
Linear Algebra Review

Vectors To begin, let us describe an element of the
state space as a point with numerical coordinates, that
is

x =


x1

x2
...
xn


Vectors of up to three dimensions are easy to diagram.

For example,

x =


3
2
5


can be drawn as follows.

x1

x2

x3

3

2

5

Figure 1: An example of a vector.
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Addition To add two vectors together simply add
their components. To multiply a vector by a scalar (num-
ber), multiply each of the components by the scalar. For
example, if z = x + y, then if

x =


3
5
2

 and y =


−4

1
3

 then z =


−1

6
5


And if z = αx for a scalar α, then

z = α


3
5
2

 =


3α
5α
2α



Dot Product The dot product of two vectors, denoted
x·y, is defined as the sum of the product of their pairwise
components; that is,

x · y =
n∑

i=1
xiyi

For our example, x ·y = (3)(−4) + (5)(1) + (2)(3) = −1.
Two vectors are said to be orthogonal if their dot prod-

uct is zero; that is, x · y = 0.
The length of a vector, denoted ||x||, is simply

√
x · x.

The angle θ between two vectors x and y is given by

cos θ =
x · y
||x|| ||y||

From this equation it is seen that if vectors are orthogo-
nal, then cos θ = 0 or θ = 90o.

The vector (x · y) y
||y|| is termed the projection of x

onto y.
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The transpose of a matrix, denoted AT , is simply de-
scribed using the element notation as {aji}. In other
words, the elements are “flipped” about the diagonal. A
square n× n matrix is symmetric if AT = A.

Linear Transformations For any function f(x), a lin-
ear transformation is such that

f(ax+ by) = af(x) + bf(y)

An important linear transformation is matrix multiplica-
tion. Matrix multiplication A = BC is defined by

aij =
N∑

k=1
bikckj, i = 1, . . . , P, j = 1, . . . , Q

From this formula it is seen that the number of columns
of B has to be the same as the number of rows of C for
multiplication to be defined.

Determinant To define the determinant of a matrix
first requires defining the number of inversions in a num-
ber sequence. Consider the sequence {1, 3, 4, 2}. The
number of inversions in this sequence is 2 because 3 and
4 come after 2. Similarly the number of inversions in
{4, 2, 1, 3} is 3. Denote the number of inversions of a
sequence as n. The determinant of a matrix A, denoted
|A|, is the sum of all n! possible different products that
compose elements from columns of the matrix with a
term that depends on the number of inversions in the
row indices; that is,

|A| =
∑

(−1)n(i1,i2,...,in)ai1,1ai2,2 · · · ain,n

Like the inverse of a matrix, the determinant is expen-
sive to calculate for large matrices, and a standard text
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should be referred to for an algorithm. For practice cal-
culations, however, it is useful to remember that the de-
terminant of the 2× 2 matrix

A =

 a b
c d


is given by

|A| = ad− bc

Inverse For square matrices where N= M , an impor-
tant matrix is the inverse matrix A−1, which is defined
by

AA−1 = I

where I is the identity matrix

I =



1 0 · · · 0

0 1
...

... . . . 0
0 · · · 1


In general, like the determinant, inverses take some work
to calculate, and you should find a numerical routine.
For practice, however, it is useful to remember that the
inverse of the 2× 2 matrix

A =

 a b

c d


is given by

A−1 =

 d −b
−c a


|A|
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Trace The trace of a matrix A is the sum of its diagonal
elements; that is,

Tr(A) =
N∑

i=1
aii

Positive Definite A matrix A is positive definite if for
every x,

xTAx > 0

and positive semidefinite if

xTAx ≥ 0

Orthonormal Transformation A transformation ma-
trix A is orthonormal when

A−1 = AT

As a consequence
AAT = I
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1 Coordinate Systems

