
Chapter 1

Brain Computation

Modern science has come to the point where the best way to understand
the brain is as doing computation. We are far from and probably will never
be able to predict individual acts such as Michaelangelo carving the Pieta -
although we would have more to say about Romeo wooing Juliet - but for
the best way to understand why we think the way we do and why we feel
the way we do, we turn to computation. Its not that we will ever be able to
predict exactly what we’ll do in any situation, but we will be able to predict
the kinds of things we are likely to do with an increasing fidelity.

Computational descriptions of humans make us uneasy in a way that
other disciplines are spared. We don’t rail against physicists or chemists for
their models of us. The main reason that computation is singled out is that
is is associated with mindless robotic behavior, the very antithesis of the rich
tapestries of affect and contemplation associated with being human. How-
ever, this connection is a misinterpretation. Its true that conventional robots
can be driven by computers, but computation has much more deeper things
to say, in particular some stunning things to say, about how brains work.
It may well be that ultimately the best way to understand our collection
of human traits, such as language, altruism, emotions and consciousness,
is via an understanding of their computational leverage. Don’t worry, this
understanding won’t preclude us celebrating all our humanness in the usual
ways. We will still fall in love and read Shakespeare with this knowledge
just as knowing a chair is made up of atoms doesn’t preclude the joy of a
comfortable sit down. It would be good if we could use this knowledge to
temper our darker excesses though.

The job of understanding the brain has been characterized as one of

1

2 CHAPTER 1. BRAIN COMPUTATION

reverse engineering.7 We have brains galore sitting in front of us; we just
have to figure out what makes them work. This in turn involves on fig-
uring out what the parts are and how they cooperate. What makes the
task daunting is that the brain exhibits complexity that is nothing short of
staggering. Myriads of brain cells that act in ways unlike any other cells in
the body form tangled webs of interconnections and each of these cells is in
itself a small factory of thousands of proteins that orchestrate a complex set
of internal functions. Faced with all these intricate interactions, the reverse
engineer tries to break the overall problem into manageable pieces.

Most of the time the researchers doing this job would use computer mod-
els routinely and not spend much time wondering what the alternative to
computation could be. The fact is that so far we do not have any good
alternatives to thinking about the brain other than as doing computation.
Mathematics and especially physics have at times competed with compu-
tation with rival explanations of brain function, so far without result. The
parts of mathematics and physics that are accessible and useful turn out to
be the parts that readily fit onto computers. Chemistry and especially biol-
ogy and molecular biology have emerged as essential descriptive constructs,
but when we try to characterize the aspects of these disciplines that are
important, more and more often, we turn to computational constructs. The
main factor is that the primitives we need to describe brain function that
involve the direction of physical and mental behaviors, seem naturally to fit
onto the notions of iteration, decision-making and memory that are found
in any standard computing language.

If the brain is a computer it is almost certainly unlike any one we’ve seen
before and so even the computer expert has to be open to very usual and
radical - but still computational - ways of getting things done. For example,
the brain has to have very fast ways of coping with its very slow circuitry - a
million times slower than silicon circuitry. Scientists are only just beginning
to understand the ways this might be done, but enough has been learned
to offer a coherent account. Thus the thrust of this book is to show how
the kinds of things that we associate with thinking all have computational
and neural underpinnings and the thrust of this chapter is to get started
by outlining the main issues. We need to introduce the basic structure of
the brain and relate it to basic ideas about programming. The foremost
hurdle to understanding the brain in computational terms is the staggering
slowness of its circuitry with respect to silicon. To overcome this hurdle we
will sketch some of the ways in which fast results can be obtained with slow
computational units.

Promises to make progress do not move skeptics. Their issue is that

1.1. INTRODUCING THE BRAIN 3

although computation can be a model of the brain, and a poor one at that,
it cannot truly be the ultimate description of brain function because human
brains operate outside of the computational realm. To counter this nega-
tivity we will have to address the very nub of the issue and that is: What
is computation? There are ways of deciding what is computation and what
is not, even though, because they appeal to abstract issues involving infini-
ties, they aren’t very interesting to the reverse engineer. Nonetheless, since
anti-compuational arguments have been widely circulated, they need to be
refuted.

1.1 Introducing the Brain

Lets get started by introducing the main organizational structure of the
brain. The brain is an exquisitely complex structure that has evolved over
millennia to perform very specific functions related to animal survival and
procreation. It is a very complex structure that can only be understood
by studying its features from many different vantage points. Lets start with
the largest anatomical viewpoint. The brain has specialized components
and mechanisms for input, output, short-term memory, long-term memory,
and arousal. The organization and functions of these major subsystems are
far from completely understood, but can be characterized in broad outine.
Figure 1.1 will serve to orient you.

What Fig. 1.1 makes immediately obvious is that evolution’s most recent
experiment, the forebrain, has a large percentage of the total brain volume.
The various parts of the forebrain will be described in the next chapter, but
basically they perform in large part the basic sophisticated planning and
acting that we associate with being us. However a crucial point is that they
depend on the parts of the brain that evolved before them and those parts
of the brain are devoted to keeping us alive and kicking. These comprise
a huge network of primordial structures that are heavily optimized for a
myriad of life-support functions that relate both to its internal structures
and the external world. If certain parts of these of these are damaged, the
consequences can be dire.

In order to think about what the forebrain does computationally, it helps
to start with what it doesn’t do. One of the most important of the lower
brain functions is the reflex that connects sensory information to motor ac-
tions. Figure 1.2 shows the basic features of a reflex. Sensory information
is almost directly connected to efferent1 neurons for a fast response. Al-

1‘conducting away’ as opposed to afferent: ‘conducting towards.’

