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Description

Specification of an HMM

m N - number of states
Q={q,q, :::; g} - set of states

m M - the number of symbols (observables)
O={0,0,:::; 0} - Set of symbols
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Description

Specification of an HMM

m A - the state transition probability matrix
alj = P(Qu1 = J1q; = 1)

m B- observation probability distribution
b(k)=P(o;=klg;=j) i=sk=M

m 17 - the Initial state distribution
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Description

Specification of an HMM

m Full HMM is thus specified as a triplet:
A = (A,B, )



Central problems in HMM o bloms
modelling
m Problem 1

Evaluation:

Probability of occurrence of a particular

observation sequence, O = {04,...,0,}, given
the model

P(O[A)
Complicated — hidden states
Useful in sequence classification



Central problems in HMM o bloms
modelling
m Problem 2

Decoding:

Optimal state sequence to produce given
observations, O ={0,,...,0,}, given model

Optimality criterion
Useful in recognition problems



Central problems in HMM probloms
modelling
m Problem 3

Learning:

Determine optimum model, given a training
set of observations

Find A, such that P(OJA) is maximal



" A
Central

Problem 1: Naive solution probtems

m State sequence Q =(q4,...q7)
m Assume independent observations:

P(Olq,2)= HP(Ot 1q,,4) = b,,(0,)b,,(0,)..5,,(0r)

NB Observations are mutually independent, given the
hidden states. (Joint distribution of independent
variables factorises into marginal distributions of the
independent variables.)
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Central
problems

Problem 1: Naive solution

m Observe that :

P(g|A) = 1814208243 Agr_14T

m And that:
P(O|2) ="y P(Olq,A)P(q|2)
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Central

Problem 1: Naive solution  problems

m Finally get:

PO|2)= Y P(O]q.2)P(q| )

NB.:

-The above sum is over all state paths
-There are NT states paths, each ‘costing’
O(T) calculations, leading to O(TNT)

time complexity.
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Central
problems

Problem 1: Efficient solution

Forward algorithm:

m Define auxiliary forward variable a:
a,(i) = P(o,,...,0, | g, =i,A)

a,(i) is the probability of observing a partial sequence of
observables o4,...0; such that at time t, state g,=i
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Central
problems

Problem 1: Efficient solution

m Recursive algorithm:
Initialise:

a, (i) =m,b,(0;)

(Partial obs seq to t AND state j at f)
X (transition to j at t+7) x (sensor)

Calculate:

N
. : Sum. hjf
o1 () =) e, (Da; P, (0,,) ST 2o cen toech o
1=1

Obtain: a incorporates partial obs seqto t
N
P(O|A) = EO‘T(Z)
i=1
Sum of different ways Complexity is O(NZT)
of getting obs seq




Central
problems

Problem 1: Alternative solution

Backward algorithm:

m Define auxiliary
forward variable @

(D) = P(0,,1,0,,55,07 | G, =1, A)

Py(i) — the probability of observing a sequence of
observables o,,,...,07 given state g, =/ at time t, and A
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Central

problems

Problem 1: Alternative solution

m Recursive algorithm:
Initialise:

ﬁT (] )=1
Calculate:
B.0)= B (b (0.)
Terminate: "
p(O|A) = iﬁl(i) t=T-1,..1
Complexity is O(N4T)
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Problem 2: Decoding problems

m Choose state sequence to maximise
probability of observation sequence

m Viterbi algorithm - inductive algorithm that
keeps the best state sequence at each
iInstance
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Central
problems

Problem 2: Decoding
Viterbi algorithm:

m State sequence to maximise P(O,Q|A):

P(Q19Q29"'QT | Oa)\')

m Define auxiliary variable o:
0,(i)= mfo(ql,qz,...,qt =1,0,,0,,...0, | A)

0,(1) — the probability of the most probable
path ending in state g;=i
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Central
problems

Problem 2: Decoding

To get state seq, need to keep track

. of argument to maximise this, for each
= Recurrent property. t and j. Done via the array ,(j).

0,,1(J) = max(0,()a;)b;(0,,,)

m Algorithm:

1. Initialise:

5()=mb(o) lsis<N
lfh(i):O
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Problem 2: Decoding problems
2. Recursion:
0,(j) =max(o,_(V)a;)b;(o,)

l<isN

%(J')=al‘gge$1]>\§(6t_l(i)aij) 2<t=<T]l=<j=<N

3. Terminate:

P* gives the state-optimised probability

P =maxo0,(i)

l<i<sN

qr = argmax o, (i)

Q* is the optimal state sequence
(Q*={q1%,92%,...,9T"})
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Problem 2: Decoding problems

4. Backtrack state sequence:

q;k =wt+1(q:<+1) t+T—19T_29"'91

O(N<4T) time complexity



Central

Problem 3: Learning problems

m [raining HMM to encode obs seq such that HMM
should identify a similar obs seq in future

m Find A=(A,B,1T), maximising P(OJA)

m General algorithm:
Initialise: A,
Compute new model A, using A, and observed
sequence O

Then A, < A
Repeat steps 2 and 3 until:

log P(O|A)-1log P(O|A) <d
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Problem 3: Learning problems
Step 1 of Baum-Welch algorithm:

m Let ¢(i,j) be a probability of being in state / at time
t and at state j at time t+7, given A and O seq

«, (i)aijbj (0,,)P ()
P(O|A)

5(19]) =

&, (i)aijbj (0t+1 )ﬁm (])
3 Yo, ()ab,(0,,)B,. ()

=1 =1




Central

Problem 3: Learning problems
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Problem 3: Learning problems

m Lety (i) be a probability of being in state / at
time t, given O

AOEDNACY)

T—-

;_a

m ) y,(0) -expected no. of transitions from state /

I=

m V() -expected no. of transitions i — J

>
>

t=1
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Problem 3: Learning problems
Step 2 of Baum-Welch algorithm:

m 7T =Y,(i) the expected frequency of state i at time t=1

XACY)

i .
N E}’t(’) ratio of expected no. of transitions from
state / to j over expected no. of transitions from state /

bty 2t Tt

0 E?’r(j) ratio of expected no. of times in state j
observing symbol k over expected no. of times in state j
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Problem 3: Learning problems

m Baum-Welch algorithm uses the forward and
backward algorithms to calculate the auxiliary
variables a,3

m B-\W algorithm is a special case of the EM
algorithm:

E-step: calculation of £ and vy

M-step: iterative calculation of 7, le.j, ZSJ.(k)
m Practical issues:

Can get stuck in local maxima

Numerical problems — log and scaling




Extensions

Extensions

m Problem-specific:

Left to right HMM (speech recognition)
Profile HMM (bioinformatics)



Extensions

Extensions

m General machine learning:
Factorial HMM
Coupled HMM
Hierarchical HMM
Input-output HMM
Switching state systems
Hybrid HMM (HMM +NN)
Special case of graphical models

= Bayesian nets
s Dynamical Bayesian nets
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Extensions

Examples

Coupled HMM Factorial HMM



Demonstrations

HMMs — Sleep Staging

m Flexer, Sykacek, Rezek, and Dorffner (2000)
m Observation sequence: EEG data

m Fit model to data according to 3 sleep stages
to produce continuous probabilities: P(wake),

P(deep), and P(REM)

m Hidden states correspond with recognised
sleep stages. 3 continuous probability plots,
giving P of each at every second



Demonstrations

HMMs — Sleep Staging
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Demonstrations

Excel

m Demonstration of a working HMM
implemented in Excel
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