Let us start by considering how coordinate systems rep-
resent multi-dimensional data. Multiplying a matrix by
a vector is a special case of matrix multiplication where

y = Ax

This can be written as yi =
∑N

k=1 akjxj, i = 1, . . . ,M .
Alternatively we can see the transformation as a linear
combination of the columns of A:

y = a1x1 + a2x2 + · · ·+ aNxN

Often in manipulating vectors it is implicitly assumed
that they are described with respect to an orthogonal
coordinate system. Hence the actual coordinate vectors
are not discussed. In the general case, however, the right
coordinate system for data might not be orthogonal. To
develop this point, consider first that the vectors ai have
a special interpretation as a coordinate system or basis
for a multidimensional space. For example, in the tradi-
tional basis in three dimensions,

a1 =


1
0
0

 , a2 =


0
1
0

 , and a3 =


0
0
1


allows y to be written as

y = a1y1 + a2y2 + a3y3
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A fundamentally important property of coordinate sys-
tems is that they are only describable relative to one an-
other. For example, y is described in terms of the basis
vectors ai.

This basis is orthogonal, since

ai · aj = 0

for all i and j such that i 6= j, but it turns out that a
nonorthogonal basis would also work. For example,

A =


1 0 0
0 1 0
−1 1 −1


would still allow y to be represented (although the coeffi-
cients would of course be different). However, the matrix

A =


1 0 0
0 1 0
−1 1 0


would not work. In this case the reason is easy to see:
there is no way of representing the third component.
In general, to represent n-dimensional vectors, the ba-
sis must span the space. A general condition for this
is that the columns of A must be linearly independent .
Formally this means that the only way you could write

a1x1 + a2x2 + · · ·+ aNxN = 0

would be if xi = 0 for all i.
What happens when the columns of an n-dimensional

matrix do not span the space? The dimension of the
matrix is equal to the number of linearly independent
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vectors, which is known as the rank of the matrix. When
the rank r is less than the dimension N , the vectors are
said to span an r-dimensional subspace.

In some cases it is desirable for a matrix to have less
than full rank. For example, for the equation

Ax = 0

to have a nontrivial solution, the columns of A must be
linearly dependent. Why? This equation is just a rewrit-
ten version of the previous equation. If the columns were
linearly independent, then the only way the equations
could be satisfied would be to have xi = 0 for all i.
But for a nontrivial solution the xi should be nonzero.
Hence for this to happen the columns must be linearly
dependent. For example, in three dimensions this can
happen when all three of the vectors are in a plane.

In contrast, for the equation

Ax = c

to have a unique solution the converse is true, because
in order to have a solution, now the vector c must be
expressed in terms of a linear combination of the columns
ai. For this statement to be generally true the columns
must span the space of c; hence, together with the vector
c, they must be linearly dependent. These two cases are
illustrated in Figure 2.
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a

b
a1

a3

a2

a1

a2

c

Figure 2: (a) The columns of A are linearly independent in three dimensions if
the three column vectors are not coplanar. (b) For the case Ax = c the vector
c must lie in the space spanned by A. In two dimensions, therefore, a1, a2, and
c must all be coplanar.
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Eigenvalues and Eigenvectors

At this point you should be used to the idea that any
matrix can be thought of as representing a coordinate
system. When a vector is multiplied by such a matrix,
the general result is that the magnitude and direction
of the resultant vector are different from the original.
However, there is a very important special case. For any
matrix, there are vector directions such that the matrix
multiplication only changes the magnitude of the vec-
tor, leaving the direction unchanged. For these special
directions, matrix multiplication reduces to scalar mul-
tiplication. The following example shows a case for the
matrix  3 1

2 2


where  1

1


is a special direction for the matrix, since multiplying
it by the matrix just results in scaling the vector by a
factor λ = 4; that is, 3 1

2 2

  1
1

 = 4

 1
1


In the general case, if a vector v lies along one of these

directions,
Wv = λv

where λ is a scalar. Vectors that lie along these spe-
cial directions are known as eigenvectors , and the scalars
associated with a transformation matrix are known as
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eigenvalues . Finding the eigenvalues of an n× n matrix
for arbitrary n requires a trip to the recipe book, starting

with the solution of an nth-order polynomial to find the
eigenvalues, but it is useful to work it out for an easy
two-dimensional case, as follows: 3 1

2 2

  v1

v2

 = λ

 v1

v2


or, in other words, 3− λ 1

2 2− λ

  v1

v2

 =

 0
0


From the previous section we know that for this equation
to have a solution, the columns of the matrix must be
linearly dependent, and thus |W | = 0. Thus