4 CHAPTER 1. BRAIN COMPUTATION

SPINAL CORD: Sensori-motor re�exes

MEDULA OBLONGATA: Life support -
management of internal organs

PONS/CEREBELLUM: Sensori-motor
calibration

MIDBRAIN: Drives and regulation
of autonomic and endocrine function

FOREBRAIN: Planning, prediction and simulation
of the world, one’s actions and those of others

Figure 1.1: A cutaway view of the brain showing a major division between
the forebrain, that handles simulation, planning and acting and the lower
brain structures that handle basic life support functions.

though you might think that these reflexes are simple from experiences of
withdrawing your hand from a hot plate or being whacked on the patella by
a well-meaning physician, they are not. In experiments with cats without a
forebrain, the basic spinal cord circuits are enough for the cat to walk, with
slight assistance. Moreover the cat’s feet will retract and step over small
obstacles unaided. Thus the sensory motor systems of the spinal cord are
in fact very sophisticated.

Reflexes can get an animal a long way. A praying mantis can snap at
an unsuspecting bug as can a frog. In each case some unalterable feature of
the stimulus is enough to set off the reflexive snap. Primitive robots have
demonstrated a variety of behaviors can be packaged to generate useful
behaviors. IRobot’s Roomba vacuum clear robot has such a reflexive level
of behavior.

It turns out that this optimization is an enormous boon for the forebrain,
as it provides a set of sophisticated primitives that can be used as part of
a programming language to realize very complex behaviors. When thinking

1.1. INTRODUCING THE BRAIN 5

Figure 1.2: A basic sensory-motor reflex. [Permission pending]

about the virtues of human intelligence there is often a tendency to jump
to its more exotic capabilities such as understanding calculus, but even the
simplest ordinary behaviors are a huge advance over reflexive behavior. Sup-
pose you are ready to make a sandwich. The plate is empty and it is time
to get two slices of bread. So the next thing to do is to get them. You can
effortlessly distinguish this state of affairs from the state you’d have been in
if the slices were already on the plate. For either of these states, you know
what to do next. Furthermore you know how to sequence through a set
of actions that will produce the sandwich. You can handle mistakes - such
as spilling jelly on the table - as well as unexpected difficulties - the jelly
jar lid is hard to remove. And you would not repeat a step that you had
already carried out. In fact in making the sandwich you have executed a
complex program with many features that can be described as computation.
Specifically:

• There has to be a way of defining ‘state.’ Picking up a piece of bread
has to be programmed since its is not reflexive.

• There has to be a way of transiting between states. To make a sand-
wich, coordinated, sequential movements have to be made.

• There has to be a way of assembling these states and transitions into

6 CHAPTER 1. BRAIN COMPUTATION

programs. The sandwich recipe has to be remembered as a unit.

All these tasks are done by the forebrain, the subject of the next chapter.
Furthermore, sandwich making is just one of literally thousands of things you
know how to do. And the way most of these are encoded are as memory. As
we will see in a moment the neural circuitry is very slow, so to compensate,
the brain remembers how to do enormous numbers of things - basically all
of the things you do - more or less exactly.

1.2 Computational Abstraction

One of the ideas that you’ll have to come to grips with, and an essential
tool for the reverse engineer, is models at different levels of description in
the brain. You have already been introduced to the top level of abstraction,
whereby the brain is divided into major anatomical and functional subdi-
visions. Now lets move inside the cerebral hemispheres. At the scale of a
few centimeters, there is a basic organization into maps, subdivisions of cells
within an anatomical unit that have identifiable roles. For example in the
cerebral corticies there will be several areas responsible for the computa-
tions different aspects of of visual motion. At a level below that, divisions
within these areas represent circuits of cells responsible for computations in
a small area of the visual field. These circuits are made up of neurons, each
of which has an elaborate set of connections to other neurons. Going one
level smaller scale, the connections are defined by synapses, that regulate
the charge transfer between cells.

The different anatomical levels are easy to appreciate because they have a
ready physical appearance that can be indicated. What we have to get used
to in addition is the idea of computation needing and using levels of abstrac-
tion. This is easiest to appreciate by seeing how computational abstraction
is essential in silicon computers. At the top, any standard computer has
an operating system. This the program that does the overall management
of what computation happens when. It determines when jobs are sent to
the printer, when input is read in and when to clean up the memory after
a bunch of running programs have left it in disarray (unsurprisingly this is
called “garbage collection” in the jargon.) But among all these jobs the op-
erating system runs the program you may have written, the user program.
Your program contains instructions of things to do but to the operating sys-
tem these are just data, and when it determines your turn, the instructions
are carried out mechanically by the computer’s processor. Of course when

1.2. COMPUTATIONAL ABSTRACTION 7

Level Function Spatial Scale Image

Sub-systems Anatomically dis-
tinct collections of
maps

10 cm

Maps Large-scale collec-
tions of circuits

1 cm

Circuits Collections of neu-
rons organized with
a specific function

1 mm

Neuron Basic long-range
signaling unit

10 µ

Synapse Charge regulation
in a neuron

1µ

Table 1.1: The organization of the brain into units at different spatial scales.

you write such a program you would not have used a language that the low-
est level of the machine understands, but instead you would have chosen a
high-level language such as JAVA or C. The reason is that the latter instruc-
tions are too detailed, being appropriate for the minutia of the machine. The
instructions you program with are translated into two lower levels, first of
all assembly language, which addresses elemental operations but postpones
the details of how these are done, and then finally microcode that can be
understood by the machine’s hardware. The point is that just to run your
program, many different levels are needed, summarized in Table 1.2

Just by looking at Table 1.2 you can intuit why we are unlikely to un-
derstand the brain without a similar triage of functions into computational

8 CHAPTER 1. BRAIN COMPUTATION

levels of abstraction. We can understand the machinery that generates a
voltage spike (the main signaling mechanism) in a neuron as well as how
networks of neurons might use those spikes. However we cannot really un-
derstand them together. For clarity we have to keep them separate. And
when we come to model altrusitic behavior we have to loose track of all this
machinery entirely and model and entire brain as a small number of param-
eters. We should not think of this technique of using abstraction levels as
a disadvantage at all. Instead its a boon. By telescoping through different
levels we can parcellate the brain’s enormous complexity into manageable
levels.

