MACHINE LEARNING

WEEK 3: OPTIMIZATION

LECTURE 2: HAMILTONIAN, KALMAN FILTER
Euler-Lagrange Method

\[
\max_u J \text{ subject to the constraint } \dot{x} = F(x, u)
\]

The strategy will be to assume that \(u \) maximizes \(J \) and then use this assumption to derive other conditions for a maximum. These arguments depend on making a perturbation in \(u \) and seeing what happens. Since \(u \) affects \(x \), the calculations become a little involved, but the argument is just a matter of careful bookkeeping. The main trick is to add additional terms to \(J \) that sum to zero. Let’s start by appending the dynamic equation to \(J \) as before, but this time using continuous Lagrange multipliers \(\lambda(t) \):

\[
\bar{J} = J - \int_0^T \lambda^T [\dot{x} - F(x, u)] dt
\]
Anticipating what is about to happen, we define the Hamiltonian $H(\lambda, x, u)$ as

$$H(\lambda, x, u) \equiv \lambda^T [F(x, u)] + \ell(x, u)$$

so that the expression for \bar{J} becomes

$$\bar{J} = \psi[x(T)] + \int_0^T [H(\lambda, x, u) - \lambda^T \dot{x}] dt$$
Now let's examine the effects of a small change in \(u \), as shown in Figure 6 on \(\bar{J} \), just keeping track of the change \(\delta \bar{J} \):

\[
\delta \bar{J} = \psi[x(T) + \delta x(T)] - \psi[x(T)] + \int_0^T [H(\lambda, x + \delta x, v) - H(\lambda, x, u) - \lambda^T \delta x] dt
\]
Integration by parts

Using the expression for integration by parts for $\int \lambda^T \delta \dot{x} dt$:

$$\int_0^T \lambda^T \delta \dot{x} \, dt = \lambda^T(T) \delta x(T) - \lambda^T(0) \delta x(0) - \int_0^T \lambda^T \delta x \, dt$$

Now substitute this into the expression for $\delta \bar{J}$,

$$\delta \bar{J} = \psi[x(T) + \delta x(T)] - \psi[x(T)] - \lambda(T)^T \delta x(T)$$
$$+ \int_0^T [H(\lambda, x + \delta x, u) - H(\lambda, x, u) + \lambda^T \delta x] \, dt$$
Variational analysis

Now concentrate just on the first two terms in the integral:

$$\int_0^T [H(\lambda, x + \delta x, u) - H(\lambda, x, u)] dt$$

First add and subtract $H(\lambda, x, u)$:

$$= \int_0^T [H(\lambda, x + \delta x, u) - H(\lambda, x, u) + H(\lambda, x, u) - H(\lambda, x, u)] dt$$

Next expand the first term inside the integral in a Taylor series and neglect terms above first order,

$$\approx \int_0^T (H_x(\lambda, x, u)^T \delta x + H(\lambda, x, u) - H(\lambda, x, u)) dt$$

where H_x is the partial $\frac{\partial H}{\partial x}$, which is

$$\begin{pmatrix}
H_{x_1} \\
\vdots \\
H_{x_n}
\end{pmatrix}$$
Now add and subtract $H_x(\lambda, x, u)^T \delta x$:

$$= \int_0^T \{ H_x(\lambda, x, u)^T \delta x + [H_x(\lambda, x, v) - H_x(\lambda, x, u)]^T \delta x + H(\lambda, x, v) - H(\lambda, x, u) \} dt$$

The term $[H_x(\lambda, x, v) - H_x(\lambda, x, u)]^T \delta x$ can be neglected because it is the product of two small terms, $[H_x(\lambda, x, v) - H_x(\lambda, x, u)]$ and δx, and thus is a second-order term. Thus

$$\approx \int_0^T (H_x(\lambda, x, u) \delta x + H(\lambda, x, v) - H(\lambda, x, u)) dt$$
Finally, substitute this expression back into the original equation for δJ, yielding

$$
\delta \bar{J} \approx \{ \psi_x[\dot{x}(T)] - \lambda^T(T) \} \delta x(T)
+ \int_0^T [H_x(\lambda, x, u) + \dot{\lambda}^T] \delta x \, dt
+ \int_0^T [H(\lambda, x, v) - H(\lambda, x, u)] dt
$$

Since we have the freedom to pick λ, just to make matters simpler, pick it so that the first integral vanishes:

$$
-\dot{\lambda}^T = H_x(\lambda, x, u)
\lambda^T(T) = \psi_x[x(T)]
$$
Condition for a maximum

Now all $\delta \bar{J}$ has left is

$$\delta \bar{J} = \int_0^T [H(\lambda, x, v) - H(\lambda, x, u)] dt$$

From this equation it follows that the optimal control u^* must be such that

$$H(\lambda, x, u^*) \geq H(\lambda, x, u), \ u \in U \quad (3)$$

To see this point, suppose that it were not true, that is, that for some interval of time there was a $v \in U$ such that

$$H(\lambda, x, v) \geq H(\lambda, x, u^*)$$

This assumption would mean that you could adjust the integral so that the perturbation $\delta \bar{J}$ is positive, contradicting the original assumption that \bar{J} is maximized by u^*. Therefore Equation 3 must hold.
Summary

In addition to the dynamic equations

$$\dot{x} = f(x, u)$$

and associated initial condition

$$x(0) = x_0$$

the Lagrange multipliers also must obey a constraint equation

$$-\dot{\lambda}^T = Hx$$

that has a final condition

$$\lambda^T(T) = \psi_x[x(T)]$$

The equation for λ is known as the adjoint equation. In addition, for all t, the optimal control u is such that

$$H[\lambda(t), x(t), u] \leq H[\lambda(t), x(t), u(t)]$$

where H is the Hamiltonian

$$H = \lambda^T f(x, u) + \ell(x, u)$$
The dynamic equation is
\[\ddot{x} = -\dot{x} + u(t) \]

with initial conditions
\[x(0) = 0, \quad \dot{x}(0) = 0 \]

The cost functional
\[J = x(T) - \frac{1}{2} \int_0^T u^2(t) dt \]
captures the desire to maximize the distance traveled in time \(T \) and at the same time penalize excessive accelerations.

