Chapter 9

Hominids

Of the animals homo sapiens sapiens (us) have the largest brain/per body
weight and the most complex behaviors. It is puzzling as to just what the
big brain was for as measures of skill such as tool use show flat development
during the millions of years that the brain was increasing in size. This may
have happened through sexual selection, which produced a runaway growth in
brain size. Genetic algorithms show that runaway affects are the rule.

How did humans get large brains? This is a fundamental question that is
still in the process of being answered. We visit it here because computational
models are increasingly playing a role in ferreting out the answer.

Figure 9.1 shows the brain weights of humans and their ancestors com-
pared to those of living animals. The mammals are characterized by the
purple lines which are substantially above the frogs and reptiles. This is
because the mammals have corticies and the attendant forebrain structures.
Not shown on this graph but near the top with highly developed brains are
the former land mammals, dolphins and whales. Stunningly recent work
suggests that dolphins have individual names that they use to identify them-
selves in calls. So far they are the only animals besides ourselves that have
been shown to do this.

9.1 The fossil record on hominids

How old are humans? This question can be answered by studying mirochon-
drial DNA. Every cell contains chromosomes that consist of large strands of
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Figure 9.1: Comparison of brain weight versus body weight for human an-
cestors compared to living animals. C'm - common man. Ho - homo erectus.
Hs - homo sapiens. A afar - Australopithecus afarensis [Permission Pending]

the DNA molecule that contains the material for copying the cell. But it also
contains mitochondrial DNA. During reproduction the DNA in the nucleus
is divided up, some coming from the male parent and some from the female
parent. However mitochondrial DNA is special in that it is copied in toto
from the female parent. Parenthetically, you might wonder why this is id-
iosyncratically so. It is believed that this DNA is a result of an invasion into a
prehistoric single cell by bacteria. The invasion was unsuccessful, the bacte-
ria got stuck and was used for extra energy by the cell. A speculation is that
this extra energy may have allowed cells to specialize into larger cell colonies
an ultimately us. But the main point here is that, since this DNA is copied
without alteration, the only alterations present can come from mutations in-
troduced by cosmic radiation. Thus the notion of a ‘mitochondrial Eve.” [1]
The mitochondrial DNA that we all share only differs by mutations, so that
if one traces back far enough, one has the concept of a common mother from
which we are all descended. The trick is estimating the mutation rates, but
one estimate puts this date for the mitochondrial eve at 200,000 years ago,
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making homo sapiens sapiens very recent on the evolutionary time scale.

Figure 9.2: Migration of early humans based on mitochondrial DNA data.
Letters denote distinct groups. [Permission Pending]

Of course a lot happened in these 200,000 years. Elaborate camps with
primitive but specialized bone tools date from about 70,000 years ago. And
the every detailed and exquisite cave paintings in France date from 40,000
years ago. The huge trappings of civilization date from about 5,000 to 10,000
years ago with the invention of writing and formation of large cities.

By the standard of these developments those of the previous years seem
modest. Figure 9.3 shows brain size plotted for the time period spanning
three million years before the present (YBP). At three million YBP human
ancestors live in Africa and are bipedal. At two million YBP they are making
very primitive stone axes that are thought to have been used for scraping
hides and meat from the carcasses of animals. A prevailing set of ideas is that
climate change forced them from arboreal environments onto grassy savannas
where they had to compete with large carnivores for food. They way they
could do that is to scavenge meat from carcasses as hyenas do today. In
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addition living in groups became more important for safety.
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FiG. 4. Brain size (in cm?) plotted against time (Myr) for specimens attributed to Hominidae.

Figure 9.3: Brain size represented in terms of volume plotted against age. In
the figure time, represented as millions of years before the present, is plotted
from right to left. The different symbols represent data from different human
species. [Permission Pending]

Al this time brain size is increasing steadily but does not really take off
to its present level of 1400 cubic centimeters until about 500,000 YBP.

9.2 DNA as program instructions

At the time of Mendel the understanding of genes was much simpler than
now. The packaged genetic material could be thought of as consisting of
genes that were expressed in traits such as eye color. Eye person has two
copies of each gene, the copies being termed alleles. During reproduction,
one allele from each parent appears in the new individual and only one of
these is expressed in the phenotype. So the chance of getting any particular
gene from a parent is one forth. You have half a chance that it will be copied
and half a chance that it will be expressed. Figure 9.4 shows this possibility.