From a historical perspective computer software was designed from the
bottom up. Original computer instructions were in the form of an assembly
language and the more abstract user program languages were added later,
as were the constructs used by modern operating systems. There is an old
saw that it takes the same time to debug ten lines of code no matter which
level it is written in. You can see why almost everyone writes in the highest
level language possible: you get the most leverage. Nonetheless everything
the computer does is carried out by the gates at its lowest level. If people
had not designed the computer in the first place it would be an enormous
job to figure out what it did just by looking at its outputs at the gate level,
yet that daunting vista magnified is just what is facing us in understanding
the brain. We have a lot of data on the function of single nerve cells and
now the task is to construct the abstract levels that these cells comprise.

1.3 Different than Silicon

Our claim is that although the brain is very different than a conventional
computer but it nonetheless has to deal with the same problems faced by a
conventional computer. In addition the flip side is that what we hold dear
as very human traits may be more understandable if we see them as repre-
senting computational solutions to problems that came up during evolution.
The exposition examines what those problems are and how silicon comput-
ers deal with them to help speculate on how the brain might handle them
for most of our time, but now lets pause to introduce just how shockingly
different the brain must be.

The major factor separating silicon and cells is time. The switching
speed of silicon transistors, which limits the speed at which a processor can
go, is in the nanosecond regime. In contrast neurons send messages to each
other using voltage pulses or, in the jargon, “spikes.” Neurons can send these

1.3. DIFFERENT THAN SILICON 9

spikes at a top speed of 1000 spikes per second, but in the main processing
areas the average rate is 10 spikes per second, with 100 spikes per second
regarded as a very high rate. Figure 1.3 shows some typical spikes recorded
by Usrey and Reid from the cat thalamus.

For a long time it was thought that a spike was a binary pulse, but
recent experiments suggest ways in which it that it could signal an analog
value, so lets assume that its message is on the order of a byte per pulse.
Even with this assumption, nerve cells communicate 10 million times slower
that silicon transistors. You can envisage the collection of neural spikes as a
code, rather like the code for a player piano. Such a piano uses special sheet
music in the form of thick paper with perforations rotating over a drum with
raised spring-loaded protrusions. As the drum rotates a lack of perforations
depresses the protrusions causing piano keys to be struck. In an analogous
way the neural spike code is a discrete code that is interpreted by the body
as commands for perception and action.

Given 1011 nerve cells, only about 1010 are sending sending spikes at
10 Hz. It would be easily to compress this data by a factor of 10 so that
roughly 100 seconds of your brain’s neural firing could be saved in a Terabyte
of storage. The unsolved task for brain scientists is to break this code.

Figure 1.3: Typical spike frequencies from two neurons in the cat thalamic
nucleus

The slow communication rate is sandwiched from above by the time for
the fastest behavior. Evidence from behavioral experiments suggest that
essential computations take about 200 to 300 milliseconds. This means that
the average neuron has to get its computation done with 2 to 3 spikes.
From these analyses, the consensus is that the way the brain must do it is
to have most of the answers pre-computed in some tabular format so that
they just have to be looked up. Evidence in favor of this view comes from
the rich connectivity between nerve cells. Each neuron connects to about
10,000 other neurons, compared to connectivity between gates on a silicon

10 CHAPTER 1. BRAIN COMPUTATION

chip of just a handful. As shown in Fig 1.4, the size of the gates in silicon
are comparable to the processes of a living cell. It is the neuron’s huge
connectivity that gives it one of its biggest advantages.

Figure 1.4: An exotic electron micrograph of a neuron artificially grown on
a silicon wafer reveals the comparable scales of the two technologies. The
raised clump is the neuron’s body or soma. One of the spidery processes
coming out of the soma, is its axon which connects it to an average of
104 other cells. In contrast silicon transistor connections between gates are
limited to a handful.

Another factor that the brain uses to overcome the speed handicap is the
power of nerve cells themselves. The exact computing power of a neuron is
unknown, but the best guess is that it is much more powerful than a transis-
tor. The synapses that connect it to other cells are closer to transistors, but
undoubtedly more powerful. So that the neuron itself has been likened to a
microprocessor albeit a specialized one. Since the brain has approximately
100 billion nerve cells - much less than the US fiscal debt in 2004 dollars,
but still a lot - that can work simultaneously, the parallel computing power
is obviously one source of compensation for the brain’s slow circuitry.

1.4. BRAIN ALGORITHMS 11

1.4 Brain Algorithms

If the brain is doing computation at some point we have to be able to say
how that computation gets done in time to direct our daily activities. In
computer science this question is resolved by coming up with a specific
algorithm or colloquially recipe that runs on the brain’s processors. We
still do not quite know how to specify the brain’s processors in detail but we
suspect that nerve cells will be at the center of the answer. We can say more
about the computational algorithm. Scoring an algorithm’s effectiveness is a
matter of counting the number of its operations and dividing by the number
of operations per unit time. But the standard ways of counting operations
on silicon don’t work for the brain.