Using the transformation of Section 5.2.1, the state variables \(x_1 \) and \(x_2 \) are defined by
\[
\begin{pmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{pmatrix} =
\begin{pmatrix}
x_2 \\
-x_2 + u
\end{pmatrix}
\]
\[x_1(0) = x_2(0) = 0 \]
\[J = x_1(T) - \frac{1}{2} \int_0^T u^2 dt \]

The Hamiltonian is given by
\[H = \lambda_1 x_2 - \lambda_2 x_2 + \lambda_2 u - \frac{1}{2} u^2 \]
Differentiating this equation allows the determination of the adjoint system as

\[-\dot{\lambda}_1 = \frac{\partial H}{\partial x_1} = 0\]

\[-\dot{\lambda}_2 = \frac{\partial H}{\partial x_2} = \lambda_1 - \lambda_2\]

and its final condition can be determined from

\[\psi = x_1(T)\]

\[\lambda(T) = \psi x(T) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}\]

The simple form of the adjoint equations allows their direct solution. For \(\lambda_1\),

\[\lambda_1 = \text{const} = 1\]

For \(\lambda_2\), we could use Laplace transform methods, but they have not been discussed, so let's make the incredible lucky guess:

\[\lambda_2 = 1 - e^{t-T}\]

For a maximum differentiate \(H\) with respect to \(u\),

\[\frac{\partial H}{\partial u} = 0 \Rightarrow \lambda_2 - u = 0\]

\[u = \lambda_2 = 1 - e^{t-T}\]
Kalman Filter

Suppose you are able to make measurements z that are related to a variable that you would like to know by a linear relationship:

$$z = Hx + \nu$$

The term ν represents unwanted noise and is assumed to have the statistics

$$E(\nu) = 0$$
and

$$E(\nu^T \nu) = R$$

Somehow you have already estimated the variable x as \bar{x}.

Now you would like to use z to improve the estimate of x. A logical way to proceed would be to weight the two different sources of knowledge, z and \bar{x}.

$$J(x) = \frac{1}{2}[(x-\bar{x})^T M^{-1}(x-\bar{x}) + (z-Hx)^T R^{-1}(z-Hx)]$$
Kalman Filter

Suppose you are able to make measurements z that are realated to a variable that you would like to know by a linear relationship:

$$z = Hx + v$$

The term v represents unwanted noise and is assumed to have the statistics

$$E(v) = 0$$

and

$$E(vv^T) = R$$

Somehow you have already estimated the variable x as \bar{x}.

Now you would like to use z to improve the estimate of x. A logical way to proceed would be to weight the two different sources of knowledge, z and \bar{x}.

$$J(x) = \frac{1}{2}[(x-\bar{x})^T M^{-1}(x-\bar{x}) + (z-Hx)^T R^{-1}(z-Hx)]$$
At the minimum,

\[dJ = 0 = dx^T [M^{-1}(x - \bar{x}) - H^T R^{-1}(z - Hx)] \]

To satisfy this in general, the term in [] must be zero

\[M^{-1}(\hat{x} - \bar{x}) - H^T R^{-1}(z - H\hat{x}) = 0 \]

\[(M^{-1} - H^T R^{-1}H)\hat{x} = M^{-1}\bar{x} + H^T R^{-1}z \]

Adding and subtracting \(H^T R^{-1}H\bar{x} \) to the RHS,

\[(M^{-1} - H^T R^{-1}H)\hat{x} = (M^{-1} - H^T R^{-1}H)\bar{x} + H^T R^{-1}(z - H\hat{x}) \]
Kalman Filter

Now use

\[P = M^{-1} - H^T R^{-1} H \]

to write the estimate for \(\hat{x} \) as

\[\hat{x} = \bar{x} + P^{-1} H^T R^{-1} (z - H \bar{x}) \]

This is the least squares estimate for \(x \). It can be shown that \(P \) is the covariance of the error in the estimate, that is

\[P = E[(\hat{x} - x)(\hat{x} - x)^T] \]
Now suppose that you would like to estimate the value of a variable as before. However now this variable x_1 is related to a previous variable x_0 by

$$x_1 = Ax_0 + B\mu$$

where

$$E[x_0] = \bar{x}_0$$

$$E[\mu] = \bar{\mu}$$

$$E[(\mu - \bar{\mu}_0)(\mu - \bar{\mu}_0)^T] = Q_0$$

and

$$E[(\hat{x}_0 - x_0)(\hat{x}_0 - x_0)^T] = P_0$$
This problem is easy since we have just solved it! The solution is given by

\[\hat{x}_1 = \bar{x}_1 + P_1^{-1} H^T R^{-1} (z_1 - H \bar{x}_1) \]

where

\[P_1 = M_1^{-1} - H^T R^{-1} H \]

The new wrinkle is that now

\[\bar{x}_1 = A \bar{x}_0 + B \bar{\mu} \]

and

\[M_1 = A P_0 A^T + B Q_0 B^T \]

This can be iteratively extended to handle the case where

\[x_{k+1} = A x_k + B \mu \]