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Basic least squares regression

Suppose we have some noisy measurements y that were generated
by an unobserved state x from a space spanned by the k columns
of D:

k
y ~ N(Dx,0%l) ~ N(>_ xd,j, 0?1
j=1
We can compute the most likely X by minimizing squared error:
° .1 >
X =argmin = ||y — Dx| |5
x 2

Least squares by itself is prone to modeling outliers and noise



Regularized least squares regression

To prevent overfitting, we introduce a regularization term:
o .1 >
% = argmin 2 [ly — Dx| [+ Allx| ¢

Different values of ¢ induce different priors on x:
» [( =0] — "LO-norm," unsolvable
» [¢ = 1] — lasso, Laplacian prior (Tibshirani, 1996)
» [( =2] — ridge, Gaussian prior (Hoerl & Kennard, 1970)
» [( = 1]+ [¢ = 2] — elastic net (Zou & Hastie, 2005)



Why do we care about sparsity ?

Suppose k is large ; sparsity limits “active” columns of D
» Helps make models easier for humans to understand

» Enables better compression

Sparsity seems to be a useful way of representing statistical
properties of the natural world

So we'd like to keep ¢ small to encourage sparse solutions



Sparse codes represent natural statistics efficiently
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Forward feature selection (Mallat & Zhang 1993)

Repeat for t =1... T: AAY
» Compute correlations c = D',
» Find i = arg max; ¢;
» Add ¢; to the model
» Define rpy1 < ry — ¢id,;

Features are selected greedily based on
current residual

This is basically Matching Pursuit
(Mallat & Zhang, 1993)



Least Angle Regression (Efron et al. 2004)

Repeat fort =1... T:

>

>

Compute correlations ¢ = D',

Identify “active” columns Ay
A={J:[g] = max{|ql}}

Compute “equiangular” vector u

such that u’d. 4, =u'd 4, = ...

Compute largest v such that
r: — yu admits one additional
active column

Define ry1q1 < rp —~yu

Developed by Efron, Hastie, Johnstone
& Tibshirani (2004)

Same runtime complexity as OLS !



Regularization paths

Least Angle Regression (LAR) Path
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Learning a sparse basis

With Matching Pursuit, dictionary is updated based on residual

» Multiple codebook vectors cannot “share” a residual

Another way to learn is through coordinate descent

» First, compute encoding(s) given a fixed dictionary

v

Then, optimize the dictionary given a fixed set of encodings

v

Somewhat similar in spirit to EM

v

Provable convergence, no learning rate parameter

Developed by Mairal, Bach, Ponce & Sapiro (2009)



Learning via coordinate descent (Mairal et al. 2009)

Repeat for t =1... T:

» Draw a sample x; ~ p(x), and compute a sparse code:

1
ap = argmin 5 Ixe = De1a| 5+ Alla [1

» Update running correlations:

At — Atf]_ + OétOét-.r Bt — Btf]_ + XtOét-.r
» Then optimize D given all previous a:

D; = arg mlnz (Tr (DT DA;) — Tr(DTBt))



	Linear regression
	Sparse linear regression
	Learning a sparse basis