Algorithms on silicon computers

On serial silicon computers most algorithms are dominated by the size of
the input. For example consider sorting n numbers. Here is the recipe: Go
through the list and move the biggest number to the top. Then go through
the n− 1 remaining numbers and pick the second largest and move it to the
penultimate position. After you get down to fixing the last two elements,
you are done. This is called ’bubble sort’ because the larger numbers bubble
up to the top. This basic algorithm would takes n(n+1)

2 steps since we have
the sum of the numbers from 1 to n. In practice we don’t sweat the factor
of 1

2 or the 1 and say “on the order of” or O(n2)operations2

Of course computer science majors all know that there is a faster algo-
rithm that takes advantage of the fact that two sorted lists can be merged
in O(n) steps. Here is the algorithm that uses the merging property:

Sort(List)
IF List has two elements
order them
RETURN the resultant list
ELSE Merge(Sort(Front-of-List),Sort(Back-of-List))

You start out with the original list and contract to merge its two sorted
sublists. Of course they need to be handled in the same way but the key
is that they are smaller by half. For large lists, many IOUs are created

2In the jargon ‘O’ is called ‘Big Oh’ or simply ‘Oh.’

12 CHAPTER 1. BRAIN COMPUTATION

in this process that are resolved when we get down to two or one element
lists. Once this happens the many outstanding merging processes can be
completed, resulting in a sorted list. To see the idea try it on a piece of
paper with small lists of say four to six numerical elements.

A careful accounting shows that this only requires, in the notation,
O(n log n) operations, which of course is better than the easier-to-understand
O(n2) algorithm that was considered first.

The Brain’s tricks for fast computation

The clever sorting algorithm is the best that can be done but still won’t do
for a model of brain computation. The main reason is that the neurons that
are the candidates for the principal computing elements are very slow, over
a million times slower than silicon. A reasonable size for n is 1, 000, 000 for
human vision, and neurons are computing at 10 binary ‘bits’ per second, so
you can see why an O(n log n) algorithm is not a candidate. An algorithm
that had to serially poll each of these cells would take an impractical 100,000
seconds. Fortunately the brain has several ways of cutting corners.

Probably, Approximately Correct: The brain uses algorithms
that are just good enough The O(n log n) algorithm for sorting is prov-
ably the best there is. It can sort any sequence in its alloted time. But
this is not the case for all problems.For some algorithms, such as finding the
best round-trip route through a set of cities, getting the shortest possible
path is very expensive. You have to examine all of the paths, and that is
exponentially many. Naturally this is prohibitively expensive for humans.
But in many cases if we just want a reasonably good solution, this can be
had at a reasonable cost. Thus one of the main ways of speeding things up
is to use probably, approximately correct algorithms, or PAC algorithms.
These were pioneered by Valiant.9

The brain uses a fixed size input. In the analysis for the sorting
algorithms on silicon computers, the assumption is that the dominant factor
is the size of the input. Where the size of the input can grow arbitrarily, this
is the correct analysis. For example, suppose we pick a give cost for bubble
sort so that now there is no ’Big O,’ but instead we know that the cost is
exactly 1000n2 on a given computer. Now your friend gets a computer that
is 1000 times faster so that the cost is exactly n2. You have to use the old
computer but can use the merge-sort algorithm. You beat your friend when

1000n log n < n2

So for example when n = 10, 000 you’ll be 2.5 times faster.

1.4. BRAIN ALGORITHMS 13

However this analysis breaks down for biological systems as the number
of inputs and outputs are for all practical purposes fixed. When this hap-
pens, it pays to optimize the hardware. To pursue the example of vision,
suppose now that each image measurement could be sampled in parallel.
Now you do not have to pay the 1, 000, 000 factor. Furthermore suppose
that you wanted to use this parallel ’bus’ of image measurements to look
something up. Now you only need O(log n) measurements. Furthermore,
the brain ameliorates this cost as well by using a pipeline architecture so
that the log factor is amortized quickly over a series of stages. Each stage
can be thought of as answering one of twenty questions so that by the time
the process exits the answer has been determined.

The brain uses sensors and effectors that are designed for the
world. The design for the light sensing photoreceptors used by vision is
believed to have started with the properties of sea water. It turns out that
the visible spectrum is especially good at penetrating water and so could be
exploited by fish. Once the hardware was discovered, it worked on land as
well.

In the same way the human musculo-skeltal system is especially designed
for the human ecological niche. We cannot outrun a cheetah, but we can
climb a tree much better. The niche is even more sharply illustrated by cur-
rent robotics. Although silicon computers can easily out-calculate humans,
the design of robotic bodies is still very much inferior to that of human
bodies. Furthermore the general problems that these human bodies solve
seemingly effortlessly are still very much superior to their robotic counter-
parts except in a few special cases. To appreciate this further, try wearing
gloves and going about your normal everyday activities. You will quickly
find that you are frustrated in nearly every situation that requires detailed
hand coordination. If this does not convince you, put on boxing gloves! You
will still be better off than a parallel-jaw gripper robot arm.

Of course there are difficult situations that can overwhelm a human body,
such as staring into the sun or trying to jump too broad a gap. But these
situations are for Darwin Award contestants. For almost all the problems
of everyday existence, the human body is an exquisite design that works
wonders.

The brain amortizes the cost of computation over its lifetime
One contributing factor to fine motor coordination that we have just dis-
cussed is the design of the physical system. So far no robot can even come
close to the strength-to-weight capabilities of the human musculo-skeletal
system. But there is another factor too and that is that the process of de-
signing the control algorithms that work so well happens over many years.

14 CHAPTER 1. BRAIN COMPUTATION

Babies learn to control their arms sequentially. They’ll lock all the out-
board joints and try movements. When the nervous system has a model
of this reduced system, they’ll unlock the next more distal joint and try
again. The new system has fewer variables that it would if starting from
scratch. Naturally it is essential to have parents that patiently care-take
while this process is happening, but the essential feature is that the compu-
tation is amortized over time. A wonderful analogy is GoogleTM . To make
fast and web searches, overheated warehouses of server computers crawl the
web around the clock to find and code its interesting structure. The coded
results are what makes your query lighting fast. In the same way efficient
motor behavior reflects a multi-year process of coding the way the body
interacts with its physical surround. The result is that reaching for a cup is
fast and effortless and carrying it upstairs without spilling is a snap.

