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Basic least squares regression

Suppose we have some noisy measurements y that were generated
by an unobserved state x from a space spanned by the k columns
of D:

y ∼ N (Dx, σ2I ) ∼ N (
k∑

j=1

xjd·j , σ
2I )

We can compute the most likely x̂ by minimizing squared error:

x̂ = arg min
x

1
2
||y − Dx| |22

Least squares by itself is prone to modeling outliers and noise
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Regularized least squares regression
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To prevent overfitting, we introduce a regularization term:

x̂ = arg min
x

1
2
||y − Dx| |22 + λ ||x| |ζ

Different values of ζ induce different priors on x:
▶ [ζ = 0] — "L0-norm," unsolvable
▶ [ζ = 1] — lasso, Laplacian prior (Tibshirani, 1996)
▶ [ζ = 2] — ridge, Gaussian prior (Hoerl & Kennard, 1970)
▶ [ζ = 1] + [ζ = 2] — elastic net (Zou & Hastie, 2005)
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Why do we care about sparsity ?

Suppose k is large ; sparsity limits “active” columns of D
▶ Helps make models easier for humans to understand
▶ Enables better compression

Sparsity seems to be a useful way of representing statistical
properties of the natural world

So we’d like to keep ζ small to encourage sparse solutions
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Sparse codes represent natural statistics efficiently
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Forward feature selection (Mallat & Zhang 1993)

Repeat for t = 1 . . .T :
▶ Compute correlations c = DT rt
▶ Find i = arg maxj cj

▶ Add ci to the model
▶ Define rt+1 ← rt − cid·i

Features are selected greedily based on
current residual

This is basically Matching Pursuit
(Mallat & Zhang, 1993)
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Least Angle Regression (Efron et al. 2004)

Repeat for t = 1 . . .T :
▶ Compute correlations c = DT rt
▶ Identify “active” columns
A = {j : |cj | = maxj{|cj |}}

▶ Compute “equiangular” vector u
such that uTd·A1 = uTd·A2 = . . .

▶ Compute largest γ such that
rt − γu admits one additional
active column

▶ Define rt+1 ← rt − γu

Developed by Efron, Hastie, Johnstone
& Tibshirani (2004)

Same runtime complexity as OLS !
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Regularization paths
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Learning a sparse basis

With Matching Pursuit, dictionary is updated based on residual
▶ Multiple codebook vectors cannot “share” a residual

Another way to learn is through coordinate descent
▶ First, compute encoding(s) given a fixed dictionary
▶ Then, optimize the dictionary given a fixed set of encodings
▶ Somewhat similar in spirit to EM
▶ Provable convergence, no learning rate parameter

Developed by Mairal, Bach, Ponce & Sapiro (2009)



. . . . . .

Learning via coordinate descent (Mairal et al. 2009)

Repeat for t = 1 . . .T :

▶ Draw a sample xt ∼ p(x), and compute a sparse code:

αt = arg min
α

1
2
||xt − Dt−1α| |22 + λ ||α| |1

▶ Update running correlations:

At ← At−1 + αtα
T
t Bt ← Bt−1 + xtα

T
t

▶ Then optimize D given all previous α:

Dt = arg min
D

t∑
i=1

1
2

(
Tr(DTDAt)− Tr(DTBt)

)
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