Dahlin

 47

Timing bugs are REALLY hard to avoid!!

14.2 internet worm

1990 - broke into thousands of computers over internet

Three attacks
4. dictionary lookup
5. sendmail
--debug mode – if configured wrong, can let anyone log in
6. fingerd
 -- finger dahlin@cs

Fingerd didn’t check for length of string, but only alocated a fixed
size array for it on the stack. By passing a (carefully crafted) really
long string, could overwrite stack, get the program to call arbitrary
code!

Go caught b/c idea was to launch attacks on other systems from
whatever systems were broken into; so ended up breaking into sae
machine multiple times, dragging down CPU so much that peopl
noticed

variant of problem – kernel checks system call parameters to prevent
anyone from corrupting it by passing bad arguments

so kernel code looks like:
 check parameters
 if OK
 use arguments

But, what if application is multithreaded? Can change contents of
arguments after check but before use!

CS 439: Systems II Professor Mike Dahlin

 48

14.3 Mitnick
Two attacks:
1) misdirection: identify system mgrs machines, then loop, requesting

TCP connections to those machies until no more connections are
permitted à freeze machine

2) Imposter: forge packets to appear as if legit (e.g. replace source

machine in packet header) but really from Mitnick

 hijack open, idle rlogin connection. E.g. send packets as if user
typed command to add mitnick to .rhosts file

14.4 Netscape follies
1995-6

Netscape wants to provide secure communication so you can send
credi card number over internet

3 problems
1) algorithm for picking session keys was predictable (used time of

day). Brute force allows someone to break key in a few hours

2) netscape makes new version to fix #1; make available over internet

(unencrypted). Modify netscape executable w/ 4-byte patch to
make it always use specific key – so can insergt backdoor by
mangling packets containiing executable as they fly by on internet

In fact, because of demand, had dozen mirror sites (including
Berkeley, ..) to redistribute new version. So anyone with root access
to any machine at Berkeley CS could insert backdoor to netscape

3) buggy helper applications
As with fingerd attack – any bug in either netscape or in helper
application (ghostview, mplay, …) can potentially be exploited by
creating a web page that when viewd will insert a trojan horse

CS 439: Systems II Professor Mike Dahlin

 49

 e.g. postscript is a full-featured language, including commands
to write to disk!! So send a postscript file that says “write(dahlin,
rhosts)

14.5 Timing, environment
Computer designers design to make sure that software interfaces are
secure. But software runs on hardware in the real world…

(a) smart card power supply analysis
(b) Tempest – your monitor (and keyboard) is also a radio

transmitter – relatively easy to build a device that can
receive radio broadcast and display what your monitor is
displaying from several feet away
(High end attack: irradiate the subject machine at resonance
frequency of keyboard cable à pick up keystrokes from 50-
100yards. Some speculate this is why the USSR constantly
beamed radar at the US embassy in Moscow for a while…)

(c) Traffic analysis – e.g., you encrypt your web traffic over
network so know one knows what you are browsing. But
they see 14321 bytes, pause, 29140 bytes, pause, 2341
bytes, pause… Pretty quickly they can match what pages
you are viewing to a suspect website with high confidence

(d) …

14.6 Thompson’s self-replicating program

bury trojan horse in binaries, so no evidence in the source

replicates itself to every UNIX system in the world and even to new
Unix on new platforms. Almost invisible

gave Ken thompson the ability to log into any Unix system I the world

2 parts
3) make it possible (easy)
4) hide it (tricky)

CS 439: Systems II Professor Mike Dahlin

 50

step 1: modify login.c

A:
 if (name == “ken”)
 don’t check password
 log in as root

ida is: hide change so no one can see it

step 2: modify C compiler

instead of having code in login, put it in compiler:
 B:
 if see trigger,
 insert A into input stream

Whenever the compiler sees a trigger /* gobbleygook */,
puts A into input stream of the compiler

Now, don’t need A in login.c, just need the trigger

Need to get rid of problem in the compiler

step 3: modify compiler to have

 C:
 if see trigger2
 insert B + C into input stream

this is where self-replicating code comes in! Question for reader: can
you write a C program that has no inputs, and outputs itself?

step 4: compile compiler with C present

♦ now in binary for compiler

step 5: replace code with trigger2

Result is – al this stuff is only in binary for compiler.