1.5 Could the Brain Not be a Computer?

To answer this question one must first understand computation in the ab-
stract. This is because the popular notion of computing is irretrievably tied
to silicon machines. Furthermore these machines have evolved to augment
human needs rather than exist on their own and as such have not been made
to exhibit the kinds of values inherent in biological choices. Thus an imme-
diate reaction to the idea that brains are kinds of computers is that, based
on the limitations and peculiarities of modern silicon computers do, is to
reject the idea as baseless. To counter such intuitions will take a bit of work
starting with a formal characterization of computation. We can describe
what a computer is abstractly so that if a brain model can be shown to be
incompatible or compatible with this description, then the issue is settled.
It could turn out that that brains are unreachably better than formal com-
putation. I don’t think so for a moment, but the crucial point is to frame
the question correctly.

Turing Machines

What is computation? Nowadays most of us have an elementary idea of
what a computer does. So much so that it can be difficult to imagine what
the conceptual landscape looked like before its advent. In fact the invention
or discovery of formal computation was a remarkable feat, astonishing in
retrospect. Enter Alan Turing, a brilliant mathematician who led the team
that broke the German enigma code in World War II. Turing’s approach,
that resulted in the invention of formal computation, was consructive: He

1.5. COULD THE BRAIN NOT BE A COMPUTER? 15

tried to systematize the mechanisms that people went through when they did
try and do mathematical calculations. The result was the Turing machine,
a very simple description of such calculations that defines computation. See
Box TURING MACHINE. Although there have been other attempts to de-
fine computation, they have all been shown to be equivalent to Turing’s
definition. Thus it is the standard: if a Turing machine cannot do it, its not
computation.

TURING MACHINE

All computation can be modeled on a universal machine, called a Turing machine.
Such a machine has a very simple specification, as shown in Figure 1.5. The machine
works by being in a “state” and reading a symbol from linear tape. For each
combination of state and tape symbol, the machine has an associated instruction
that specifies a triple consisting of the new state, a symbol to write on the tape,
and a direction to move. Possible motions are one tape symbol to the left or right.
Although the Turing machine operation appears simple, it is sufficiently powerful
that if a problem can be solved by any computer it can be solved by a Turing
machine.

This example shows a very simple program for erasing a block of contiguous
ones. The head is moved along the tape serially, replacing each 1 with a 0. When the
end symbol is encountered, the program terminates. You can define any number of
auxiliary symbols to help write the program, or alternately find ways around using
them. Here for example you could avoid the # symbol just by terminating after
you see the second 0. For more of a challenge try to add two numbers together and
then for even more of a challenge try to multiply two numbers together. Remember
that they are in a unary representation, just like that used by convicts marking jail
time. To get you started, think of the initial tape as containing for example:

0000#1111#000#111#0000#000000000

and the answer being

0000#0000#000#000#0000#111111100

Your program will probably find a ‘one,’ replace it with a zero and then go and put
it in the answer region, repeating the process untill all the ones were used up. For
multiplication the answer would be

0000#1111#000#000#0000#11111111111100

This program will require even more sawing back and forth on the tape.
As you try to write more complex programs you will quickly be overwhelmed by

the tedium associated with the low level description used by the TM. But the point
is that in principle, any program in any computer language has a TM equivalent.

16 CHAPTER 1. BRAIN COMPUTATION

1 1 1 1 #

Sta te Tab le

Read State Move New
State

Wr i te

Si tuat ion Act ion

0 0 R 0 0

1 0 R 1 0

1 1 R 1 0
0 1 R Halt 0

Halt0 10

0,R,0

1,R,0 #,R,0

1,R,0

Figure 1.5: (A) Turing machine program for the very simple function of erasing
a series of 1’s on the tape (B) The program can be represented by a table that
shows what to do for each state and input. (C) Equivalently, a TM program can
be described by a state transition diagram in which the nodes of a graph are states
and arcs are labeled by the symbol read, the direction of motion, and the symbol
written. Despite the extreme modesty of its structure, a TM is sufficiently powerful
to be able to emulate all the operations of any other computer, albeit much less
efficiently.

The steps a Turing machine (TM) goes through in the course of ac-
complishing even simple calculations are so tedious that they challenge our
intuitions when we are confronted with its formal power: any computation
done by any computer anywhere can be translated into an equivalent com-
putation for a Turing machine. Of course it could easily be the case that
the TM would not finish that computation in your lifetime, no matter how
young you are, but that is not the point. The computation can be simulated.

An important point that cannot be overstressed is the breakthrough
of the TM architecture that makes explicit the utility of thinking about
programs in terms of a collection of states and actions that can be taken

1.5. COULD THE BRAIN NOT BE A COMPUTER? 17

when “in” a state. In terms of everyday behavior, if you are making a cup
of tea and you are in a state where {the kettle is nearby and empty}, then
presumably the next action is to {put water in the kettle}. The power of
thinking in this way cannot be overestimated. When we describe ways of
formalizing the brain’s programs in Chapter 5, it will be in terms of the
state, action terminology.