This description still works but the situation is much more complicated.
The process of making a phenotype is governed by proteins. Estimates are
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Figure 9.4: In a highly schematized version of genes, they appear in a segment
of DNA in pairs. During reproduction just one of these is copied and just
one of the copied genes is expressed.

that the of the number of proteins is about 30,000 or so. Different proteins
are made by ‘reading’ the genetic code and constructing proteins as strings
of twenty simpler amino acids. You could think of a protein as an amino acid
‘necklace’ and that would work up to a point. The essential missing feature
in that description is that the proteins work by each having very compli-
cated three-dimensional structure that they manipulate to direct chemical
reactions. So the bad news is that the situation has become much more com-
plicated but the good news is that we are beginning to understand parts of
it.

The other astonishing bit of news is that the DNA is not a static piece of
data that is read in the making of proteins but contains chemical switches.
To understand this part, it helps to appreciate the ‘before picture.” At one
time, until fairly recently, an old saw was that the brain had to rely heavily
on the environment - nurture- for its programming as their were not even
remotely enough bits in the DNA to encode the brain’s structure. A standard
argument was that the number of bits in the DNA was much less that the
number of bits needed to specify synapse weights. Now we know that the
situation is different because the proteins can interact with the DNA in the
course of developing a phenotype by turning on and off switches on the
DNA. This capability allows the progression of protein manufacture to be
modulated in time. This is easily appreciated by considering the concept of
stem cells. Since phenotypes start from a single cell, initially all the cells
look alike, but as they divide, their individual chemical switches get set in
different ways so that they can develop into different cells with very different
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properties. In short the entire process can be thought of a a very large
computer program!

The fact that the DNA represents a piece of program code is illustrated by
an astonishing manipulation done by Gehring and colleagues. They were able
to transplant a piece of the DNA that specifies a mouse eye into a segment
of the DNA of a small fly known as drosophila. To everyone’s amazement
compound eyes appeared on the drosophila. These eyes were non-functional
and appeared at strange places, but they were compound eye structures as
shown in Figure 9.5. This experiment overturned another popular belief and
that was that since vision was so important it had been evolved separately
in insects and mammals. Insect eyes have a tessellation individual lenses
where each lens has its own set of neurons at the end. In contrast, mammals
have a single lens that focuses light on an array of light sensitive cells. The
argument was that the eyes were so different in structure, that they would
have very different DNA specifications. But the experiment shows just the
opposite, the program code that works for the mouse works for the fly also.

9.3 Genetic Algorithms

While it will take a long time before we understand the complicated program
that constructs the phenotype, the forces that guide evolution have many
insightful models that are cast as computer programs. The general class of
algorithms that are based on evolutionary ideas are naturally termed genetic
algorithms. Such algorithms describe their DNA equivalent as a string of
symbols and the fitness function as a function that produces a number for
each symbol instance. A more complicated variant is genetic programming
or GP. In GP, the symbol string represents a program that can be executed.
The performance of the program can be rated and that rating becomes its
fitness.

The basic idea of a genetic algorithm is very simple. Instances of the
genotype are coded as strings. The algorithm uses a population of these
strings where different strings have different fitness values. In the actual
biology fitness is an incredibly complex function that represents the planet’s
ecosystem including all the competitive species with which the population
shares territory. However here all that complexity is encoded into a single,
usually fairly simple, function that can produce a fitness number for each
string.
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Figure 9.5: Electron micrographs of drosophila showing the compound eyes
that result from a transplanted mouse gene. A and B show large scale views
and C and D show close ups.

The simplest versions of GAs do not worry about having males and fe-
males. Instead pairs of individuals are selected randomly based on their
fitness. Higher fitness individuals are more likely to be selected. New indi-
viduals are produced by a crossover operation that interchanges segments of
the strings. Usually the algorithm is divided into generations where a num-
ber of new individuals are produced, a number of individuals are selected
for death, and then the resultant population has their fitness values recom-
puted and the process repeats. To make this all clear we will walk through
a particular example.

The example is purposely chosen to be very simple so all the basic steps
can be illustrated. Consider finding the maximum of the function

f(z) = =2 + 122 + 300
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Table 9.1: Initial condition for the genetic algorithm example.

Individual Genetic Code =z f(z) p(x)

1 10110 22 80 0.08
2 10001 17 215 0.22
3 11000 24 12 0.01
4 00010 2 320 0.33
5 00111 7 335 0.36
Average 192
where x takes on integer values 0, ..., 31. This example is easily solved with

direct methods, as any college calculus graduate will tell you, but it will be
encoded as a GA search problem to demonstrate the operations involved.

