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Specification of an HMM

 N - number of states
Q = {q1; q2; : : : ;qT} - set of states

 M - the number of symbols (observables)
O = {o1; o2; : : : ;oT} - set of symbols

Description



Specification of an HMM

 A - the state transition probability matrix
aij = P(qt+1 = j|qt = i)

 B- observation probability distribution
bj(k) = P(ot = k|qt = j)    i ≤ k ≤ M

 π - the initial state distribution

Description



Specification of an HMM

 Full HMM is thus specified as a triplet:
λ = (A,B,π)

Description



Central problems in HMM
modelling
 Problem 1

Evaluation:
Probability of occurrence of a particular

observation sequence, O = {o1,…,ok}, given
the model

P(O|λ)
Complicated – hidden states
Useful in sequence classification

Central
problems



Central problems in HMM
modelling
 Problem 2

Decoding:
Optimal state sequence to produce given

observations, O = {o1,…,ok}, given model
Optimality criterion
Useful in recognition problems

Central
problems



Central problems in HMM
modelling
 Problem 3

Learning:
Determine optimum model, given a training

set of observations
Find λ, such that P(O|λ) is maximal

Central
problems



Problem 1: Naïve solution

 State sequence Q = (q1,…qT)
 Assume independent observations:
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problems

NB Observations are mutually independent, given the
hidden states. (Joint distribution of independent
variables factorises into marginal distributions of the
independent variables.)



Problem 1: Naïve solution

 Observe that :

 And that:
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Problem 1: Naïve solution

 Finally get:

Central
problems

!=
q

qPqOPOP )|(),|()|( """

NB:
-The above sum is over all state paths
-There are NT states paths,  each ‘costing’
 O(T) calculations, leading to O(TNT)
 time complexity.



Problem 1: Efficient solution

 Define auxiliary forward variable α:

Central
problems
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αt(i) is the probability of observing a partial sequence of
observables o1,…ot such that at time t, state qt=i

Forward algorithm:



Problem 1: Efficient solution
 Recursive algorithm:

 Initialise:

 Calculate:

 Obtain:
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Complexity is O(N2T)

(Partial obs seq to t AND state i at t)
  x (transition to j at t+1) x (sensor)

Sum of different ways
  of getting obs seq

Sum, as can reach j from
     any preceding state

α incorporates partial obs seq to t



Problem 1: Alternative solution

 Define auxiliary
forward variable β:
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Backward algorithm:
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βt(i) – the probability of observing a sequence of
observables ot+1,…,oT given state qt =i at time t, and λ



Problem 1: Alternative solution
 Recursive algorithm:

 Initialise:

 Calculate:

 Terminate:

1)( =jT!

Central
problems

Complexity is O(N2T)
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Problem 2: Decoding

 Choose state sequence to maximise
probability of observation sequence

 Viterbi algorithm - inductive algorithm that
keeps the best state sequence at each
instance

Central
problems



Problem 2: Decoding

 State sequence to maximise P(O,Q|λ):

 Define auxiliary variable δ:
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Viterbi algorithm:
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δt(i) – the probability of the most probable
path ending in state qt=i



Problem 2: Decoding

 Recurrent property:

 Algorithm:
 1. Initialise:
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To get state seq, need to keep track
of argument to maximise this, for each
t and j. Done via the array ψt(j).



Problem 2: Decoding
 2. Recursion:

 3. Terminate:
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P* gives the state-optimised probability

Q* is the optimal state sequence
(Q* = {q1*,q2*,…,qT*})



Problem 2: Decoding

 4. Backtrack state sequence:

)( 11

!

++

!
=

ttt
qq " 1,...,2,1 !!+ TTt

O(N2T) time complexity

Central
problems



Problem 3: Learning
 Training HMM to encode obs seq such that HMM

should identify a similar obs seq in future
 Find λ=(A,B,π), maximising P(O|λ)
 General algorithm:

 Initialise: λ0
 Compute new model λ, using λ0 and observed

sequence O
 Then
 Repeat steps 2 and 3 until:
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Problem 3: Learning

 Let ξ(i,j) be a probability of being in state i at time
t and at state j at time t+1, given λ and O seq
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Step 1 of Baum-Welch algorithm: 



Problem 3: Learning
Central
problems

Operations required for the computation
of the joint event that the system is in state
Si and time t and State Sj at time t+1



Problem 3: Learning

 Let        be a probability of being in state i at
time t, given O

             - expected no. of transitions from state i

             - expected no. of transitions
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Problem 3: Learning

              the expected frequency of state i at time t=1

                       ratio of expected no. of transitions from
state i to j over expected no. of transitions from state i

                              ratio of expected no. of times in state j
observing symbol k over expected no. of times in state j
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Step 2 of Baum-Welch algorithm:
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Problem 3: Learning
 Baum-Welch algorithm uses the forward and

backward algorithms to calculate the auxiliary
variables α,β

 B-W algorithm is a special case of the EM
algorithm:
 E-step: calculation of ξ and γ
 M-step: iterative calculation of    ,     ,

 Practical issues:
 Can get stuck in local maxima
 Numerical problems – log and scaling
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Extensions

 Problem-specific:
Left to right HMM (speech recognition)
Profile HMM (bioinformatics)

Extensions



Extensions
 General machine learning:

 Factorial HMM
 Coupled HMM
 Hierarchical HMM
 Input-output HMM
 Switching state systems
 Hybrid HMM (HMM +NN)
 Special case of graphical models

 Bayesian nets
 Dynamical Bayesian nets

Extensions



Examples
Extensions

Coupled HMM Factorial HMM



HMMs – Sleep Staging

 Flexer, Sykacek, Rezek, and Dorffner (2000)
 Observation sequence: EEG data
 Fit model to data according to 3 sleep stages

to produce continuous probabilities: P(wake),
P(deep), and P(REM)

 Hidden states correspond with recognised
sleep stages. 3 continuous probability plots,
giving P of each at every second

Demonstrations



HMMs – Sleep Staging

Probability plots for the 3 stages

Staging by HMM

Manual scoring of sleep stages

Demonstrations



Excel

 Demonstration of a working HMM
implemented in Excel

Demonstrations



Further Reading

 L. R. Rabiner, "A tutorial on Hidden Markov Models and
selected applications in speech recognition,"
Proceedings of the IEEE, vol. 77, pp. 257-286, 1989.

 R. Dugad and U. B. Desai, "A tutorial on Hidden Markov
models," Signal Processing and Artifical Neural
Networks Laboratory, Dept of Electrical Engineering,
Indian Institute of Technology, Bombay Technical Report
No.: SPANN-96.1, 1996.

 W.H. Laverty, M.J. Miket, and I.W. Kelly, “Simulation of
Hidden Markov Models with EXCEL”, The Statistician,
vol. 51, Part 1, pp. 31-40, 2002