(3− λ)(2− λ)− 2 = 0

which can be solved to find the two eigenvalues λ1 = 4
and λ2 = 1. Now for the eigenvectors. Substituting
λ1 = 4 into the equation results in −1 1

2 −2

  v1

v2

 =

 0
0


Now this set of equations is degenerate, meaning that
there is only one useful equation in two unknowns. As
a consequence there is an infinity of solutions, and you
must pick one arbitrarily. Pick v1 = 1. Then v2 = 1.
Thus the eigenvector associated with λ1 = 4 is 1

1
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As an easy exercise you can find the eigenvector associ-
ated with λ2 = 1.

Now, for any particular matrix, why not pick the eigen-
vectors as the basis? It turns out that this is a good
thing to do, since the effect is to transform the matrix
into another matrix whose only nonzero elements are on
the diagonal. Furthermore, these diagonal elements are
the eigenvalues. The effect is to reduce matrix multipli-
cation in the old basis to scalar multiplication in the new
basis.
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Changing Coordinates

What happens to transformations when the coordinate
basis is changed? Suppose that the coordinate transfor-
mation is given by

x∗ = Ax

y∗ = Ay

Given the transformation

y = Wx

what happens toW when the coordinate system is changed
to the starred system? That is, for some W ∗ it will be
true that

y∗ = W ∗x∗

What is the relation between W and W ∗? One way to
find out is to change back to the original system, trans-
form by W , and then transform back to the starred sys-
tem; that is,

x = A−1x∗

y = Wx

y∗ = Ay

Putting these transformations together:

y∗ = AWA−1x∗

Since the vector transformation taken by the two differ-
ent routes should be the same, it must be true that

W ∗ = AWA−1

Matrices related in this way are called similar .
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Eigenvalue Transformations

Now let’s relate this discussion to eigenvectors. Suppose
that the eigenvectors have been chosen as the basis set.
Then for a given eigenvector yi,

Wyi = λyi

and if Y is a matrix whose columns are the eigenvectors
yi, then

WY = Y Λ

Here Λ is a matrix whose only nonzero components are
the diagonal elements λi. Premultiplying both sides by
Y −1,

Y −1WY = Λ

What this equation means is that given a matrix W, the
transformation it defines can always be simplified to that
of a matrix whose only nonzero elements are diagonal by
transforming to coordinates that use its eigenvectors as a
basis. Furthermore, those elements are the eigenvalues.
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Example

To check this result, let us use the earlier example where

W =

 3 1
2 2


and

Y =

 1 1
1 −2


and

Λ =

 4 0
0 1


Let us pick a particular vector as x

x =

 3
4


so that y is given by

y =

 13
14


First note that

Y −1 =
1

3

 2 1
1 −1


so that x∗ = Y −1x, which is 10

3
−1

3


and y∗ = Y −1y, which is 40

3
−1

3


But from this you can see that y∗ = Λx∗.
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Properties of Eigenvalues

1. An eigenvalue matrix Λ is invariant under any or-
thogonal transformation.

2. If all its eigenvalues are positive, a matrix A is posi-
tive definite.

3. The trace of A is the sum of all its eigenvalues and
is invariant under any orthogonal transformation.

4. The trace of Am is the sum of all its eigenvalues and
is invariant under any orthogonal transformation.

5. The determinant of A is equal to the product of all
its eigenvalues and is invariant under any orthogonal
transformation.
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Random Vectors

In this case vectors are drawn from some random distri-
bution that captures the natural variations in the world.
A random vector X is specified by a probability density
function p(X), where formally

p(X) = lim
∆xi→0

P (X ∈ I)∏
i ∆xi

where
I = {X : xi < Xi ≤ xi + ∆xi,∀i}

Although a random vector is fully characterized by
its density function, such functions are often difficult to
determine or mathematically complex to use. These lim-
itations motivate modeling distributions with functions
that can be described by a low number of parameters.
The most important of such parameters are the mean
vector and covariance matrix , which are just generaliza-
tions of the mean and variance of scalar random variables
to vector random variables.

