
Chapter 7

Operating System

Any system that must operate in a complex and changing environment must
be compositional, that is it has to have elemental pieces that can be com-
posed to create its more complex structures.1 Figure 7.1 illustrates two broad
compositional approaches that have been pursued in theories of cognition, as
well as in robotics. The first decomposition works on the assumption that
the agent has a central repository of symbolic knowledge. The purpose of
perception is to translate sensory information into symbolic form. Actions
are selected that result in symbolic transformations that bring the agent
closer to goal states. This sense-plan-act approach is typified in the robotics
community by early work on Shakey the robot,2 and in the cognitive science
community by the theories of David Marr.3 In principle, the symbolic plan-
ning approach is very attractive, since it suggests that sensation, cognition
and action can be studied independently, but in practice each step of the
process turns out to be very difficult to characterize in isolation.

The difficulties with the compartmentalized symbolic planning approach
have led to alternate proposals. In the robotics community Brooks4 has
attempted to overcome these difficulties by suggesting a radically different
decomposition, illustrated in Figure 7.1B. Brooks’ alternate approach is to at-
tempt to describe whole visuo-motor behaviors that have very specific goals.
Behavior-based control involves a different approach to composition than
planning-based architectures: simple microbehaviors are sequenced and com-
bined to solve arbitrarily complex problems. The best approach to attaining
this sort of behavioral composition is an active area of research. Brooks’
own subsumption architecture worked by organizing behaviors into fixed hi-
erarchies, where higher level behaviors influenced lower level behaviors by

1

2 CHAPTER 7. OPERATING SYSTEM

Perception Cognition Action

A

B

a vison module

a sensory-motor behavior

Figure 7.1: Two approaches to behavioral research contrasted. A) In the
Marr paradigm individual components of vision are understood as units. B)
In the Brooks paradigm the primitive unit is an entire behavior.

over-writing their inputs. Subsumption works spectacularly well for trophic,
low-level tasks, but generally fails to scale to handle more complex problems.5

For this reason, two diverse communities - robotics and psychology - have
been working on Brooks-like cognitive architectures for managing complex
tasks that take a more integrated approach to vision and action, but both
groups have moved toward model architectures that have a more hierarchical
structure e. g. [Newell, 1990; Brooks, 1986; Firby et al., 1995; Bryson and
Stein, 2001; Arkin, 1998]. In particular, robotics researchers have gravitated
to a three-tiered structure that uses strategic, tactical, and detail levels to
model complex behavior [Bonasso et al., 1997]. These versions of Brooks’
behavior-based control centers around programs termed microbehaviors. A
microbehavior is a complete sensory/motor routine that incorporates mech-
anisms for measuring the environment and acting on it to achieve specific
goals. For example a collision avoidance microbehavior would have the goal
of steering the agent to avoid collisions with objects in the environment. A
microbehavior has the property that it cannot be usefully split into smaller
subunits. Walter’s microbehavior control architecture follows more recent
work on behavior based control (e.g.6,7) that allows the agent to address

3

changing goals and environmental conditions by dynamically activating a
small set of appropriate behaviors. Each microbehavior is triggered by a
template that has a pattern of internal and environmental conditions. The
pattern-directed activation of microbehaviors provides a flexibility not found
in the fixed subsumption architecture.

At this point we have laid the groundwork to discuss the running of
programs. You might think that this was done in Chapter five. That venue
laid out the basic cycle of navigating between states and actions, but many
additional and vital issues arise in using programs to direct the body in the
course of behaviors. Taken together they comprise the kinds of tasks that a
silicon computer’s operating system does. At this point its obvious that the
brain computes in a way that is very different form silicon computers, but
particularly for computational abstractions at this level, the problems faced
are similar. Let us introduce them first before characterizing them in detail.

Working memory In the 1950s, Miller famously describe the human abil-
ity to memorize ‘7± 2’ items. This figure has since shrunk to 4, but the fact
remains that human short term memory for new items is limited. Allen
Baddley has made extensive study of this limit and coined the term working
memory. He has also shown that visual working memory is separate from
audio working memory under certain conditions. But our focus is on its
purpose for behaviors. In particular its role in computation. It turns out
to have a rather obvious one. The brain has a huge inventory of programs
for doing things, but they can be much more useful if they can be indexed
by variables. You may have a way of spreading jam on bread. It turns out
this skill would work for mayonnaise as well as mustard. So naturally the
best thing to do would be to structure the program in a way that it could
have a variable ‘the-thing-that-is to-be-spread.’ Another example would be
everyday conversation. You can describe an everyday situation, but would
like it organized so that, if it is about a particular person, his or her name
could simply be inserted in your more or less stock description. This is a
putative role for working memory: to extend the value of standard programs
by giving them variable arguments. Working memory is the place-holder for
particular values of these arguments.

Program execution Another important issue is that of program execution.
In the earlier description of programs as cortex-basal ganglia transitions, the

4 CHAPTER 7. OPERATING SYSTEM

issue of whether or not actions were successful or not, was glossed over.
However in the real world with fallible human bodies things can easily go
wrong and there have to be ways of recognizing that things are going awry
and compensating accordingly. Coming to grips with this requires extending
the state-action paradigm to incorporate measurements taken by routines.

Multi-tasking Given that programs are being executed, how many of
them can be simultaneously active? this is a complicated question as its
answer impacts many levels of abstraction. At the very lowest level, a worry
is that, since the neural architecture is shared, there might be cross-talk
wherein the neural code for one program interacts destructively with that of
another. At a higher level, there is the issue of variable binding. Given that
working memory is needed for this job, is it a shared resource when multiple
programs have variable binding needs? We will review some psychological
data that speaks to this issue.

Indexing Given that a program’s execution can be managed, how is it
picked in the first place? You could drop what ever you are doing right
now and brush your teeth, but for all but a small set of venues, it would
be an inappropriate behavior. Given the vast set of possible behaviors that
you can do, how does the brain pick an appropriate set for the situation
of the moment? I term this the indexing problem. How to solve it is a
huge open question upon which very little work has been done. However
it is solve though, there is an important triage that can be done, and this
is necessary to characterize the program library. Programs can be in three
different activation states (not to be confused with the cortex’s ‘states’ !):
asleep, active, and engaged. A program is asleep is it has no trace in terms of
neural spikes. It potentially could be activated given an internal bodily need
or some external stimulus, but in the asleep state, it is extant only by virtue
of its synaptic connections. A program is active if there are at least cortical
spikes denoting its current state. It may be keeping track of the transit of the
body or it may be used in some simulation of an abstract thought process,
but the key element for the active state is that it is not interfacing with the
body’s large scale sensorimotor resources.

7.1. WORKING MEMORY 5

7.1 Working memory

The neural network coding of the driving example illustrates both sides of a
cognitive coin. On the one hand a vast array of successful driving experiences
means that you have seen a lot of data to program your table. Take a moment
to estimate the number of visual fixations you have made while driving using
the standard rate of three per second multiplied by the total time spent on
the road. You’ll be impressed with yourself! On the other hand, even given
all this experience there are still situations that arise that are not covered in
the table. What happens then?

The penultimate sentence is not completely true in the sense that al-
though its overwhelmingly unlikely that there will be a table entry for a
similar situation, the rub is that there will need to be some work done to
represent this similarity, because the table entries are a compressed code that
circumscribe the situations seen so far. To make this concrete and sticking
with driving, imagine as a westerner driving for the first time in India and
encountering a cow at a busy intersection in an urban setting. You know
how to handle pedestrians and perhaps animals in pastoral settings but the
particular cow-urban combination has never come up. The cow will have its
albeit primitive strategy for avoiding you but what is it? There all all kinds
of table entries for situations similar to this for various slow moving objects,
so its just a matter of somehow getting the cow features interpreted as a
table entry for the right table.