To return to the formal computational theme, Turing machines are not
without controversy because they do have limitations. In general, a TM
cannot tell whether the program of another arbitrary TM will halt or keep
going forever. Of course it can for some TMs but not in general. Furthermore
TM calculations cannot use random numbers since the very definition of a
random number is that a TM cannot decide whether it is random or not.
And it cannot use real numbers either since there are infinitely many more
real numbers than TMs. Experienced programmers know that when they
have randomness in their programs, the program is using pseudo-random
numbers, that is, numbers that behave enough like random numbers to get
useful answers to programs that need them. Similarly programs use integers
to sample the space of real numbers, again getting numbers close enough
to the real thing for the calculations to have meaning. Finally, as we will
elaborate on in a moment, a TM cannot use everyday formal logic either
without some form of limitation, since if it tries to prove a theorem that
is not true, there is a possibility that the program will run forever and not
halt.

The question is though: are these limitations important or do we need a
more powerful model such as physics? What are the prospects for a physics-
based computing? Some scientists think big and one is Seth Lloyd.2 He
calculated the operations that would be needed to simulate the universe since
its inception. The estimate is that you need no more than 10120 operations
on 1090 bits for the memory. These numbers are more than the universe
has, but that is because any simulation will have some overhead. Also you
might not get the same universe if you started with a different random
number seed; indeed if the process depended on truly random numbers, you
might not get our universe at all. One important take-home message from
this vantage point is that to the extent that the universe can be described
in terms of computation, then presumably our small brains can too! But
a larger point is that perhaps there is a prospect of harnessing quantum
computing to solve difficult problems. Potentially many solutions could be
coded as probabilistic quantum states in a machine that could then pick
the best one. While this is intriguing the technical problems in making this
work at any useful scale are enormous. For an introduction see.2

18 CHAPTER 1. BRAIN COMPUTATION

A very pessimistic view of computational prospects is represented by
Roger Penrose who has written three books with the theme that TMs are
too weak a model to encompass the brain.6 (Penrose also holds out hope
for the quantum computation and proposes a way in which it might be uti-
lized by cells that is wildly speculative.) But what of his arguments that
TMs do not have sufficent power? One of Penrose’s main arguments settles
around Gödel’s theorem. Since the theorem itself is very subtle and im-
portant, we’ll take some time to introduce its elements (See Box GÖDEL’S
CONSTRUCTION)

GÖDEL’S THEOREM

The end of the nineteenth century marked the zenith of an enormous wave of discov-
eries of the industrial revolution. Parallels in science such as Maxwell’s equations
abounded. In philosophy this enthusiasm was captured by the idea of Logical Pos-
itivism: things would steadily get better. This optimism was soon to be corrected
by the carnage of World War I, but had a shocking parallel setback in the scientific
arena as well.

One of the proponents of the wave of optimism was David Hilbert. With the
formalization of mathematics as logic, it was believed that theorems were to be
discovered mechanically by starting with the right axioms and turning the crank
of logical inference. To abuse Fukuyama’s much more recent phrase, we were look-
ing at the “end of mathematics.” Mathematical discovery was to be reduced to
a procedure that seemed to obviate the need for creative discovery. Thirty years
later, this optimism was shattered by Kurt Gödel. Gödel was a genius and troubled
individual who later in life succumed to mental problems, but in the 1930s he was
at the height of his powers. One of the key open questions in arithmetic was: were
its axioms sufficient? Gödel’s answer was that this question could in fact not be
resolved. In a stunning demonstration he showed that there were true theorems in
arithmetic that could not be proved.

A central portion of his proof showed that logic itself could be seen as prop-
erly contained in arithmetic. Any logical statement could be reduced to a unique
number. As a consequence any statement about arithmetic in logic was just a form
of ’syntactic sugar’ to disguise its arithmetic origin. His construction makes use of
prime numbers and is easy to appreciate.

The heart of Gödel’s argument consists of an unambiguous mapping between
formulas in logic and numbers. The mapping construction begins by assigning the
elementary symbols in predicate calculus(logic) to numbers as shown in Table 1.5.

Next for variables x, y, z we use primes after the number 12, for sentential
variables (such as p ⊃ q) we use primes after 12 squared and for predicates primes
after 12 to the power of 3.

This was the basis for describing logical formulas in terms of prime numbers.
To give you an idea of how this is done, consider the formal statement that every

1.5. COULD THE BRAIN NOT BE A COMPUTER? 19

number has a successor: ∃x(x = sy). We can first look up the Gödel numbers for
the individual signs and they are: 41381357179. Then the Gödel number for the
formula is:

24 × 313 × 58 × 713 × 115 × 137 × 1717 × 199

Thus any formula’s number in principle can be factored into its prime divisors
and, by organizing it into ascending primes and their powers, the formula can
be recovered. The genius of such a mapping is that it allows one to talk about
statements about logic in terms of logic. The reason is that the statements can be
turned into numbers via the mapping. This then gives them a legitimate expression
inside the logical formulas. From this Gödel was able to prove that there were true
propositions in logic that could not themselves be proved. The gist of the argument
is as follows:

1. Using the mapping, one can construct a formula P that represents the state-
ment ‘ The formula P is not provable using the rules of logic.’

2. One can then show that P provable iff ¬P is provable. If this is true logic is
inconsistent. So if logic is consistent P is unprovable.

3. Even though P is unprovable it can be shown to be true. Therefore logic is
incomplete.

Thus logic was incomplete. The interested reader is referred to Newman and Nagel’s
classic3for a brilliant exposition of the gist of his arguments.

Penrose argues that since human’s understand this theorem that points
to a fundamental weakness of logic (in proving statements about arithmetic)
but computers are forced to use logic ergo humans think out of the logical
box and are more powerful than TMs. However if we understand a proof
it has to be logical. The trick is that the referents of the proof are highly
symbolic sentences. Gödel’s brilliant insight was that when these were about
mathematics, they could be reduced to arithmetic. hence the referents of
the logical statements are regularized and no special machinery is necessary.
We are not saying it is easy; after all there has only been one Kurt Gödel!

