1. Kohonen Maps

(a) [10] In the Kohonen Map algorithm, a set of points is mapped onto data points $x = \{x_1, \ldots, x_N\}$ using a topology that has a certain dimension. For example in the traveling salesman problem the dimension is one, but in other problems the dimension is two or greater. Write the outline of a Kohonen Map algorithm that takes the dimension of the topology as a parameter.

(b) [5] What is the maximum dimension of the topology that is reasonable?

(c) [10] Suppose the topology should not be uniform for all of the data set, but in some regions should be two-dimensions and in other regions three dimensions. How could you modify the basic algorithm to adjust these dimensions on line?
2. Reinforcement Learning

In a simple 2D grid world, robots (circles) get rewarded for collecting black stars and punished for collecting white stars.

The robots are use standard reinforcement learning such that each robot k can be described by a Markov Decision Process $MDP = \{S_k, A_k, T_k, R_k\}$ where S_k is the state space, A_k is the action space, T_k is the transition function and R_k is the reward function.

(a) [10] Specify a possible S_k, A_k, T_k and R_k for these robots.

(b) [10] If two robots are to be considered as a single robot, show formally how their information can be combined. What is the new $MDP = \{S, A, T, R\}$ in terms of the old?

(c) [5] Now suppose the ‘merged’ robot given by your $\{S, A, T, R\}$ is to be split up into two robots. Is there a problem here? Say why or why not.
3. **Genetic Algorithms**

In the diagram below is an abstract representation of a program where white denotes code that is never executed.

(a) [10] In a genetic algorithm a small set of examples or *fitness cases* are used to evaluate an individual. Why not just use all the possible inputs?

(b) [5] Why is it useful to have fitness cases evolve?

(c) [10] In genetic programming, lots of an individual program is never executed. Should this code be pruned? Give a reason why it might be a good idea and a reason it might not be.
4. Games

The Work or Shirk game is given by:

\[
\begin{array}{c|c|c}
\text{Alice} & \text{Insp.} & \sim\text{Insp.} \\
\hline
\text{Shirk} & -h & 0 \\
0 & w \\
\hline
\text{Work} & v-h & v \\
w-g & w-g \\
\end{array}
\]

where the worker chooses to Shirk with probability x and the inspector chooses Inspect with probability y.

(a) [10] Derive two formulas that reflects the payoffs expected by the Worker and Inspector.
(b) [15] Use calculus to derive the best probabilities for both players.