The cow coding problem is just another example of the binding problem.
We need some special apparatus to interpret data that is to play a role in a
table that we already have. This job is done by working memory, a some-
what loosely defined concept to address this situation. Working memory
was unearthed by Miller who noticed that, for a variety of different circum-
stances where we had to remember things, the number of novel things that
can be remembered is rather small. Miller bracketed the number in his land-
mark paper as ”7 plus or minus 2,” but subsequent experiments have revised
this downwards to about four. Just what constitutes an item of working
memory? For unrelated digits, the item is likely to be a single digit as in
7651993826547915. But how about the following digits?

1492177619391963
They are easily remembered in the US as the year of Columbus’s landing,

the year of the American independence declaration, the start of world war II,
and the year of Kennedy’s assassination. What has been done, in terms of

6 CHAPTER 7. OPERATING SYSTEM

psychological jargon, is that the items have been “chuncked,” or associated
with existing tokens. Although the psychologists, particularly Baddley in
this case, have been extraordinarily good at ferreting out the measurable
properties of working memory, its the case that a computational account
provides a crisper description of the underlying technical issues and how
they might be addressed. So at this point we’ll switch to that venue.

Working memory can be seen computationally as the state needed to di-
rect behavioral programs. To harken back to the driving venue, when driving
down a busy street with directions to turn right at the third light, its the
number of lights seen so far that is the important state. All the other features
of the dynamic scene are - for this task - unimportant. Furthermore you will
have noticed that the amount of storage we need to describe the essential
state is very modest. At any point in a lengthy complicated program, you
just need to have enough state to keep track of where you are in the program.

Another issue related to state is the notorious “chunking,” a term used
somewhat out of desperation, I think. What is going on can be informed
by the computer science concept of a pointer, wherein a small amount of
information can herald or ”point to” a more elaborate description.

Although the human brain is radically different in many ways from con-
ventional silicon computers, they both have to address many of the same
problems. Thus it is sometimes useful to look at how problems are handled
by silicon computers. One major problem is that of variable binding. As rec-
ognized by Pylyshyn [1989] in his FINST studies, for symbolic computation
it is often necessary to have a symbol denote a very large number of bits,
and then modify this reference during the course of a computation. Let us
examine how this is done using an artificial example.

Table 7.1 shows a hypothetical portion of memory for a computer video
game where a penguin has to battle bees. The most important bee is the
closest, so that bee is denoted, or pointed to, with a special symbol ”the-bee-
chasing-me.” The properties of the lead bee are associated with the pointer.
That is, conjoined with the symbol name is an address in the next word of
memory that locates the properties of the lead bee. In the table this refers
to the contents of location 0001, which is itself an address, pointing to the
location of beeA’s properties, the three contiguous entries starting at location
0011. Now suppose that beeB takes the lead. The use of pointers vastly
simplifies the necessary bookkeeping in this case. To change the referent’s
properties, the contents of location 0001 are changed to 1000 instead of 0011.
Changing just one memory location’s contents accomplishes the change of

7.1. WORKING MEMORY 7

0000 the-bee-chasing-me
0001 0011
0010
0011 beeA’s weight
0100 beeA’s speed
0101 beeA’s No. of stripes
0110
0111
1000 beeB’s weight
1001 beeB’s speed
1010 beeA’s No. of stripes
1011

0000 the-bee-chasing-me
0001 1000
0010
0011 beeA’s weight
0100 beeA’s speed
0101 beeA’s of stripes
0110
0111
1000 beeB’s weight
1001 beeB’s speed
1010 beeA’s of stripes
1011

Table 7.1: A portion of computer memory illustrating the use of pointers.
Left:Reference is to beeA. Right: Reference is to beeB. The change in refer-
ence can be accomplished by changing a single memory cell.

reference. Consider the alternative, which is to have all of the properties
of the ”the-bee-chasing-me” in immediately contiguous addresses. In that
case, to switch to beeB, all of the latter’s properties have to be copied into
the locations currently occupied by beeA. Using pointers avoids the copying
problem.

It should be apparent now how deictic reference, as exemplified by eye
fixations, can act as a pointer system. Here the external world is analogous to
computer memory. When fixating a location, the neurons that are linked to
the fovea refer to information computed from that location. Changing gaze is
analogous to changing the memory reference in a silicon computer. Physical
pointing with fixation is a technique that works as long as the embodying
physical system, the gaze control system, is maintaining fixation. In a similar
way the attentional system can be thought of as a neural way of pointing.
The center of gaze does not have to be moved, but the idea is the same: to
create a momentary reference to a point in space, so that the properties of
the referent can be used as a unit in computation. The properties of the
pointer referent may not be, and almost always are not, all those available
from the sensors. The reason is that the decision-making process is greatly
simplified by limiting the basis of the decision to essential features of the
current task.

Both the gaze control system and neural attentional mechanisms each

8 CHAPTER 7. OPERATING SYSTEM

dedicate themselves to processing a single token. If behaviors require ad-
ditional variables, these must be kept in a separate system termed working
memory.?,?,?,? Although the brain works on very different principles than a
computer, the problem faced is the same. In working memory the references
to the items therein have to be changed with the requirements of the ongoing
computation. The strategy of copying that was used as a straw man in the
silicon example is even more implausible here, as most neurons in the cortex
exhibit a form of place coding?,?,? that cannot be easily changed. Thus it
seems that at the one-third second time scale, ways of temporarily binding
huge numbers of neurons and changing those bindings must exist. That is,
the brain must have some kind of pointer mechanism.

With the concepts of state and pointers we can summarize the issue re-
lated to working memory. The brain needs to keep track of where it is in a
program, so the neurons must represent the essential state. This state has
the special characteristic that it is using the state elements in a way that is
not hard coded in the cortical table. What is desired is that items that are
hard coded be used in a role that is also hard coded. This new relationship
is captured by a temporary cabal of neurons that are specially suited for the
job. The neurons themselves do not need to represent all the information,
but just the parts that are not already hard coded. In that sense they can
be thought of as pointers to the hard coded information.

7.2 Program execution

Given that the appropriate variables have been bound to the program the
next step is to execute it. At an abstract level the program is going to be
represented as a state-action table that can be sequenced through. To make
this description more concrete let us consider the down to earth example
of making a peanut butter sandwich. One level of description would have
the major steps denoted as in Table 7.2. You might quibble with this level,
as being too abstract as each of the steps could be broken down into finer
grained steps. For example, spreading the peanut butter onto the bread may
involve more than one trip to the jar depending on the size of the bread and
the size of the glob of peanut butter on each transit of the knife. The exact
way to handle such hierarchies is not completely settled, and of course the
steps both visual and motor routines, but whatever the final result, it should
be cast in terms of state-action table lookups.

7.2. PROGRAM EXECUTION 9

Task Code Description

BT Put the bread onto the plate
PLF Take the lid off the peanut butter jar
JLF Take the lid off the jelly jar
KH Pick up the knife
POB Spread the peanut butter onto the bread
JOB Spread the jelly onto the bread
PLO Put the peanut butter lid on
JLO Put the jelly lid on
KT Put the knife on the table
FB Flip the bread to complete the sandwich

Table 7.2: The organization of human visual computation from the perspec-
tive of the microbehavior model.

Table 7.3 summarizes the scheduling of 10 subtasks in making a peanut
butter sandwich by 3 human subjects. We make some coding assumptions
such as the knife is picked up only once and is not put down until spreading
finishes. Despite that some chronological constraints, e.g. BT, PLF and
KH must precede POB and JOB, have ruled out most of the 10! orders, the
number of possible orders remaining is still a large number If we divide the
10 subtasks into 3 stages: {BT, PLF, JLF, KH}, {POB, JOB} and {PLO,
JLO, KT, FB}, we have at least 4!×2!×4! = 1152 different orders. However,
experiments with additional subjects show that the orders picked by human
subjects display common features.