The first step in defining the GA is to code the search space. The encoding
used for genetic operations is the binary code for the independent variable
2. The numbers 0 to 31 need five binary bits where 00000 is zero, 00001 is
one, 00010 is two, 00011 is three and so on. The binary code is a very simple
representation of the ‘DNA’ for this problem.

The actual number that each string represents can be thought of as a
simple ‘phenotype.” Thus the fitness of each number is just that returned
by the fitness function f(z). An auxiliary step is needed to turn the fitness
value into a probability, but this is easily accomplished by normalizing over
the individuals. Thus the probability of being selected for mating p(x) is

specified by
f(S)

M=
The normalized fitness over the whole population determines the probability
of being selected for reproduction. Table 9.1 shows an initial condition for
the algorithm starting with five individuals.

Now select two individuals for reproduction. Selections are made by ac-
cessing a random number generator, using the probabilities shown in the
column P,..;. Suppose that individuals 2 and 4 are picked.

The operation we will use is crossover, which requires picking a locus on
the string for the crossover site. This is also done using a random number
generator. Suppose the result is two, counting the front as zero. The two new
individuals that result are shown in Table 9.2 along with their fitness values.
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Table 9.2: Mating process.

Mating Pair Site New Individual f(z) p(x)

00010 2 10010 192 0.14
10001 2 00001 311 0.23

Table 9.3: The genetic algorithm example after one step.

Individual Genetic Code =z f(z) p(2)

1 10010 18 192 0.14
2 10001 17 215 0.16
3 00001 1 311 0.23
4 00010 2 320 0.23
5 00111 7 335 024
Average 275

Now these new individuals have to be added to the population, maintaining
population size. Thus it is necessary to select individuals for removal. Once
again the random number generator is consulted. Suppose that individuals
1 and 3 lose this contest. The result of one iteration of the GA is shown in
Table 9.3.

Note that after this operation the average fitness of the population has
increased. You might be wondering why the best individuals are not selected
at the expense of the worst. Why go to the trouble of using the fitness values?
The reason can be appreciated by considering what would happen if it turned
out that all the best individuals had their last bit set to 1. There would be
no way to fix this situation by crossover. The solution has a 0 in the last
bit position, and there would be no way to generate such an individual. In
this case the small population would get stuck at a local minimum. Now
you see why the low-fitness individuals are kept around: they are a source of
diversity with which to cover the solution space.
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9.4 Schemata

In very simple form, the example exhibits an essential property of the genetic
coding: that individual loci in the code can confer fitness on the individual.
Since the optimum is 6, all individuals with their leading bit set to 0 will
be fit, regardless of the rest of the bits. In general, the extent to which
loci can confer independent fitness will simplify the search. If the bits were
completely independent, they could be tested individually and the problem
would be very simple, so the difficulty of the problem is related to the extent
to which the bits interact in the fitness calculation.

A way of getting a handle on the impact of sets of loci is the concept of
schemata (singular: schema). The exposition here follows David E. Gold-
berg’s text Genetic Algorithms in Search, Optimization, and Machine Learn-
ing (Reading, MA: Addison-Wesley, 1989), which has much additional detail.
A schema denotes a subset of strings that have identical values at certain loci.
The form of a schema is a template in which the common bits are indicated
explicitly and a “don’t care” symbol (x) is used to indicate the irrelevant
part of the string (from the standpoint of the schema). For example, 1 101
denotes the strings {10101, 11101}. Schemata contain information about the
diversity of the population. For example, a population of n individuals using
a binary genetic code of length [ contains somewhere between 2! and n2!
schemata.

Not all schemata are created equal, because of the genetic operations,
which tend to break up some schemata more than others. For example,
1 % % % x1 is more vulnerable to crossover than %11 % **. In general, short
schemata will be the most robust.

To see the importance of schemata, let’s track the number of represen-
tatives of a given schema in a population. It turns out that the growth of
a particular schema in a population is very easy to determine. Let ¢ be a
variable that denotes a particular generation, and let m(S,¢) be the number
of schema exemplars in a population at generation t. To simplify matters,
ignore the effects of crossover in breaking up schema. Then the number of
this schema in the new population is directly proportional to the chance
of an individual being picked that has the schema. Considering the entire
population, this is

f(5)
2 fi

m(S,t+1) =m(S,t)n
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because an individual is picked with probability %s}

K3

and there are n picks.

