Machine Learning Midterm Answers

This exam is open book. You may bring in your homework, class notes and textbooks to help you. You will have 1 hour and 15 minutes. Write all answers in the blue books provided. Please make sure YOUR NAME is on each of your blue books. Square brackets [] denote the points for a question.

1. Linear Algebra
 (a) [10] Show that the Woodbury identity is true:
 $$(A + BCD)^{-1} = A^{-1} - A^{-1}B(C^{-1} + DA^{-1}B)^{-1}DA^{-1}$$
 (b) [15] Show that if a matrix A is positive definite, its eigenvalues must be positive also.

 Answer to part a:
 Premultiply by $(A + BCD)$ and cancel identity matrices on both sides, then rearrange:
 $$BCDA^{-1} = B(C^{-1} + DA^{-1}B)^{-1}DA^{-1} + BCDA^{-1}B(C^{-1} + DA^{-1}B)^{-1}DA^{-1}$$
 Cancel DA^{-1},
 $$BC = B(C^{-1} + DA^{-1}B)^{-1} + BCDA^{-1}B(C^{-1} + DA^{-1}B)^{-1}$$
 Postmultiply by $(C^{-1} + DA^{-1}B)^{-1}$,
 $$BC(C^{-1} + DA^{-1}B) = B + BCDA^{-1}B$$

 Answer to part b:
 Eigenvalue equation is:
 $$Av = \lambda v$$
 Premultiply by v^T
 $$v^TAv = \lambda v^Tv$$
 Both v^TAv and v^Tv are positive, so λ must be positive also.
2. Entropy

(a) [15] Show that where M is the number of states of $\{x_i\}$, the entropy of $p(x_i)$ is maximized by $p(x_i) = \frac{1}{M}$ and $H = \ln M$. Use the Lagrange multiplier technique.

(b) [10] What is the Kullback-Liebler distance and why is it useful?

Answer to part a:

$$J = -\sum_{i=1}^{M} p(x_i) \log p(x_i) + \lambda \left(\sum_{i=1}^{M} p(x_i) - 1 \right)$$ \hspace{1cm} (1)

$$\frac{\partial J}{\partial p(x_i)} = \log p(x_i) - 1 + \lambda = 0$$ \hspace{1cm} (2)

So

$$\lambda = 1 - \log p(x_i)$$

and since this must work for all $p(x_i)$ and there is only one λ then all the $p(x_i)$ must be equal.

Answer to part b:

The K-L divergence, or relative entropy is a way of measuring the ‘distance’ between two distributions, since

$$\sum_{k} p(x_k) \log \frac{p(x_k)}{q(x_k)} \geq 0$$

This is very useful since in a very large number of applications we want to approximate and ideal distribution $p(x_k)$ with a computable distribution $q(x_k)$.

3. Optimization

(a) [20] The following graph represents probabilities for transiting from one state to another in stages. P_{ijk} represents the probability of transiting from node i to node j at stage k. Specify a dynamic programing algorithm that calculates the most probable path through this graph from any node to the end. What is your recursion equation?

(b) [5] In general, when might the dynamic programming method be used over the Hamiltonian method?

Answer to part a:
Let $V(i, k)$ be the most probable path from the ith node in the kth stage until the end - lets call the last stage K. Then $V_{iK} = 0$ and

$$V(i, k - 1) = \max_j \{P_{ijk} + V(j, k)\}$$

The most probable paths are given by $V(i, 1)$.

Answer to part b (one of several):
Use DP when it is feasible to represent the state space in discrete form.
4. Support Vector Machines

The XOR problem is given by:

\[
\begin{array}{ccc}
 x_1 & x_2 & \text{desired output} \ d \\
 -1 & -1 & -1 \\
 +1 & -1 & +1 \\
 -1 & +1 & +1 \\
 +1 & +1 & -1 \\
\end{array}
\]

(a) [20] Will the following \(\psi(x) \) solve the XOR problem? Show all steps.

\[
\psi(x) = \begin{bmatrix} x_2^2 - x_2^2 \\ x_1x_2 \\ x_1^2 + x_2^2 \end{bmatrix}
\]

(b) [5] What is the Perceptron limitation and how to SVMs deal with it?

Answer to part a:

\[
\psi(-1, -1) = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \quad \psi(-1, 1) = \begin{bmatrix} 0 \\ -1 \\ 2 \end{bmatrix}
\]

\[
K = \begin{bmatrix}
5 & 3 & 3 & 3 \\
3 & 5 & 3 & 3 \\
3 & 3 & 5 & 3 \\
3 & 3 & 3 & 5 \\
\end{bmatrix}
\]

\[
Q(\lambda) = \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 - \frac{1}{2} \{5\lambda_1^2 - 6\lambda_1\lambda_2 - 6\lambda_1\lambda_3 + 6\lambda_1\lambda_4 + \cdots\}
\]

\[
\frac{\partial Q}{\partial \lambda_1} = 0 = 1 - 5\lambda_1 + 3\lambda_2 + 3\lambda_3 - 3\lambda_4
\]

From symmetry,

\[
\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = \frac{1}{2}
\]

So plugging in, \(Q(\lambda) = \frac{5}{2} \) and \(||w_o|| = \sqrt{5} \). And

\[
w_o = \sqrt{5} \begin{bmatrix} 0 \\ 4 \\ 0 \end{bmatrix}
\]

and finally, \(w_o^T \psi(x) = 4\sqrt{5}x_1x_2 \).

Answer to part b:

The higher dimensional space of SVMs increases class separations.