If the sandwich construction is proceeding smoothly, then the maker’s
standard program can be followed but in the event of a mishap, some other
program has to be invoked to correct the error. How that happens is un-
settled, but a way station that is needed for its solution is some way of
detecting that something has gone awry. This component of the problem
has been modeled by Yi? and we can gain a tremendous amount of under-
standing by following its structure. The task is to recognize the stage of the
sandwich construction process and in particular, to identify the subtask un-
derway. Figure 7.2 shows two frames from the on-line recognition algorithm.
In line with the routines assumption, the algorithm tests for color informa-
tion in the foveal region and also classifies the momentary trajectories of the

10 CHAPTER 7. OPERATING SYSTEM

SEQUENTIAL TIME INTERVALS

SUBTASK
LIST

1 2 3 4 5 6 7 8 9 10
BT ABC
PLF A C B
JLF BC A
KH AB C
POB A C B
JOB B C A
PLO A B C
JLO C AB
KT C AB
FB B C A

Table 7.3: Scheduling of Subtasks. The task is decomposed into ten subtasks
including BT (putting bread on table), PLF (taking peanut butter lid off),
JLF (taking jelly lid off), KH (grabbing knife in hand), POB (spreading
peanut butter on bread), JOB (spreading jelly on bread), PLO (putting
peanut butter lid on), JLO (putting jelly lid on), KT (putting knife on table),
and FB (flipping bread to make an sandwich). Letters A, B and C denote
the orders of subtasks taken by 3 subjects, e.g. in the first 2 steps subject C
put bread on the table and took jelly lid off.

7.2. PROGRAM EXECUTION 11

A. Spreading peanut butter on the bread B. Spreading Jelly on the bread

Figure 7.2: Steps in sandwich making recognized by a computational model
that uses Bayesian evidence pooling to pinpoint steps in the recipe by ob-
serving the sandwich constructor’s actions. The algorithm has access to the
central one degree of visual input cetered at the gaze point, which is delim-
ited by the cross-hairs. Also the position and orientation of each wrists is
measured. The label in the upper left is the algorithm’s estimate of teh stage
in the recipe.

two wrists. It aslo keeps track of the temporal stage of the construction. All
of this information provides evidence, and the computational task is to turn
this evidence into a task estimate.

It turns out that the Bayesian algorithm described in Chapter four for es-
timating velocities works nicely for this problem also. It just has to be scaled
up to the more elaborate venue. In the velocity estimation algorithm, three
sources of information, two velocity estimates and a prior, were combined
in another node. This calculation can be expressed graphically as shown in
Fig. 7.3

Armed with this notation, the larger graph for sandwich-making of Fig. 7.4A
can be easily interpreted. The shaded nodes represent data that is directly
measured by a routine. Once these measurements are taken their evidence
can be quickly propagated throughout the graph. The graphical nodes are
shorthand for the different numbers of state values as shown by the inset
table. Fig. 7.4B shows how the overall construction is handled. Suppose the
first task done is t1. Then there is a probability p of doingt2 next and a
probability q of doing t4 after that. Each time a task is posited, the evidence
for it is evaluated.

12 CHAPTER 7. OPERATING SYSTEM

Figure 7.3: (Left)The model for velocity detection turns out to be general-
izable to any graph. Evidence can be propagated very quickly throughout
graphs that have no loops, such as the larger sandwich-making evidence
graph. (Right) The nodes in the graph summarize many different states that
have different numerical values. For example the node p(z|y) is shorthand
for the distribution over its many possible states.

At this point the whole problem of making a sandwich is far from being
solved, however now there is some insight as to the steps in the process. As
the actions are generated, an ancillary algirthm can monitor their outcomes.
If the desired next stage, where a subtask has been achieved is communicated
with a high probability, all is well, otherwise some fault handling must be
invoked.

7.3 Multi-tasking

Before taking up the issue of how the brain might run multiple programs at
once, it may be helpful to review how silicon computers do this. The simplest
strategy would be to put them in a queue and run them in the queue order,
but the problem with that strategy is that a very long unimportant program
may hog the processor, making more important programs wait. Thus the
standard solution is to break processor time into quanta of about 100 mil-
liseconds or so and work or multiple jobs a little bit. A good analogy is a
simultaneous chess exhibition where a grandmaster will play several oppo-
nents simultaneously. The grandmaster typically will have the opponents
arranged in a rectangle around her so she can transit standing positions at

7.3. MULTI-TASKING 13

A

B

Figure 7.4: The computational model behind the sandwich recipe recognizer.
A. A graph similar to the Bayes network described in Chapter two but more
elaborate is used to weight measurements from sensors (grey nodes) and
propagate it to a ‘Task’ node. The graph shown is a convention for one that
has many nodes. The exact numbers used are shown in the inset table. B.
The sandwich making is coded as a sequence of large-scale actions, such as
spreading peanut butter. Such tasks are denoted by a specific index. The kth

task would be tk. The task graph by itself codes all the different sequences
of tasks that can be used in sandwich making.

14 CHAPTER 7. OPERATING SYSTEM

each of the boards easily. What happens is that she generally will know who
the best players on the other side of the board are, and so will stop opposite
them and spend more time thinking before choosing a move. In the same
way a processor transits the programs, executing the next set of the instruc-
tions in each program, and spends the most time on the important programs’
instructions.

What sense does it make to think of the neural circuitry as doing more
than one thing at a time? As mentioned before, this obviously happens for the
neural circuitry that control the basic life support functions of the body. As
for cognitive behaviors that require complex sensory-motor correspondences,
the issue is very much open. Certainly if the brain was forced for some reason
to do single programs sequentially, it would face all the disadvantages that
silicon computers do. This would also be exacerbated by the slowness of the
neural circuitry, for as we know, in processing a single program, the smallest
step usually requires on the order of 200 milliseconds minimum, and usually
much more, say seconds. These small differences are important, particularly
for some motor behaviors. Land has shown that the difference between expert
cricket batsman and duffers is that the experts are 100 milliseconds faster in
anticipating the bounce point of the ball.

The facility with which the brain can do two things at the same time
has received extensive study by psychologists. In particular, Ruthruff et al?

had subjects do a dual task where they had subjects map one of three tones
and one of three letters visually displayed onto two key presses. Subjects
had to correctly press the appropriate two keys when the sound and letter
were displayed simultaneously. The data are shown in Fig 7.5. The subjects
fell into two groups. In one group, subjects were able to see the task as a
combined tone and letter task and therefore could simultaneously press the
two answer keys. In another one task was done either about 300 milliseconds
before or after the other.

The authors relate this data to a well known test of rapid serial visual
representation or RSVP. When searching for two images one after the other
in a very rapidly presented set of images subjects have difficulty responding
correctly when the second target is within 300 milliseconds of the first. An
example query would be indicate when a chicken follows a telephone.”

Given what we know about working memory, it is hard not to suggest
that it is the reason for the delays. In terms of programs, if the program
has no variable arguments then there is no issue, but if there is a variable
argument, then apparently the neural circuitry needs time to establish the

7.3. MULTI-TASKING 15

Figure 7.5: The Pashler laboratory study of multitasking. Subjects viewing
a screen see one of three characters and have to respond by pressing a corre-
sponding key. Simultaneously they hear one of three tones and have to press
a corresponding key. The plot shows that some subjects (the ‘Groupers’) can
treat the two tasks as a single complex task and press both keys simultane-
ously. Other subjects order the tasks so that one is handled before the other.
Elaborate controls imply that the Nongroupers are dealing with a cognitive
bottleneck.

temporary binding. In other words to move a pointer.