CS 439: Systems II Professor Mike Dahlin

 51

Inside the binary there is C; inside that code for B, inside that code for
A. But source only needs trigger2

Every time you recompile login.c, compiler inserts backdoor.
Every time you recompile compiler, compiler re-inserts backdoor

What happens when you port to a new machine? Need a compiler to
generate new code; where does compiler run?

On old machine – C compiler is written in C! So every time you go to
a new machine, you infect the new compiler with the old one.

15. Lessons
1. Hard to resecure after penetration

What do you need to do to remove the backdoor?
Remove all the triggers?
What if he left another trigger in the editor—if you ever see anyone
removing the trigger, go back ad re-insert it!

Re-write entire OS in assembler? Maybe the assembler is corupted!

Toggle in everything from scrtch every time you log in?

2. Hard to detect when system has been penetrated. Easy to make

system forget

3. Any system with bugs has loopholes (and every system has bugs)

Summary: can’t stop loopholes; can’t tell if it has happened; can’t get
rid of it.

CS 439: Systems II Professor Mike Dahlin

 52

Summary - 1 min

16. Major Topics
1) Memory management & address spaces ; virtual memory/paging to disk

Excellent example of “any problem can be solved with a level of indirection” -- virtual
memory system allows you to interpose on each memory reference – translation,
protection, relocation, paging, automatically growing stack, …

A bunch of data structures with funny names (base&bounds, paging, segmentation,
combined, TLBs) but beyond the jargon – a few basic concepts, simple data structures (hash,
tree, array, …)

Cache replacement – power tool: identify ideal algorithm – even if not realizable in practice – (1)
improve understanding/help design good algorithms, (2) basis for evaluation

2) Threads: state, creation, dispatching; synchronization

Basic mechanism: per thread state v. shared state
Basic attitude: assume nothing about scheduler; have to design programs that are safe no
matter what the scheduler does

Power tool: monitors (locks and condition variables) provide a “cookbook” approach for
writing safe multithreaded programs. Don’t cut corners

Open question: liveness – deadlocks, etc. Global structure of program (as opposed to
modular safety)

Scheduling: shortest job first, round robin – specific policies not so important. Gain insight on
trade-offs so you can develop your own.
Power tools: (1) Know your goals, (2) Analyze optimal case

3) File systems:
disk seeks, file headers, directories, transactions

Finding data on disk – again lots of jargon, but it comes down to arrays and trees and
hash tables…
2 step process
name->ID/header
header->blocks of file

Reliability: transactions, undo/redo log
Power tool: Transactions are definitely a power tool!

4) Networks, distributed systems
RPC: It’s simple…
Issues
Reliability: Lost messages, partitions, crashed machines

CS 439: Systems II Professor Mike Dahlin

 53

à retry, 2-phase commit (distributed transaction)
Power tool: 2-phase commit

Performance: Caching, replication
Consistency/coherence across replicas – callbacks, polling, leases

5) Security:
attitude – robustness, big picture

 access control, authentication, pitfalls

CS 439: Systems II Professor Mike Dahlin

 54

17. OS as Illusionist
Physical Reality Abstraction
single CPU infinite # of CPUs (multiprogramming)
interrupts cooperating sequential threads
limited memory unlimited virtual memory
no protection each address space has its own machine
unreliable, fixed-size messages reliable, arbitrary messages and network

services

CS 439: Systems II Professor Mike Dahlin

 55

18. Problem Areas
1) Performance

• abstractions like threads, RPC are not free

• caching doesn’t work when there is little locality

• predicting the future to do good resource mgmt

2) Failures
How do we build systems that continue to work when parts of the system break?

3) Security
Basic tradeoff between making computer system easy to use v. hard to misuse

