MACHINE LEARNING

WEEK 4: INFORMATION THEORY

LECTURE 1: INFORMATION, ENTROPY, KL DISTANCE




Information

The information content of a set of V,, messages is defined to be
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Consider the case of a binary channel with only ones and zeros. Further con-
strain all messages to be of length m and to have exactly m, ones and my zeros.
Naturally my, + mo = m. The number of different possible messages of this
distribution of ones and zeros is just

r m!
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Thus the information in the ensemble of these messages is just

I, =log N,,, = logm! — logm,! — log ms!

If the m;,i = 1,2 are so large that logm; > 1, then you can approximate the
preceding equation as

Entropy =

| f ‘l‘| log N,,, = mlogm — mylogmy, — mologms
So the average information, or entropy, H = I,,,/m, can be obtained as:
mi msa
H =logm — logm,; — — logms
m m
This can be rearranged as
my my Mo Mo
- log - log
m m m m

Finally, interpreting == as the probability p; leads to

2
H = - Zpi log pi
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Entropy

Important quantity in
 coding theory
e statistical physics
* machine learning




Entropy

Coding theory: X discrete with 8 possible states; how many
bits to transmit the state of X?

All states equally likely

1 1
H[z] = —8 X 3 log, 3= 3 bits.




Minimum code length

An information rate of —)_ p; log p; is the best we can do. Thus we expect
that the average rate (or length) is going to be greater than this—that is, that

a Z pilogp; < Z pil;

th (ode word. From this it is seen that equality

where [; is the length of the ¢
occurs when

l; = — log p;

and this is in fact the best strategy for picking the lengths of the code words.
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Entropy

In how many ways can N identical objects be allocated M

bins? AN

[ ni!
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Entropy maximized when Vi : p; = —
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Differential Entropy

Put bins of width ¢ along the real line

Jlim { Zp(xi)Alnp(xi)} = — / p(z) Inp(z)dz

Differential entropy maximized (for fixed ¢*) when
p(x) = N(z|p,o®)
in which case

Hlz] = % {1+ In(270%)}.




Conditional Entropy

Hly|x| = // p(y,x) In p(y|x) dy dx

Hlx,y] = Hly[x| + H[x]




The Kullback-Leibler Divergence

KL(p|/q)

=~ [pe9matoax— (= [ s 1mp(x) i)
_ —/p(x)ln{%} dx

N
KL(p|q) ~ NZ{ In ¢(x,|0) + In p(x,)}

n=1

KL(pllq) = 0 KL(pl|q) # KL(q||p)




Mutual Information

p(x,y)|[p(x)p (y))

[ (250 o

I[x,y] = H[x| — H[x|y] = H[y| — H[y|x]

Ix,y]




Minimum Description Length

The idea is that of sending a message that describes a theory. One way to do
so would be just to send all the data, as in a sense this is a literal description of
the theory. But the intuition behind Occam’s razor is to favor compact theories.
MDL captures this by allowing the message to have the form of a description
of the theory plus a description of the data when encoded by the theory. The
assumption is that the sender and receiver agree on the semantics of a language
for the message and the cost is then the length of the code for the message.
Thus the combined length of the message, L(M, D), is a sum of two parts,

\L(M,D)| = |L(M)|+ |L(D encoded using M )|




In terms of Bayes’ rule, the probability of a model given data can be ex-
pressed as
P(D|M)P(M)

P(M|D) = 26

Picking the best model can be expressed as maximizing P(M|D), or

max P(D|M)P(M)

You do not have to consider P(D) here because it is constant across all models.
Now maximizing this expression is equivalent to maximizing its logarithm, as
the logarithm is monotonic and will not affect the outcome. So

m‘-(}x[P(DM-I)P(JW)] = m‘z_}x[log P(D|M) + log P(M)]

and this is the same as minimizing its negative:

niiln[— log P(D|M) — log P(M)] (2)

But now remember the earlier result that for a minimal code that has probability
of being sent P, the length of the code is

—log P (3)



MDL cost function

Assume the residuals are distributed in the form of a Gaussian with variance

«. Then
1 x - L " (xi—my)?
n M) = e 2o Lai=1 "
P ) (27&‘(‘!)

If in turn the model is a neural network with a set of parameters w;, i = 1,..., W,
then we can assume that they also are distributed according to a (xausslan with

variance 3. Therefore,
— 1 2L E : 2
p(M) ( 23 ) ‘

Substituting these two equations into Equation 2,

n

. . . 1 : o, 1
nﬁn[— log P(D|M) —log P(M)] = o Z(:z,.,-, —m;)° + 53 Z w? 4 const.

i=1 ' 2




The basic circuit for study

Simple cell's
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DeAngelis et al. (1995)
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Approximating an image patch w basis functions

The outputs
of 64cells

in the LGN ... ... where each cell has 64 synapses
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... can be coded with only twelve V1 cells ...
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LGN V1

Thalamic striate cortex
nucleus




The neural coding library of learned RFs
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Because there are more than we need - Overcomplete (192 vs 64) - the number of cells that

need to send spikes at any moment is Sparse (12 vs 64).



Approximating an i sis functions
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The Current Best Algorithm: Matching
Pursuit

A ~ B 4 cycles

C
g, + U + 1y + ry
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Learning algorithm: move RFs Input H
of winning neurons towards inputs

basis vectors (RFs)

LGN difference
detectors