In most ecological settings there is usually sufficient time to move a
pointer if need be. Ongoing behaviors need to continue for several seconds
and need to manage multiple tasks at once as illustrated with an experi-
ment by Shinoda and Hayhoe who had subjects drive a virtual car. This was
done by having subjects use a car simulator that had a steering wheel and
pedals (See Figure 7.6A) while wearing a head mounted binocular display
that displayed a scene of a small town. Subjects were instructed to follow a
lead car as well as obey traffic signs. This meant that when approaching an
intersection, subjects had the dual tasks of following and looking for traffic
signs at the intersection. What you can see from a typical subject’s data
shown in Figure 7.6B is that the two tasks are managed by switching the
gaze successively from one to the other. At one point in time the subject is
looking at the car and, at about 750 milliseconds later, the gaze is switched

16 CHAPTER 7. OPERATING SYSTEM

A B

Figure 7.6: A) Example of a Virtual Reality car simulator used to gather
driving data. B) Eye traces from a similar environment where human drivers
follow a lead car and obey traffic signs show gaze repeatedly sampling inter-
section sign and the lead car location.

to the sign, and then back to the car and so on. Remember that the vi-
sual cortical memory is retinotopic, so a major fraction of the neurons are
sensitive to gaze position. Thus their firing patterns are very different when
gaze is changed. How are we to interpret what is going on here with respect
to running multiple programs? one possibility is that the follow program is
switched on when gaze is following the car and the sign program is switched
on when looking at the sign. But this seems very unlikely for two reasons.
One is that, taking a cue from the dual-task experiments, there would be
the overhead of turning the programs on and off. In addition, just from the
Thorpe data we know that from a standing start it takes about 200 millisec-
onds to compute an answer, so stopping and starting would have a temporal
overhead. The second reason for positing simultaneously active programs is
that in order to change gaze the new gaze point for the next program must be
computed while the current program is running - thus for at least this part
of the computation, the two programs have to be running simultaneously.

7.4 Humanoid avatar models

In this discussion of program resource allocation, the focus has been on the
internal architecture, but host of additional issues arise when considering

7.4. HUMANOID AVATAR MODELS 17

the external interactions of the body immersed in the world. To study these
issues a new tool has become available. Research programs that focus on em-
bodiment have been facilitated by the development of virtual reality (VR)
graphics environments. These VR environments can now run in real time on
standard computing platforms. The value of VR environments is that they
allow the creation of virtual agents that implement complete visuo-motor
control loops. Visual input can be captured from the rendered virtual scene,
and motor commands can be used to direct the graphical representation of
the virtual agent’s body. Terzoupolous and Rabie28 pioneered the use vir-
tual reality as a platform for the study of visually guided control. Embodied
control has been studied for many years in the robotics domain, but vir-
tual agents have enormous advantages over physical robots in the areas of
experimental reproducibility, hardware requirements, flexibility, and ease of
programming.

During the course of normal behavior humans engage in a wide variety of
tasks, each of which requires its own perceptual and motor resources. Thus
the brain’s ‘operating system’ must be mechanisms that allocate resources
to tasks. Understanding this resource allocation requires an understanding
of the ongoing demands of behavior, as well as the nature of the resources
available to the human sensori-motor system. The interaction of these factors
is complex, and that is where the virtual human platform can be of value.
It allows us to imbue our artificial human with a particular set of resource
constraints. We may then design a control architecture that allocates those
resources in response to task demands. The result is a model of human
behavior in temporally extended tasks that may be tested against human
performance.

The aim is to deconstruct the mechanisms that manage resource alloca-
tion. By building a complete humanoid and giving it visuo-motor resources,
we aim to show that the unity of attention is actually a hierarchy of inter-
dependent resource allocation programs. For a demonstration we will use
Sprague’s virtual human model ‘Walter.’? Walter has physical extent and
programmable kinematic degrees of freedom that closely mimic those of real
humans. His graphical representation and kinematics are provided by the
DI-guy package developed by Boston Dynamics. This is augmented by the
Vortex package developed by CMLabs for modeling the physics of collisions.
The crux of the model is a control architecture for managing the extraction of
information from visual input that is in turn mapped onto a library of motor
commands. The model is illustrated on a simple sidewalk navigation task

18 CHAPTER 7. OPERATING SYSTEM

Figure 7.7: The Walter simulation. The insets show the use of vision to
guide the humanoid through a complex environment. The upper inset shows
the particular visual routine that is running at any instant. The lower insert
shows the visual field in a head-centered frame.

that requires the virtual human to walk down a sidewalk and cross a street
while avoiding obstacles and collecting litter. The movie frame in Figure 7.7
shows Walter in the act of negotiating the sidewalk which is strewn with
obstacles (blue objects) and litter (purple objects) on the way to crossing a
street.

The human operating system model The central tenet of Walter’s
control architecture is that, although a large library of microbehaviors is
available to address the goals of the agent, at any one time, only a small
subset of those are actively engaged as shown in Figure 7.8. The composition
of this set is evaluated at every simulation interval, which is 300 milliseconds
commensurate with the eyes’ average fixation time.

Think of the control structure in terms of an operating system, as the
basic functions are needed to implement it are similar, as shown in Figure 7.9.
The behaviors themselves, when they are running, each have distinct jobs to
do. Each one interrogates the sensorium with the objective of computing the
current state of the process. Once the state of each process is computed then
the action recommended by that process is available. Such actions typically
involve the use of the body. Thus an intermediate task is the mapping of those
action recommendations onto the body’s resources. Finally the behavioral
composition of the microbehavior set itself must be chosen. It is likely that,

7.4. HUMANOID AVATAR MODELS 19

Figure 7.8: The model assumes that humans have an enormous library of
behaviors that can be composed in small sets to meet behavioral demands.
When an additional behavior is deemed necessary it is activated by the ’op-
erating system.’ When a running behavior is no longer necessary, it is deac-
tivated.

similar to multiprocessing limitations on silicon computers, that the brain
has a multiprocessing constraint that allows only a few microbehaviors to be
simultaneously active.

Addressing the issues associated with this vantage point leads directly
to an abstract computational hierarchy. The issues in modeling vision are
different at each level of this hierarchy. Table 1 shows the basic elements of
our hierarchy highlighting the different roles of vision at each level.

The behavior level of the hierarchy addresses the issues in running a
microbehavior. These are each engaged in maintaining relevant state infor-
mation and generating appropriate control signals. Microbehaviors are rep-
resented as state/action tables, so the main issue is that of computing state
information needed to index the table. The arbitration level addresses the is-
sue of managing competing behaviors. Since the set of active microbehaviors
must share perceptual and motor resources, there must be some mechanism
to arbitrate their needs when they make conflicting demands. The context
level of the hierarchy maintains an appropriate set of active behaviors from a
much larger library of possible behaviors, given the agents current goals and
environmental conditions.

The issues that arise for vision are very different at the different levels of
the hierarchy. Moving up the levels:

1. At the level of individual behaviors, vision provides its essential role of

20 CHAPTER 7. OPERATING SYSTEM

Figure 7.9: The operating system uses three distinct levels of abstraction. 1)
At the most basic level sensory routines define the state of a behavior. 2)
At an intermediate level, behaviors compete with each other for the body’s
resources.3) At the most abstract level the composition of behaviors must be
continually adjusted.

7.4. HUMANOID AVATAR MODELS 21

Abstraction
Level

Problem Being Addressed

Context Current set of behaviors B is inad-
equate for the task. Have to find a
new set

Arbitration Active behaviors may have compet-
ing demands for body, legs, eyes.
Conflicts have to be resolved

Routines Need to get state information

The current state needs to be up-
dated to reflect the actions of the
body

Table 7.4: The organization of human visual computation from the perspec-
tive of the microbehavior model.

22 CHAPTER 7. OPERATING SYSTEM

computing state information. The issue at this level is understanding
how vision can be used to compute state information necessary for
meeting behavioral goals. Almost invariably, the visual computation
needed in a task context is vastly simpler than that required general
purpose vision and, as a consequence, can be done very quickly.