One potentially confusing point is that of being able to manage concepts
at different levels of abstraction. When working a a given level one has to be
careful to stay within that level to have everything make conceptual sense.
You can switch levels but you have to be careful to do the bookkeeping
required to go back and forth.5 The failure to do this can lead to endless
confusion8 and the delight in experiencing the ambiguity that comes with
it.1

To take a famous example, the philosopher Searle has lampooned com-
putation by imagining a person in a closed room whose task is to translate
between Chinese and English. The person receives instructions in the form

20 CHAPTER 1. BRAIN COMPUTATION

of: ‘when you get this english sentence, output the following chinese kanji
characters.’ The point of the ‘Chinese Room’ setting is that the person can
exhibit the illusion of understanding chinese without doing so in the slight-
est. But here the argument rests on blurring abstraction boundaries. If the
person is meant to be an anthropomorphism of a neuron obviously there will
be no language understanding, but if we jump abstraction levels to have a
complete person, then just as obviously there would be some understanding
as the person would see regularities between symbol usages. It depends on
the abstraction vantage point you pick.

Similarly for the alleged mystery in understanding Gödel’s theorem. If
we take the vantage point of the coded formula, the proof is such that anyone
trained in logic can understand it. It only when we try to simultaneously
entertain consequences of the uncoded logical formulae together with state-
ments at a different level of abstraction that use their coded form that things
get confusing.

Turing Machines and Logic

At this point there might be one last puzzling question in your mind. For one
thing the standard computer is constructed with networks logic ‘gates,’ each
of which implements an elementary logic function such as the logical AND of
two inputs: If they are both TRUE then the output is TRUE else the output
is false. In contrast we have the exotic result of Gödel that there exist true
statements in arithmetic that cannot be proved. So what is the status of
logic visa vie Turing Machines? The resolution of this ambiguity is that two
kinds of logic are involved. The fixed architecture of the Turing Machine
can be modeled with Propositional Logic whereas the logic we implicitly
use in every day reasoning is modeled with Predicate Logic. The crucial
difference is that the latter has variables that can arbitrarily correspond to
tokens that represent real world objects. Thus to express the familiar ‘All
men are mortal,’ we need predicate logic to have a variable that can taken
on the value of any particular man. We write: for all x the proposition P (x)
- being a man- being true implies that the proposition Q(x) - being mortal
- is also true. Formally

∀xP (x) ⊃ Q(x)

To prove the theorem Socrates is a man therefore Socrates is mortal, we
can use a standard method in elementary logic of constructing a truth table
that reveals that whenever the preconditions of the theorem are true the
consequent is true.

1.5. COULD THE BRAIN NOT BE A COMPUTER? 21

However this is not what computer theorem provers necessarily do. A
standard computer method is known as resolution and can be introduced
as follows. The first step is to covert all the logical statements to a special
form called clause form. For the details of how to do this you will have to
consult a text such as.4 The steps are mechanical but take up too much
space to describe here. In the simple example the result is:

{P (Socrates),¬P (x)vQ(x), Q(Socrates)}

Now to show that the third clause follows from the first two the proce-
dure is to negate it and show that there is no way to assign the variable
x such that the set of clauses are all satisfied (true). This can be done by
staring with the first two. The only option here for x is x = Socrates,
and since P (Socrates) and ¬P (Socrates) cannot simultaneously be true,
we conclude that Q(Socrates) must be true and add it to the set of clauses.
Now judiciously choose that clause and ¬Q(Socrates) . These cannot be
simultaneously true and so we can conclude the null clause denoted ’nil.’
Thus since the negation of the consequent is unsatisfiable, the consequent is
and therefore the theorem is true.

This has been a precis of what is in fact a whole scientific field of endeavor
termed automatic theorem proving that uses this technique and a host of
others. However the main issue is hinted at by the simple example. To
use the process a particular binding- here x = Socrates - must be chosen.
This is ridiculously easy in the example but in a general case there will be
many variables and many, many bindings for each variable. Nonetheless
they can be organized so that they can be tried in a systematic way. The
upshot is that if the theorem is true, an automated theorem prover using
resolution will eventually produce the nil clause and prove the theorem in a
finite number of steps, but if its not true it will grind through possibilities
forever. This kind of situation will be familiar to any programmer: is the
program almost done and about to stop at any moment or is it going to
grind on forever owing to some bug?

Now for the punch line on the theorem proving and TMs. Silicon com-
puters use gates that implement propositional logic formulas such as AND,
OR and NOT. This is different than the first order predicate logic used by
mathematicians to prove theorems. To do the latter, a silicon computer has
to simulate predicate logic using its propositional logic hardware. If humans
are TMs they have to do the same, with the same formal consequences.

As an epilogue the same point can be illustrated with human deduction.
Consider Fig. 1.6. In this deck, letters are on one side and numbers on the

22 CHAPTER 1. BRAIN COMPUTATION

other. Your task is to test the claim that in this deck, “every even numbered
card has a consonant on the other side.” you can only turn over two cards.
Which cards do you pick? If you are like most people, you’ll have to think
about this a bit and might even make a mistake. You should turn over
the first and forth cards. But the main points is that it seems the brain
can simulate logical deduction, in the same way a computer can simulate
predicate calculus, but it its unlikely to use logic as a primitive construct -
because if it did presumably the card problem would be trivial.

2 7h e

Figure 1.6: Cards have letters on one side and numbers on the other. Which two
should you turn over to check whether every even numbered card has a consonant
on the other side?

And just to drive another point home, see how easy this becomes if we
translate this problem into a familiar experience. Four people have met at
a bar, two teen agers and two older people. Two of them have left for the
rest room, so your view is of a teenager and an old person and the drinks of
the other two a beer and a coke. Whose identity cards should you check?

