
Sermon 3: Programming and Documentation Style
(Discipline and Craftsmanship)

Question is: how to build a large software system in a
reasonable amount of time, and make it work reliably?

Programming is a craft: something like a high-tech form of
silversmithing. To make big systems work, it takes a
tremendous amount of discipline and structure.

Rule #0: simplicity. It's easy to make things complicated,
harder to make them simple. Don't accept complexity.

Rule #1: don't over-generalize. Could start by building code
that is so flexible, it can do anything! But then code is 10 times
larger, more complex than it needs to be, and you'll still need to
modify it, because of things you can't predict.

Rule #2: if it's complex, throw it away, start over.

Rule #3: module testing. Every module should be simple
enough to be completely testable on its own.

Rule #4: adopt a consistent style and use it everywhere. Decide
on file organization, procedure structuring, naming conventions,
location of curly braces, everything.

Rule #5: don't litter. Temptation is to make fast fixes that dirty
things up. It's crucial to take the time to fix things right at the
beginning. You'll never have time to come back to it later!

Rule #6: document carefully as you go. Don't put this off!

Most important things are interfaces: procedure headers and
data structures and other things that tie together the parts of
the system.

Rule #7: documentation should describe things at a higher level
than code (but not too high a level).

Examples of pathological cases:
"Add one to i.''
"Now we have it the way we want it.''
"This is a hack!"

Rule #8: Put documentation near the code: otherwise you
forget to change the documentation when you change the code.

Rule #9: Quality, not quantity. Don't need enormous amounts of
documentation if what you have is high-quality.

Summary: discipline, craft. Take time up front to save time
later. Be willing to cut your losses.