2. At the arbitration level, the principal issue for vision is that the center
of gaze is not easily shared and instead generally must be allocated
sequentially to different locations. Eye tracking research increasingly
is showing that all gaze allocations are purposeful and directed toward
computing a specific result.8–10 Our own model11 shows how gaze al-
locations may be selected to minimize the risk of losing reward in the
set of running behaviors.

3. At the context level, the focus is to maintain an appropriate set of
microbehaviors to deal with internally generated goals. One of these
goals is that the set of running behaviors be response to rapid environ-
mental changes. Thus the issue for vision at this level is understanding
the interplay between agenda-driven and environmentally-driven visual
processing demands.

Note that each level in the hierarchy can be seen as the subject of tra-
ditional explorations in ‘attention,’ as the relevant issue is about resources.
Yet the processing at each level is very different. The hierarchy immediately
presents us with a deconstructed description of attention and has an asso-
ciated set of questions that are peculiar to the different levels: How do the
microbehaviors get perceptual information? How is contention managed?
How are sets of microbehaviors selected? Subsequent sections make use the
hierarchical structure to address each of these in turn, emphasizing implica-
tions for vision.

State estimation using visual routines The first question that must be
addressed is how individual programs map sensory information to internal
state descriptions. This information is gathered by deploying visual routines.
The arguments for visual routines have be made in the previous chapter.

Regardless of the specific methods of individual routines, each one out-
puts information in the same abstract form: the state needed to guide its
encompassing microbehavior. The next section describes how an avatar can
learn to use this information to guide its parent program.

7.4. HUMANOID AVATAR MODELS 23

Learning programs Once state information has been computed, the next
step is to find an appropriate action. Each microbehavior stores actions in
a state/action table. Such tables can be learned by reward maximization
algorithms: Walter tries out different actions in the course of behaving and
remembers the ones that worked best in the table. The reward-based ap-
proach is are motivated by studies of human behavior that show that the
extent to which humans make such trade-offs is very refined16 as well as
studies using monkeys that reveal the use of reinforcement signals in a way
that is consistent with reinforcement learning algorithms.17

Formally, the task of each microbehavior is to map from an estimate of the
relevant environmental state s, to one of a discrete set of actions, a ∈ A, so
as to maximize the amount of reward received. For example the the obstacle
avoidance behavior maps the distance and heading to the nearest obstacle
s = (d, θ) to one of three possible turn angles, that is, A = {−15o, 0o, 15o}.
The policy is the action so prescribed for each state. The coarse action space
simplifies the learning problem.

Our approach to computing the optimal policy for a particular behavior is
based on a standard reinforcement learning algorithm, termed Q-learning.18

This algorithm learns a value function Q(s, a) for all the state-action com-
binations in each microbehavior. The Q function denotes the expected dis-
counted return if action a is taken in state s and the optimal policy is followed
thereafter. If Q(s, a) is known then the learning agent can behave optimally
by always choosing argmaxa Q(s, a)(See Appendix for details). Figure 7.10
shows the table used by the litter collection microbehavior, as indexed by its
state information.

Each of the three microbehaviors has a two-dimensional state space. The
litter collection behavior uses the same parameterization as obstacle avoid-
ance: s = (d, θ) where d is the distance to the nearest litter item, and θ is
the angle. For the sidewalk following behavior the state space is s = (ρ, θ).
Here θ is the angle of the center-line of the sidewalk relative to the agent,
and ρ is the signed distance to the center of the sidewalk, where positive
values indicate that the agent is to the left of the center, and negative values
indicate that the agent is to the right. All microbehaviors use the logarithm
of distance in order to devote more of the state representation to areas near
the agent. All these microbehaviors use the same three-heading action space
described above. Table 7.5 shows Walter’s reward contingencies. These are
used to generate the Q-tables that serve as a basis for encoding a policy.
Figure 7.11 shows a representation of the Q-functions and policies for the

24 CHAPTER 7. OPERATING SYSTEM

Figure 7.10: The central portion of the litter cleanup microbehavior after
it has been learned. The color image is used to identify the heading to
the nearest litter object as a heading angle θ and distance d. Using this
state information to index the table allows the recovery of the policy, in this
case heading = −45o, and its associated value. The fact that the model
is embodied means that there is neural circuitry to translate this abstract
heading into complex walking movements. This is true for the graphics figure
that has a ‘walk’ command that takes a heading parameter.

7.5. PROGRAM ARBITRATION 25

Outcome Immediate Reward
Picked up a litter can 2
On sidewalk 1
Collision free 4

Table 7.5: Walter’s reward schedule

three microbehaviors.

When running the Walter simulation, the Q-table associated with each
behavior is indexed every 300 milliseconds. The action that is the policy is
selected and submitted for arbitration. The action chosen by the arbitration
process is executed by Walter. This in turn results in a new Q-table index for
each microbehavior and the process is repeated. The path through a Q-table
thus evolves in time and can the visualized as a thread of control analogous
to the use of the term thread in computer science.

7.5 Program arbitration

A central complication with the microbehavior approach is that concurrently
active microbehaviors may prefer incompatible actions. Therefore an arbi-
tration mechanism is required to map from the demands of the individual
microbehaviors to final action choices. The arbitration problem arises in di-
recting the physical control of the agent, as well as in handling gaze control
and each of these requires a different solution. This is because in Walter’s
environment, his heading can be a compromise between the demands of dif-
ferent microbehaviors but his gaze location is not readily shared by them. A
benefit of knowing the value function for each behavior is that the Q-values
can be used to handle the physical arbitration problem in each of these cases.

Heading Arbitration Since in the walking environment each behav-
ior shares the same action space Walter’s heading arbitration is handled by
making the assumption that the Q-function for the composite task is approx-
imately equal to the sum of the Q-functions for the component microbehav-
iors:

Q(s, a) ≈
n�

i=1

Qi(si, a), (7.1)

26 CHAPTER 7. OPERATING SYSTEM

!!"#"

!$"#"

$"#"%

!"#"%

!&'(%
!"#)!

"#)!%
&'(%%
"

*

+',-.
/012+'3.

4
+
-5
.

!*"#"

!67#8

67#8%

*"#"%

!"#""
6#68%

$#68%
&'(%%
"

)

+',-.
/012+'3.

4
+
-5
.

!*"#" !67#8 67#8% *"#"%
!"#""

6#68%

$#68%

&'(%%

+',-.

/
01
2+
'
3
.

!*"#"

!67#8

67#8%

*"#"%

!"#""
6#68%

$#68%
&'(%%

$7

$9

+',-.
/012+'3.

4
+
-5
.

!!"#" !$"#" $"#"% !"#"%
!&'(%

!"#)!

"#)!%

&'(%%

+',-.

/
01
2+
'
3
.

!*"#" !67#8 67#8% *"#"%
!"#""

6#68%

$#68%

&'(%%

+',-.

/
01
2+
'
3
.

a) b) c)

e) f)d)

Figure 7.11: Q-values and policies for the three microbehaviors. Figures a)-
c) show maxa Q(s, a) for the three microbehaviors: a) obstacle avoidance,
b) sidewalk following and c) litter collection. Figures d)-f) show the corre-
sponding policies for the three microbehaviors. The obstacle avoidance value
function shows a penalty for nearby obstacles and a policy of avoiding them.
The sidewalk policy shows a benefit for staying in the center of the sidewalk
θ = 0, ρ = 0. The litter policy shows a benefit for picking up cans that
decreases as the cans become more distant. The policy is to head toward
them.