This equation can be written more succinctly as

f(5)
fave

To see the effects of this equation more vividly, adopt the further simpli-
fying assumption that f(S) remains above the average fitness by a constant
amount. That is, for some ¢, write

f(S) = fave(1+0)

m(S,t+ 1) =m(S,t)

Then it is easy to show that
m(S,t) = m(S,0)(1 + o)

In other words, for a fitness that is slightly above the mean, the number of
schema instances will grow exponentially, whereas if the fitness is slightly
below the average (c negative), the schema will decrease exponentially. This
equation is just an approximation because it ignores things like new schema
that can be created with the operators, but nonetheless it captures the main
dynamics of schema growth. Figure 9.6 shows the main effects clearly. At
three different points in the evolution simulation something new is discovered
that increases fitness and it quickly spreads through the population.

Of course whether this happens in a real system depends on the resolution
of a lot of complications. As Ridley has pointed out [?], for an animal the
fitness function is often critically dependent on the other species in its habi-
tat. If a predator takes advantage of a particular feature, the prey can evolve
a defense to this exploitation, starting a never ending process. Nonethe-
less if ideal conditions prevail and there are no such corrections, then the
exponential take-off shown in Figure 9.6 will occur.

The upshot of the previous analysis has been to show that fit schemata
propagate exponentially at a rate that is proportional to their relative fit-
ness. Why is this a good thing to do? The answer can be developed in
terms of a related problem, the two-armed bandit problem (Las Vegas slot
machines are nicknamed “one-armed bandits”). The two-armed slot machine
is constructed so that the arms have different payoffs. The problem for the
gambler is to pick the arm with the higher payoff. If the arms had the same
payoff on each pull the problem would be easy. Just pull each lever once and
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Figure 9.6: An example from a particular genetic program showing the run-
away effect when a schema is discovered. In this plot one axis shows the
fitness, indicated as ‘hits,” and another shows the generations. Thus the plot
shows how the fitness distribution among individuals - or fitness histogram
- evolves with the generations. For example the green line shows that at
generation 20 most of the population has a fitness level near 65. But the
important point is that at the indicated arrows something new has been
discovered. The time course shows that it quickly spreads throughout the
population.

then pull the winner after that. The problem is that the arms pay a random
amount, say with means m; and msy and corresponding variances o; and os.

This problem can be analyzed by choosing a fixed strategy for N trials.
One such strategy is to pull both levers n times (where 2n < N) and then
pull the best for the remaining number of trials. The expected loss for this
strategy is

L(N,n) = [my —ma|{(N —n)p(n) + n[l —p(n)[} (9.1)

where p(n) is the probability that the arm that is actually worst looks the
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best after n trials. We can approximate p(n) by

—x2/2

where

With quite a bit of work this equation can be differentiated with respect
to n to find the optimal experiment size n*. The net result is that the total
number of trials grows at a rate that is greater than an exponential function of
n*. More refined analyses can be done, but they only confirm the basic result:
than an exponential function of n*. More refined analyses can be done, but
they only confirm the basic result: Once you think you know the best lever,
you should pull that lever an exponentially greater number of times. You
only keep pulling the bad lever on the remote chance that you are wrong.
This result generalizes to the k-armed bandit problem. Resources should be
allocated among the k arms so that the best arms receive an exponentially
increasing number of trials, in proportion to their estimated advantage.

In the light of this result let us return to the analysis of schemata. In
particular, consider schema that compete with each other. For example, the
following schemata all compete with each other:

% 0 % 00%
*x 0% 01x
*x 0% 10%
%% (0% 11x
*x 1 % 00%
xx 1% 01x
% 1% 10%
%1% 11%

Do you see the relationship between the bandit problem and schema? If these
schemata act independently to confer fitness on the individuals that contain
them, then the number of each schema should be increased exponentially
according to its relative fitness. But this is what the GA is doing!

You should recognize that all of the foregoing discussion has not been
a proof that GAs work, but merely an argument. The summary of the
argument is as follows:
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e GAs seem to work. In practice, they find solutions much faster (with
higher probability) than would be expected from random search.

e [f all the bits in the GA encoding were independent, it would be a simple
matter to optimize over each one of the bits independently. This is not
the case, but the belief is that for many problems, one can optimize
over subsets of bits. In GAs these are schemata.

e Short schemata have a high probability of surviving the genetic opera-
tions.

e Focusing on short schemata that compete shows that, over the short
run, the fittest are increasing at an exponential rate.

e This has been shown to be the right thing to do for the bandit problem,
which optimizes reward for competing alternatives with probabilistic
payoffs that have stable statistics.

e Ergo, if all of the assumptions hold (we cannot tell whether they do,
but we suspect they do), GAs are optimal.

