Basic RL Problems

ocation of reward uncertain

Transitions between states uncertain

Policy constantly changing

Reinforcement Learning Primer: Before Learning

By trying different actions from different starting points, we gradually learn the expected reward value from any starting point

State Space

A Monkey uses Secondary Reward

In the prediction of reward?

Backgammon

A move in Backgammon

Backgammon played with RL and Backpropagation

Board Position and Move

Map of Temporal Discounting (Tanaka et al., 2004 (Kenji Doya))

- Markov decision task with delayed rewards
- Regression by values and TD errors
 - with different discounting factors g

Task determines fixation point

Multi-tasking revealed by gaze sharing in human data

Shinoda & Hayhoe, Vision Research 2001

Scheduling - Modules - Routines

Routines

These behaviors contain instructions of how to use the body

Scheduling

At any moment only a small subset are being used

Modules

There is an enormous library of special purpose behaviors

Humanoid models are used to study multi-tasking

Human performance data shows unexpected regularities

Module for Litter Cleanup

2b. V is value of Policy

Heading from Walter's perspective

$$V(s) = max_a Q(s,a)$$

Learned Microbehaviors

Litter

Sidewalk

Obstacles

Overhead view of trajectory

The basic RL update for i-th module:

$$Q_i(s_t^{(i)}, a_t^{(i)}) \leftarrow Q_i(s_t^{(i)}, a_t^{(i)}) + \alpha \delta_{Q_i}$$

where δ_{Qi} is given by:

$$\delta_{Q_i} = \hat{r}_t^{(i)} + \gamma Q_i(s_{t+1}^{(i)}, a_{t+1}^{(i)}) - Q_i(s_t^{(i)}, a_t^{(i)})$$

Driving Simulator

Markov Decision Processes

Problems with delayed reinforcement are well modeled as Markov decision processes (MDPs). An MDP consists of

- a set of states S,
- a set of actions A,
- a reward function R : S × A → R, and
- a state transition function T: S × A → Π(S), where a member of Π(S) is a probability distribution over the set S (i.e. it maps states to probabilities). We write T(s,a,s') for the probability of making a transition from state s to state s' using action a.

The state transition function probabilistically specifies the next state of the environment as a function of its current state and the agent's action. The reward function specifies expected instantaneous reward as a function of the current state and action. The model is *Markov* if the state transitions are independent of any previous environment states or agent actions. There are many good references to MDP models [10, 13, 48, 90].

The basic RL algorithm w Model

We will speak of the optimal value of a state--it is the expected infinite discounted sum of reward that the agent will gain if it starts in that state and executes the optimal policy. Using π as a complete decision policy, it is written

$$V^*(s) = \max_{\pi} E\left(\sum_{t=0}^{\infty} \gamma^t r_t\right)$$
.

This optimal value function is unique and can be defined as the solution to the simultaneous equations

$$V^*(s) = \max_{a} \left(R(s, a) + \gamma \sum_{s' \in S} T(s, a, s') V^*(s') \right), \forall s \in S , \qquad (1)$$

which assert that the value of a state s is the expected instantaneous reward plus the expected discounted value of the next state, using the best available action. Given the optimal value function, we can specify the optimal policy as

$$\pi^*(s) = \arg\max_a \left(R(s, a) + \gamma \sum_{s' \in S} T(s, a, s') V^*(s') \right) .$$

Value Iteration

initialize V(s) arbitrarily

loop until policy good enough

loop for $s \in S$

loop for $\alpha \in \mathcal{A}$

$$Q(s, a) := R(s, a) + \gamma \sum_{s' \in S} T(s, a, s') V(s')$$

$$V(s) := \max_{a} Q(s, a)$$

end loop

end loop

Temporal Difference Learning

Q - Learning

Temporal difference learning [Sutton and Barto, 1998], uses the error between the current estimated values of states and the observed reward to drive learning. In a related Q-learning form, the estimate of the quality value of a state-action pair is adjusted by this error δ_Q using a learning rate α :

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \delta_Q$$
 (3)

Two fundamental learning rules for δ_Q are 1) the original Q-learning rule [Watkins, 1989] and 2) SARSA [Rummery and Niranjan, 1994]. While Q-learning rule is an off-policy rule, i.e. it uses errors between current observations and estimates of the values for following an optimal policy, while actually following a potentially suboptimal policy during learning, SARSA¹ is an on-policy learning rule, i.e. the updates of the state and action values reflect the current policy derived from these value estimates. While in the general case of Q-learning, the temporal difference is:

$$\delta_Q = r_t + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)$$
(4)

for the more specific case of SARSA it is:

$$\delta_Q = r_t + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t).$$
 (5)

Policy Iteration

choose an arbitrary policy π'

loop

$$\pi := \pi'$$

compute the value function of policy π :

solve the linear equations

$$V_{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s' \in S} T(s, \pi(s), s') V_{\pi}(s')$$

improve the policy at each state:

$$\pi'(s) := \arg \max_a \left(R(s, a) + \gamma \sum_{s' \in S} T(s, a, s') V_{\pi}(s') \right)$$

until $\pi = \pi'$