7.5. PROGRAM ARBITRATION 27

where Qi(si, a) represents the Q-function for the ith active behavior. Thus
the action that is chosen is a compromise that attempts to maximize re-
ward across the set of active microbehaviors. The idea of using Q-values for
multiple goal arbitration was independently introduced in19 and.20

In order to simulate the fact that only one area of the visual field may be
foveated at a time, only one microbehavior is allowed access to perceptual in-
formation during each 300ms simulation time step. That behavior is allowed
to update its state information with a measurement, while the others prop-
agate their estimates and suffer an increase in uncertainty. The mechanics
of maintaining state estimates and tracking uncertainty are handled using
Kalman filters - one for each microbehavior. In order to simulate noise in
the estimators, the state estimates are corrupted with zero-mean normally
distributed random noise at each time step. The noise has a standard devi-
ation of .2m in both the x and y dimensions. When a behavior’s state has
just been updated by its visual routine’s measurement, the variance of the
state distribution will be small, but as simulations show, in the absence of
such a measurement the variance can grow significantly.

Since Walter may not have perfectly up to date state information, he must
select the best action given his current estimates of the state. A reasonable
way of selecting an action under uncertainty is to select the action with the
highest expected return. Building on Equation (7.1) we have the following:
aE = argmaxa E[

�
n

i=1 Qi(si, a)], where the expectation is computed over the
state variables for the microbehaviors. By distributing the expectation, and
making a slight change to the notation we can write this as:

aE = argmax
a

n�

i=1

Q
E

i
(si, a), (7.2)

where QE

i
refers to the expected Q-value of the ith behavior. In practice one

can estimate these expectations by sampling from the distributions provided
by the Kalman filter.

Gaze Arbitration Arbitrating gaze requires a different approach than
arbitrating control of the body. Reinforcement learning algorithms are best
suited to handling actions that have direct consequences for a task. Actions
such as eye movements are difficult to put in this framework because they
have only indirect consequences: they do not change the physical state of the
agent or the environment; they serve only to obtain information.

A much better strategy is to choose to use gaze to update the behavior
that has the most to lose by not being updated. Thus, the approach taken

28 CHAPTER 7. OPERATING SYSTEM

here is to try to estimate the value of that information. Simply put, as
time evolves the uncertainty of the state of a behavior grows, introducing
the possibility of low rewards. Deploying gaze to measure that state reduces
this risk. Estimating the cost of uncertainty is equivalent to estimating the
expected cost of incorrect action choices that result from uncertainty. Given
that the Q functions are known, and that the Kalman filters provide the
necessary distributions over the state variables, it is possible to estimate,
this factor, lossb, for each behavior b by sampling.21 The maximum of these
values is then used to select which behavior should be given control of gaze.

Figure 7.12 gives an example of seven consecutive steps of the sidewalk
navigation task, the associated eye movements, and the corresponding state
estimates. The eye movements are allocated to reduce the uncertainty where
it has the greatest potential negative consequences for reward. For example,
the agent fixates the obstacle as he draws close to it, and shifts perception to
the other two microbehaviors when the obstacle has been safely passed. Note
that the regions corresponding to state estimates are not ellipsoidal because
they are being projected from world-space into the agents non-linear state
space.

One possible objection to this model of eye movements is that it ignores
the contribution of extra-foveal vision. One might assume that the pertinent
question is not which microbehavior should direct the eye, but which location
in the visual field should be targeted to best meet the perceptual needs of the
whole ensemble of active microbehaviors. There are a number of reasons to
emphasize foveal vision. First, eye tracking studies in natural tasks show little
evidence of “compromise” fixations. That is, nearly all fixations are clearly
directed to a particular item that is task relevant. Second, results in22 suggest
that simple visual operations such as local search and line tracing require a
minimum of 100-150ms to complete. This time scale roughly corresponds to
the time required to make a fixation. This suggests that there is little to be
gained by sharing fixations among multiple visual operations.

7.6 Program indexing

The successful progress of Walter is based on having a running set of microbe-
haviors Bi, i = 0, .., N that are appropriate for the current environmental and
task context. The view that visual processing is mediated by a small set of
microbehaviors immediately raises two questions: 1) What is the exact na-

7.6. PROGRAM INDEXING 29

TIME

a)

b)

SF

LC

OA

Figure 7.12: a) An overhead view of the virtual agent during seven time
steps of the sidewalk navigation task. The blue cubes are obstacles, and the
purple cylinder is litter. The rays projecting from the agent represent eye
movements; red correspond to obstacle avoidance, blue correspond to side-
walk following, and green correspond to litter collection. b) Corresponding
state estimates. The top row shows the agent’s estimates of the obstacle
location. The axes here are the same as those presented in Figure 7.11.
The beige regions correspond to the 90% confidence bounds before any per-
ception has taken place. The red regions show the 90% confidence bounds
after an eye movement has been made. The second and third rows show the
corresponding information for sidewalk following and litter collection.

30 CHAPTER 7. OPERATING SYSTEM

ture of the context switching mechanism? and 2) What should the limit on
N be to realistically model the limitations of human visual processing?

Answering the first question requires considering to what extent visual
processing is driven in a top down fashion by internal goals, versus being
driven by bottom up signals originating in the environment. Somewhat op-
timistically, some researchers have assumed that interrupts from dynamic
scene cues can effortlessly and automatically attract the brain’s “attentional
system” in order to make the correct context switch e.g.23 However, a strat-
egy of predominantly bottom-up interrupts seems unlikely in light of the fact
that what constitutes a relevant cue is highly dependent on the current sit-
uation. On the other hand, there is a strong argument for some bottom up
component: humans are clearly capable of responding appropriately to cues
that are off the current agenda.

Our model of the switching mechanism is that it works as a state ma-
chine as shown in Figure 7.13. For planned tasks, certain microbehaviors
keep track of the progress through the task and trigger new sets of behaviors
at predefined junctures. Thus the microbehavior “Look for Crosswalk” trig-
gers the state NEAR-CROSSWALK which contains three microbehaviors:
“FollowSidewalk”, “Avoid Obstacles”, and “Approach Crosswalk.”

Figure 7.13B shows when the different states were triggered on three
separate trials.

This model reflects our view that vision is predominantly a top-down
process. The model is sufficient for handling simple planned tasks, but it does
not provide a straightforward way of responding to off-plan contingencies. To
be more realistic, the model requires some additions. First, microbehaviors
should be designed to error-check their sensory input. In other words, if
a microbehavior’s inputs do not match expectations, it should be capable
of passing control to a higher level procedure for resolution. Second, there
should be a low latency mechanism for responding to certain unambiguously
important signals such as rapid looming.

Regarding the second question of the number of active microbehaviors,
there is reason to suspect that the maximum number that are simultaneously
running might be modest. That is the ubiquitous observation of the limita-
tions of spatial working memory (SWM). The original capacity estimate by
Miller was seven items plus or minus two,24 but current estimates favor the
lower bound.25 Lets hypothesize that this limitation is tied to the computer
concept of ‘threads’ used to keep track of independent state information in
independently running microbehaviors. The identification of the referents

7.6. PROGRAM INDEXING 31

Figure 7.13: (Top left) A list of microbehaviors used in Walter’s overall
navigation task. (Top right) The diagram for the programmable context
switcher showing different states. These states are indicated in the bands
underneath the colored bars below. Bottom) Context switching behavior in
the sidewalk navigation simulation for three separate instances of Walter’s
stroll. The different colored bars denote different microbehaviors that are in
control of the gaze at any instant.

32 CHAPTER 7. OPERATING SYSTEM

of SWM has always been problematic, since the size of the referent can be
arbitrary. This has lead to the denotation of the referent as a ‘chunk,’ a jar-
gon word that postpones dealing with the issue of not being able to quantify
the referents. The thread concept is clearer and more specific as it denotes
exactly the state necessary to maintain a microbehavior.