The mean vector is defined by

M = E{X} =
∫

Xp(X)dX

and the covariance matrix by

Σ = E{(X −M)(X −M)T}
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In practice, with real data you will use the sample
mean vector and sample covariance matrix. Where Xk, k =
1, N are the samples,

M =
1

N

N∑
k=1

Xk

Σ =
1

N

N∑
k=1

(Xk −M)(Xk −M)T

You will need more than three samples in practice, but
to illustrate the calculations, suppose

X1 =


−1

3
1

 , X2 =


2
1
−1

 , X3 =


2
2
3


Then the mean value is

M =
1

3


3
6
3

 =


1
2
1


So that

X1−M =


−2

1
0

 ,X2−M =


1
−1
−2

 ,X3−M =


1
0
2


and the covariance matrix is given by

Σ =
1

3




4 −2 0
−2 1 0

0 0 0

 +


1 −1 −2
−1 1 2
−2 2 4

 +


1 0 2
0 0 0
2 0 4




=
1

3


6 −3 0
−3 2 2
−2 2 8
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High-Dimensional Spaces

Suppose, as is often the case, that the dimension of the
space is extremely large. Now the standard way to pro-
ceed would be to choose eigenvectors uk and eigenvalues
λk of the sample covariance matrix Σ where

Σ =
1

M

M∑
n=1

XnX
T
n

= AAT

where
A = [X1,X2, . . . ,XM ]

an M × N matrix of M data samples. The problem
with this tack is that it is infeasible owing to the high
dimensionality of the matrix Σ. Since for an image the
dimension of X is n2, then the dimension of Σ is n2×n2.
For typical values of n, say 256, this is impossibly large.
Salvation comes from the fact that the matrix Σ may be
approximated by a matrix of lower rank. That is, most
of the variation can be captured by projecting the data
onto a subspace whose dimension is much less than the
dimension of the space.

14



Rather than finding the eigenvectors of the larger sys-
tem, consider finding the eigenvectors of the M × M
system

ATAv = µv (1)

Premultiplying both sides by A,

AATAv = µAv

What this equation shows is that if v is an eigenvector of
ATA, then Av is an eigenvector of Σ. Furthermore, the
eigenvalues of the smaller system are the same as those
of the much larger system. It turns out also that these
are the M largest eigenvalues. So to find the eigenvec-
tors of the larger system, first find the eigenvalues and
eigenvectors of the smaller system, and then multiply the
eigenvectors by A.
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Example: Face Recognition A lovely example of
representing data is from face recognition. The task is to
recognize the identity of an image of a face. The face im-
age is described by an N ×N array of brightness values.
Given M exemplars of images with known identities, the
objective is to take a new image and identify it with the
training image to which it is most similar. The key ele-
ment is in the similarity metric. It should be chosen to
score the essential variations in the data. From the last
section, the way to discover the essential variations is
with principal components analysis, which identifies the
eigenvalues of the covariance matrix of all the data.

To begin, identify the training set of images as I1, I2, . . . , IM .
These are shown in Figure 3. To work with these it is
useful to subtract the bias introduced, as all the bright-
ness levels are positive. Thus first identify the “average
face” (shown in Figure ??)

Iave =
1

M

M∑
n=1

In

and then convert the training set by subtracting the av-
erage,

X i = I i − Iave, i = 1, . . . ,M

Now use Equation 1 to find M eigenvectors vk and eigen-
values λk.

From the “short” eigenvectors (of lengthM), the larger
eigenvectors uk, termed eigenfaces, can be constructed
using vk, as follows:

ui =
M∑

k=1
vikXk
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Figure 3: A database of 12 figures used to calculate eigenvectors.

Figure ?? shows the first seven eigenvectors calculated
from Equation 1.
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Now that the direction principal variations have been
calculated in the space of faces, this information can be
used to classify a new face in terms of the faces in the
data set. To do so, compute the coordinates of the new
image in the eigenvector space Ω = (ω1, ω2, · · · , ωM) as
follows:

ωk = uT
k (I − Iave), k = 1, · · · ,M

Next compare Ω to the Ωs for each of the classes to pick
the closest; that is, pick the class k that minimizes

||Ω−Ωk||
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