1.6 Book Overview

The idea of levels of abstraction forms the backbone of the organization of
this book. To synthesize a description of all the different things that a brain
does we have to stitch together many different levels of abstraction. We
start in the middle in Chapter two by introducing the brain’s functional
subsystems. Although they all are all interconnected, each of the subsys-
tems has a specialized job to do and if they are somehow damaged, that
job cannot been taken over by any of the others. Each of the subsystems is
composed of nerve cells that share common structure. This commonality is
taken up in Chapter three which discusses the structure of nerve cells and
ways in which they can do computation. When we use more abstract de-
scriptions in later chapters it is important to keep in mind that all the high

1.6. BOOK OVERVIEW 23

level computations ultimately have to be translated to this level. Chapter
four focuses on the brain’s major subsystem, the cortex. The nerve cells
signal very more than a million times slowly than silicon transistors so that
it is amazing that complex brain computations can be done at all. The
answer crudely is to use experience to pre-compute all the responses that
we have to make and put them into a table that we can look up up. As as-
tonishing as this is, it is the strategy used by the brain and the cortex is the
table. Programs in the brain can be constructed if the entries in the table
contain information about what entry to lookup next, but there has to be
mechanisms for making this happen. This the the subject of Chapter five
which describes the function of the Basal Ganglia and its use of the brain’s
reward system. What makes the brain’s programs difficult to understand
is that they are extremely compressed and one way that they can be is
that they anticipate the details of the construction of the body that encases
them. Thus when we make a fight or flight decision, a lot of the details of
how the body reacts are encoded in the body’s musculo-skeletal system in
a way that needs the barest direction. This is the subject of Chapter six.
The program’s that direct the body are a collaboration of the genes and the
process of development during infancy. Chapter seven introduces some
of the ways that the brain’s neuron’s can use to become properly wired up.
How many programs can the brain run at a time? This question is unsettled
but one line of development contends that the answer is only a few. This
issue is explored in Chapter eight. One of the hallmarks of being human
is the display of emotions. It turns out that emotions serve a vital purpose
for program development by helping sift through a myriad of alternatives.
This role for emotions is described in Chapter nine. Another hallmark
of humans is our big brain. How did we evolve it alone among the animal
kingdom? One recent answer is that of sexual selection which introduces an
instability in the genetic process. This is explained with genetic computa-
tion in Chapter ten. Although many animals exhibit altruistic behaviors,
altruism is another signature feature of humans. Chapter eleven shows
ways in which altruistic behavior is rational when humans have to share
resources over time. Game theory provides the explanatory computational
resources. Finally we take up consciousness. Chapter twelve describes
how consciousness can be thought of as an “emotion of authorship,” that
distinguishes when consequences in the world are due to our own behavior
as opposed to that of other causes.

24 CHAPTER 1. BRAIN COMPUTATION

1.7 Key ideas

1. Overall brain organization. Just like any complex system , the brain
is composed of distinct sub-parts with specialized functions. In order
to proposed good computational models it os essential to understand
what these parts do.

2. Computational abstraction levels. An essential take-home lesson from
complex systems is that they are inevitably hierarchically organized.
This means that to understand the brain, we’ll have to put together
programs at several different levels of abstraction.

3. Algorithms. On the other hand if you want to show that computation
is a good model then the way to go about it is to show how the things
that people do can be described by recipes or programs that make use
of the brain’s neurons in a feasible way.

4. What is computation? Computation is described by what a Turing
Machine can do. If you want to show that the brain is not a computer,
the way to go about it is to demonstrate something that the brain does
that cannot be reduced to a Turing Machine program.

1.7. KEY IDEAS 25

LEVEL Description Function

SOFTWARE OPERATING SYS. Control the running of other pro-
grams; manage input output

USER PROGRAM A particular program with a spe-
cialized objective; written in a
high-level language

ASSEMBLY LANG. The translation into basic ma-
chine instructions that are for the
most part hardware independent

MICROCODE Machine instructions that can be
interpreted by a particular ma-
chine’s hardware

HARDWARE CIRCUITS Addition, Multiplication, Storing
etc

GATES Basic logical operations such as
AND and OR

Table 1.2: The standard computer uses many levels of abstraction in order
to manage the complexity of its computations. The hardware level also can
be divided into abstraction levels consisting of circuits that are composed of
basic switches or ‘gates.’

26 CHAPTER 1. BRAIN COMPUTATION

logical symbol Gödel number meaning
¬ 1 not
v 2 or
⊃ 3 if . . . then . . .
∃ 4 there exists
= 5 equals
0 6 zero
s 7 successor of
(8 bracket
) 9 bracket
, 10 punctuation mark
+ 11 plus
x 12 times

Table 1.3: The main insight in Gödel’s proof rests on the ability to uniquely
map logical formulae onto numbers. This starts with the assignments shown
above.

Bibliography

[1] Hofstader Douglas R. Gödel Escher Bach: an Eternal Golden Braid.
Penguin, 2000.

[2] Seth Lloyd. Programming the Universe: A Quantum Computer Scientist
Takes On the Cosmos. Alfred A. Knopf, 2006.

[3] Ernest Nagel and James R. Newman. Gödel’s Proof. New York Univer-
sity Press, 2002.

[4] Monty Newborn. Automated Theorem Proving: Theory and Practice.
Springer-Verlag, 2001.

[5] Allen Newell. Unified Theories of Cognition. Harvard University Press,
1990.

[6] Roger Penrose. Shadows of the MInd: A Search for the Missing Science
of Consciousness. Oxford University Press, 1994.

[7] Steven Piker. How the Mind Works. Norton Press, 1999.

[8] John R. Searle. Minds, brains, and programs. Behavioral and Brain
Sciences, 3(3):417–457, 1980.

[9] Leslie Valiant. Circuits of the Mind. Oxford University Press, 1994.

27