Although the number of active microbehaviors is limited there is reason
to believe that it is greater than one. Consider the task of walking on a
crowded sidewalk. Two fast walkers approaching each other close at the rate
of 6 meters/second. Given that the main source of advanced warning for
collisions is visual and that eye fixations typically need 0.3 seconds and that
cortical processing typically needs 0.2-0.4 seconds, during the time needed to
recognize an impending collision, the colliders have traveled about 3 meters,
or about one and a half body lengths. In a crowded situation, this is insuffi-
cient advance warning for successful avoidance. What this means is that for
successful evasions, the collision detection calculation has to be ongoing. But
that in turn means that it has to share processing with the other tasks that
an agent has to do. Remember that sharing means that the microbehavior
has to be simultaneously active over a considerable period, perhaps minutes.
Several elegant experiments have shown that there can be severe interference
when multiple tasks have to be done simultaneously, but these either restrict
the input presentation time or the output response time.26 The crucial issue
is what happens to the internal state when it has to be maintained for an
extended period.

7.7 Credit assignment

One final issue at the operating system level is that of keeping the reward
system calibrated. As noted in chapter two, when the brain is in charge
of coming up with its own estimates of the value of doing things, there is
lots of chances to loose one’s bearings. In some helpful cases, like food
intake, the body provides helpful feedback, but the more abstract programs
represent a challenge. There are however some things that can be done, and
furthermore these lend them selves to a computational account. One way
follows directly from the multi-tasking venue. When multiple programs are
simultaneously active, they can compare running estimates. Another obvious
way for humans and many other animals is by observing another’s behavior.
If the state-action description of the demonstrator can be mapped onto the

7.7. CREDIT ASSIGNMENT 33

observer’s own internal representations, this allows for the observer’s reward
estimates to be modified accordingly.

Calibrating reward by comparing active program estimates Each
active program represents some portion of the entire state space and executes
some part of the composite action, but without some additional constraint
they only have access to a global performance measure, defined as the sum
of the individual rewards collected by all of the M active modules at each
time step:

Gt =
�

i∈M
r
(i)
t . (7.3)

The central problem that we tackle is how to learn the composite Q values
Q(i)(s(i), a) when only global rewards Gt are directly observed, but not the
individual values {ri

t
} (See Fig. 7.15).

Figure 7.14: A fundamental problem for a biological agent using a modular architecture.
At any given instant, when multiple modules (i) = {a, b, c} are active and only a global
reward signal G is available, the modules each have to be able to calculate how much of the
rewards is their due to. This is known as the credit assignment problem. This setting simplifies
the problem by assuming that individual reinforcement learning modules are independent and
communicate only their estimates of their reward values. The modules can be activated and
deactivated asynchronously, and may each need different numbers of steps to complete, as
suggested by the diagram.

The key additional constraint that we introduce is an assumption that
the system can use the sum of rewards from the modules that are co-active
at any instant . This knowledge leads to the idea to use the different sets to

34 CHAPTER 7. OPERATING SYSTEM

estimate the difference between the total observed reward Gt and the sum of
the current estimates of the individual rewards of the concurrently running
behaviors. Credit assignment is achieved by bootstrapping these estimates
over multiple task combinations, during which different subsets of behaviors
are active. Dropping the temporal subscript for convenience, this reasoning
can be formalized as requiring the individual behaviors to learn independent
reward models r(i)(s(i), a). The current reward estimate for one particular
behavior i, is obtained as

r̂
(i) ← r̂

(i) + βδr(i) (7.4)

where the error on the reward estimates δr is calculated as the difference
between the global reward and the sum of the component estimates:

δr(i) = G−
�

j∈M
r̂
(j) (7.5)

so that equation 7.4 becomes:

r̂
(i) ← r̂

(i) + β

�
G−

�

j∈M
r̂
(j)

�

which can be informatively rewritten as:

r̂
(i) ← (1− β)r̂(i) + β

�
G−

�

j∈M,j �=i

r̂
(j)

�
(7.6)

To interpret this equation: Each module should adjust its reward estimate
by a weighted sum of its own reward estimate and the estimate of its reward
inferred from that of the other active modules. When one particular subset of
tasks is pursued, each active behavior adjusts the current reward estimates r̂i
in the individual reward functions according to equation 7.6 at each time step.
Over time, the set of tasks that have to be solved will change, resulting in a
different set of behaviors being active, so that a new adjustment is applied to
the reward functions according to equation 7.6. This bootstrapping process
therefore relies on the assertion that the subsets of active behaviors visits all
component behaviors.

Calibrating reward by observing behavior Another important way
the brain can calibrate the value of its programs is to observe the execution

7.8. SUMMARY 35

of another person. The important and tricky step that is needed is that
the learner must be able to take the observations of the demonstrator and
translate them in to his or her own internal representation. This is not easy
but monkeys can do it, as seen by famous experiments by the Rizzolatti
laboratory. A neuron that fires when the monkey is reaching for a food item
will also fire when the experimenter reaches for it ??. But at the level of
abstraction of the operating system, the action has to be mapped into a
states-and-actions formalism programmed by reinforcement. Once that can
be done the subsequent steps are very straightforward.

The data observed is going to be sequences of state-action pairs O =
{(sj, aj), j = 1, . . . , N}, so it is easiest to work withe the Q−value or action-
value function Q(sj, aj). So the observer sees a behavior and abstracts the
sequence. Next, since he or she has learned a Q table, the Q values for that
sequence can be easily accessed. Now what the brain would like to do is
estimate the rewards R given O. This is a job for Bayes rule:

P (R|O) =
P (O|R)P (R)

P (O)
. (7.7)

Now for a big assumption. Estimate P (O|R) using

P (O|R) =
1

Z
e
αE(O,R)

where Z is just a normalizing factor to make sure the probabilities sum to
unity. But the expected reward E(O,R) of the observations and a given
reward set is just

�
j Q(sj, aj). But when using sets of programs the reward

is just their sum so we can write the sum as:
�

i

ci

�

j

Q(sj, aj)

The important thing to take note of here is that given some observations, the
only unknowns are the ci, which reflect the relative values of the rewards.
The intuition is that the form of the Q(sj, aj) will not change. The only
thing at issue is their values relative to each other. Since the equations turn
out to be linear, they are easily solved.

7.8 Summary

The focus of this chapter was to introduce the issues associated with using
a graphical agent as a proto-theory of human visuo-motor behavior. One

36 CHAPTER 7. OPERATING SYSTEM

Figure 7.15: A fundamental problem for a biological agent using a modular architecture.
At any given instant, when multiple modules (i) = {a, b, c} are active and only a global
reward signal G is available, the modules each have to be able to calculate how much of the
rewards is their due to. This is known as the credit assignment problem. This setting simplifies
the problem by assuming that individual reinforcement learning modules are independent and
communicate only their estimates of their reward values. The modules can be activated and
deactivated asynchronously, and may each need different numbers of steps to complete, as
suggested by the diagram.

criticism of such a project is that, even though the system is vastly reduced
from that needed to capture a substantial fraction of human behavior, the
model as it stands is complicated and has enough free parameters so that any
data from real human performance would be easy to fit. Although the system
is complex, most of the constraints follow from the top-level assumption
of composable microbehaviors. Once one decides to have a set of running
microbehaviors, the questions of how many and when are they running are
immediate. Furthermore they have ready answers in observations of human
behavior in the classic observations of working memory and eye movements:
Working memory suggests the number of simultaneous microbehaviors is

7.8. SUMMARY 37

small; eye movements suggest when a behavior is running as each fixation is
an indication of the brain’s instantaneous problem being updated. Table ??
summarizes the relationships between the hierarchy used by the model and
the notions of attention and working memory.

The restricted number of active microbehaviors means that there must
be a mechanism for making sure that a good behavioral subset has been
chosen. Such a mechanism must interrogate the environment and 1) add
needed microbehaviors as well as 2) drop microbehaviors if needed to meet
the capacity constraint.