9.5 The power of GAs

The example of computing the maximum of f(x) = —x? + 12z + 300 is so
simple that it would be easy to be lulled into thinking that GAs are toy
models that are far from any useful level of modeling reality. However keep
in mind that GAs have beaten human programmers in several instances. In
one example the task is to produce short programs that can make copies of
themselves. The shorter programs are deemed more successful and allowed
to run longer. In this case a genetic algorithm has bested the best human
programmers could do.

Another example perhaps closer to everyone’s experience is the computer
game of Pac Man. A huge percentage of people have played this game which
involves a computer icon that can be steered in a maze that is visible from
the top on a computer screen. Figure 9.7 shows a moment in the game. The
Pac Man figure earns points by eating small pellets in the maze but can earn
a lot more by eating one of four pills or an especially valuable moving fruit.
The Pac Man must also avoid four monsters that chase it. The pills also
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have a special bonus in that for a short while after Pac man consumes one
the monsters turn color and can be caught and captured.

This game was encoded as a genetic algorithm by Rosca[?]. The ‘DNA’
represented a program for directing the Pac Man figure. The program had
some sensing ability to know where the nearest two monsters were and where
the nearest pill and fruit were located. And it had movement instructions
that would direct the motion toward or away from these objects. A popula-
tion of random seed programs was created at the start of the algorithm but
the algorithm did the rest. Random fit programs (based on how many points
they achieved in a time interval) were selected for breeding. The crossover
process interchanged pieces of program instructions, creating new programs.

If you have ever done any programming of any kind you might be sus-
picious at this point, wondering how the random interchange of instructions
could even produce a program that would execute. The algorithm was greatly
aided by using programs coded in the language LISP which has the great
virtue in that crossover points that guarantee executable programs are easily
selected.

Starting with different collections of random programs, the populations
evolve to have different sets of behaviors. The results of one particularly
interesting run are shown in Figure 9.7. The programs have evolved to wait
by the pills until the monsters get close. Just before they strike, Pac Man
eats the pill and runs them down. In the figure, three monsters have just
been captured by this technique and Pac Man is in hot pursuit of a forth.

9.6 Why big brains?

At this point you have been through a whirlwind tour of the genetic revolu-
tion with an introduction to the modeling tool of genetic algorithms. Hope-
fully enough of the elements have been exposed to guide a tour of answers
to the the basic question of this chapter: Why do humans have big brains?

e Bipedalism. Standing upright allows use of hands for complex manip-
ulations

e Tool use. Tools place intellectual demands of the brain, leading to a
spurt in complexity

e Language. The use of vocal symbols with syntax is a breakthrough
that forces brain expansion.
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Figure 9.7: A moment in the trace of Rosca’s genetic programming-based
Pac-Man program. The Pac Man has waited in the south-west corner by
moving back and forth to attract the four monsters. When they are very
close, it eats the pill which temporarily bequeaths the power to capture
monsters. Once captured they are sent to the central pit for a small amount
of time. At the moment shown Pac man has captured three and is chasing a
forth.

e Culture/social groups. The complex demands of successful interactions
in large groups drives brain complexity.

e Software breakthrough. In trying to meet any or all of the above,
brain architecture discovers new algorithms with dramatically improved
performance.

e Sexual selection. female mates select for features that are produced by
big brains.

In evaluating these alternate explanations, one can now be guided by an
understanding of how the underlying genetic mechanisms work, as well as
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the fossil record. And of course the answer can easily be all of the above.
It could be the case that each of the mechanisms outlined above conferred
enough incremental improvement in fitness to be kept but there was a huge
synergy in their ultimate combination. So the question being asked is closer
to: Is there one item on the list that would stand out from the rest?

One further puzzle is the closest primate relatives the chimpanzees. Es-
timates vary, but roughly a third of primate DNA is thought to be used
in brain construction and chimpanzee differs from our DNA by only a few
tenths of a percentage point. Why did not chimps evolve big brains? As
Willis points out [1], one major difference between chimps and us is that we
are born with flexible skull plates that allow the brain to grow in size by a
factor of three postnatally. Chimps by comparison have fixed skull plates so
that their brains at birth are 80% of their final size.

Bipedalism was no doubt important in that if the hands are needed for
basic locomotion they cannot easily be used for something else. Furthermore
the development of hands with opposable thumbs in primates was accompa-
nied with a corresponding area of the cortex. Nonetheless
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