Machine Learning Midterm

This TWO-SIDED exam is open book. You may bring in your homework, class notes and text- books to help you. You will have 1 hour and 15 minutes. Write all answers in the blue books provided. Please make sure YOUR NAME is on each of your blue books. Square brackets [] denote the points for a question. ANSWER ALL FOUR QUESTIONS FOR FULL CREDIT

1. Decision Trees

Instead of entropy in decision trees, one can use the Gini index or the Missclassification index.

- (a) [15] You have a data set with 400 positive examples and 400 negative examples. Denote this as $(400^+, 400^-)$. Now suppose you have two possible splits for a decision tree. One branch results in $(300^+, 100^-)$ and $(100^+, 300^-)$. The other choice of feature results in $(200^+, 400^-)$ and $(200^+, 0^-)$.
 - i. What is the decrease in impurity for the Gini index for each of these choices?
 - ii. What is the decrease in impurity for the Missclassification index?
- (b) [10] Which of the two methods of splitting would be preferred and why?

Gini index: $F(n) = \sum_{l=1}^{k} p_l(n)(1 - p_l(n))$ Missclassification index: $F(n) = (1 - \max_{l \in [1,k]} p_l(n))$

The $(300^+, 100^-)$ and $(100^+, 300^-)$ split: Missclassification:

$$\widetilde{F}(n) = \frac{1}{2} - \left[\frac{1}{2} \left(\frac{1}{4} \right) + \frac{1}{2} \left(\frac{1}{4} \right) \right] = \frac{1}{4}$$

Gini:

$$\widetilde{F}(n) = \frac{1}{2} - \left[\frac{1}{2}\left(\frac{1}{4}\right)\left(\frac{3}{4}\right) + \frac{1}{2}\left(\frac{1}{4}\right)\left(\frac{3}{4}\right)\right] \times 2 = \frac{1}{8}$$

The $(200^+, 400^-)$ and $(200^+, 0^-)$ split: Missclassification:

$$\widetilde{F}(n) = \frac{1}{2} - \left[\frac{3}{4} \left(\frac{1}{3} \right) + \frac{1}{4} \times 0 \right] = \frac{1}{4}$$

Gini:

$$\widetilde{F}(n) = \frac{1}{2} - \left[\frac{3}{4} \left(\frac{1}{4} \right) \left(\frac{3}{4} \right) + \frac{1}{4} \times 0 \right] = \frac{1}{6}$$

Gini prefers the purity split; Missclassification does not care.

2. Dual Problem

(a) [5] When given a problem of solving

$$Ax = y$$

where A is not of full rank, one solution is to regularize the system by charging for the length of x, so that:

$$E = ||Ax - y||^2 + \lambda ||x||^2$$

Show that this approach implies that

$$A^T A x + \lambda I x = A^T y \tag{1}$$

(b) [5] If this equation is rewritten in the form

$$x = \frac{1}{\lambda}(A^T y - A^T A x) = A^T \alpha \tag{2}$$

what is the equation for α ?

(c) [15] Use equations (1) and (2) to eliminate x and create a dual problem involving only A, y, and α and solve it for α .

$$E = [Ax - y]^T [Ax - y] + \lambda x^T x$$

$$E_x = 0$$

$$A^T [Ax - y] + \lambda x = A^T y$$

$$x = \frac{1}{\lambda} [A^T y - A^T A x] = A^T [\frac{1}{\lambda} [y - A x] = A^T \alpha$$

Eliminate x,

$$A^T[AA^T + I\lambda]\alpha = A^Ty$$

$$\alpha = [AA^T + I\lambda]^{-1}y$$

3. VC Dimension

- (a) [5] What is the value of the VC dimension to machine learning? Be VERY BRIEF in your response.
- (b) [10] Consider the function set of axis-parallel rectangles for a two dimensional data set of pairs of real numbers. What is the VC dimension of this set?
- (c) [10] Consider the function set of Support Vector Machine classifiers. What can you say about the VC dimension of SVMs?
 - (a) It allows you to bound the error on the test set.
 - (b) By construction d = 4.
 - (c) d+1 where d is the dimension of the mapping function vector.

4. **Sampling** The Box-Muller method of generating random numbers from a Gausian ultilizes random numbers drawn from the uniform distribution $[-1,1] \times [-1,1]$ and filtered by rejecting points that do not satisfy $z_1^2 + z_2^2 \leq 1$. Then (y_1,y_2) are computed by:

$$y_{1} = z_{1} \left(\frac{-2lnr^{2}}{r^{2}} \right)^{\frac{1}{2}}$$
$$y_{2} = z_{2} \left(\frac{-2lnr^{2}}{r^{2}} \right)^{\frac{1}{2}}$$

where $r^2 = z_1^2 + z_2^2$. The resultant y_1 and y_2 are independent and each have zero mean and unit variance.

- (a) [5] Where $y = (y_1, y_2)$, write down the covariance matrix cov(y), that is, $E[yy^T]$.
- (b) [10] It would be really helpful if we could sample from a Gaussian with an arbitrary mean μ and covariance Σ . It turns out that this can be done, since we can factor Σ as

$$\Sigma = LL^T$$

Show that $cov(x) = \Sigma$ and $E(x) = \mu$ where

$$x = Ly + \mu$$

(c) [10] Suppose that we would like to sample from a distribution that can be expressed as a weighted mixture of Gaussians, that is

$$p(x) = w_1 N(\mu_1, \Sigma_1) + w_2 N(\mu_2, \Sigma_2) + w_3 N(\mu_3, \Sigma_3)$$

How would you design a program to sample from p(x)?

(a)

$$E[y] = 0; E[yy^T] = I$$

(b)

$$covx = E[xx^{T}] - E[x]E[x^{T}]$$

$$= E[(\mu + Ly)(\mu + Ly)^{T}] - \mu\mu^{T}$$

$$= LL^{T}$$

$$= \Sigma$$

(c) Since you know how to sample from an arbitrary Gaussian, pick one with odds $w_1 : w_2 : w_3$ and sample from it.