The essential description of microbehaviors is captured by reinforcement
learning’s Q-tables that relate the states determined by vision to actions for
the motor system. Indeed the commands are in coded form, taking advantage
of known structure in the body that carries them out. Assuming the existence
of a table as is done at the reinforcement learning level finesses important
details. Thus a more detailed model is necessary to account for how the table
index is created.

The reinforcement learning venue provides a different perspective on gaze
allocation. One of the original ideas was a bottom-up view that gaze should
be drawn to the most salient locations in the scene as represented in the
image, where salience was defined in terms of the spatial conjunction of
many feature points. However recent measurements have shown that eye
movements are much more agenda driven than that predicted by bottom-up
saliency models. For example Henderson has shown that subjects examining
urban scenes for people examine place where people might be even though
these can have very low feature saliency.15 Walter’s use of Q-tables suggest
that to interpret gaze allocation, an additional level of indirection may be
required. For example, the controller for sidewalk navigation uses gaze to
update the estimate of the location of the sidewalk. In order to predict
when gaze might be allocated to do this, in our model, requires knowing the
uncertainty in the current estimate of the sidewalk location.

The most important benefit of the kind of model presented in this paper is
that it encourages the modeler to frame experimental questions in the context
of integrated natural behavior. There are dramatic differences between this
perspective and traditional approaches to studying vision:

1. The desired schedule of interrupts under normal behavior has a tem-
poral distribution that is very different than worst-case laboratory sit-
uations. In the lab, subjects are typically in extremis with respect to

38 CHAPTER 7. OPERATING SYSTEM

reaction times, whereas natural behaviors typically allow flexibility in
responding.

2. In a multiple task situation, the most important task facing the deploy-
ment of gaze is to choose the behavior being serviced. This problem is
hardly considered in the search literature which concentrates on within-
task saliency of individual targets.

3. The natural timescale for studying microbehavior components is on the
order of 100 to 200 milliseconds, the time to estimate state information.
Below that one is studying the process of state formation, a level of
detail is interesting in its own right but is below the central issues in
human behavioral modeling.

4. The context for the deployment of visual routines is reversed from a
laboratory situation. In that situation the typical structure of a task
forces a bottom-up description. The image is most often presented on
a previously blank CRT screen. In a natural task, the particular test
needed in a gaze deployment is known. Furthermore this test is known
before the saccade is made. Thus in the natural case the situation is
reversed, the test can be in place before the data is available. This has
the result of making the test go as fast as possible. The speed of tests
may account for the fact that fixation times in natural situations can
be very short. Dwell times of 100 milliseconds are normal, less than
half those observed in many laboratory studies.

All of these observations underline the importance of graphic simulation
as a new tool in the study of human vision. While the model has extensive
structure, each component of the structure serves a specific purpose and the
whole combine to direct the performance of human behaviors. A competing
performance model might look very different but would have to address these
issues.

Perhaps the most important theme in recent vision research, is that no
component of the visual system can be properly understood in isolation from
the behavioral goals of the organism.27,28 Therefore, properly understanding
vision will ultimately require modeling complete sensori-motor systems in
behaving agents. The model presented in this paper is certainly not true in
all of its particulars, and it leaves many details unspecified. However, it does
provide a framework for thinking about action-oriented human vision. The

7.8. SUMMARY 39

fact that developing complete and correct models of human vision is such a
difficult task should not stop us from trying to put as many of the pieces
together as possible.

40 CHAPTER 7. OPERATING SYSTEM

Bibliography

[1] A. Newell, Unified Theories of Cognition. Harvard University Press,
1990.

[2] N. Nilsson, “Shakey the robot,” Tech. Rep. 223, SRI International,,
1984.

[3] D. Marr, Vision. Oxford: W.H. Freeman and Co., 1982.

[4] R. A. Brooks, “A robust layered control system for a mobile robot,”
IEEE Journal of Robotics and Automation, vol. RA-2, pp. 14–23, Apr.
1986.

[5] R. Hartley and F. Pipitone, “Experiments with the subsumption ar-
chitecture,” in Proceedings of the International Converence on Robotics
and Automation, 1991.

[6] R. J. Firby, R. E. Kahn, P. N. Prokopowicz, and M. J. Swain, “An
architecture for vision and action,” pp. 72–79, 1995.

[7] J. J. Bryson and L. A. Stein, “Modularity and design in reactive in-
telligence,” in International Joint Conference on Artificial Intelligence,
(Seattle, Washington), 2001.

[8] M. Land, N. Mennie, and J. Rusted, “The roles of vision and eye move-
ments in the activities of daily living,” Perception, vol. 28, pp. 1311–
1328, 1999.

[9] M. M. Hayhoe, D. Bensinger, and D. H. Ballard, “Task constraints in
visual working memory,” Vision Research, vol. 38, pp. 125–137, 1998.

41

42 BIBLIOGRAPHY

[10] R. Johansson, G. Westling, A. Backstrom, and J. R. Flanagan,
“Eye-hand coordination in object manipulation,” Perception, vol. 28,
pp. 1311–1328, 1999.

[11] N. Sprague and D. Ballard, “Eye movements for reward maximization,”
in Advances in Neural Information Processing Systems 15, December
2003.

[12] S. Ullman, “Visual routines,” Cognition, vol. 18, pp. 97–159, 1985.

[13] P. Roelfsema, V. Lamme, and H. Spekreijse, “The implementation of
visual routines,” Vision Research, vol. 40, pp. 1385–1411, 2000.

[14] D. Ballard, M. Hayhoe, and P. Pook, “Deictic codes for the embodiment
of cognition,” Behavioral and Brain Sciences, vol. 20, pp. 723–767, 1997.

[15] D. Ballard and N. Sprague, “Attentional resource allocation in extended
natural tasks [abstract],” Journal of Vision, vol. 2, no. 7, p. 568a, 2002.

[16] L. Maloney and M. Landy, “When uncertainty matters: the selection
of rapid goal-directed movements [abstract],” Journal of Vision, (to ap-
pear).

[17] R. E. Suri and W. Schultz, “Temporal difference model reproduces an-
ticipatory neural activity,” Neural Computation, vol. 13, pp. 841–862,
2001.

[18] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning
Journal, vol. 8, May 1992.

[19] M. Humphrys, “Action selection methods using reinforcement learning,”
in Proceedings of the Fourth International Conference on Simulation of
Adaptive Behavior, 1996.

[20] J. Karlsson, Learning to Solve Multiple Goals. PhD thesis, University of
Rochester, 1997.

[21] N. Sprague and D. H. Ballard, “Modeling embodied visual behaviors,”
International Journal of Pattern Recognition and Artificial Intelligence,
p. accepted, 2006.

BIBLIOGRAPHY 43

[22] P. R. Roelfsema, K. P.S., and H. Spekreijse, “Subtask sequencing in the
primary visual cortex,” Proceedings of the National Academy of Sciences
USA, vol. 100, pp. 5467–5472, 2003.

[23] L. Itti and C. Koch, “A saliency-based search mechanism for overt and
covert shifts of visual attention,” Vision Research, vol. 40, pp. 1489–
1506, May 2000.

[24] G. Miller, “The magic number seven plus or minus two: Some limits on
your capacity for processing information,” Psychological Review, vol. 63,
pp. 81–96, 1956.

[25] S. J. Luck and E. K. Vogel, “The capacity of visual working memory for
features and conjunctions,” Nature, vol. 390, pp. 279–281, 1997.

[26] H. Pashler, The Psychology of Attention. Cambridge, MA: MIT Press,
1998.

[27] P. Stone, Layered learning in mutiagent systems. MIT Press, 2000.

[28] D. Terzopoulos and T. F. Rabie, “Animat vision: Active vision in ar-
tificial animals,” Videre: Journal of Computer Vision Research, vol. 1,
no. 1, pp. 2–19, 1997.

